In Victoria, the Incidence of Sirex Over Summer 2001-2002 Remained

Total Page:16

File Type:pdf, Size:1020Kb

In Victoria, the Incidence of Sirex Over Summer 2001-2002 Remained Primary Industries Standing Committee Forestry and Forest Products Committee Research Priorities and Co-ordination Committee RESEARCH WORKING GROUP 7 FOREST HEALTH Annual Pest and Disease Status Report for Australia and New Zealand 2003-2004 October 2004 1 TABLE OF CONTENTS INTRODUCTION ..................................................................................................................................7 PURPOSE ...............................................................................................................................................7 AUSTRALIA ..........................................................................................................................................8 VICTORIA..............................................................................................................................................8 PLANTATIONS.......................................................................................................................................8 Pinus spp.........................................................................................................................................8 Insect Pests.................................................................................................................................................8 Sirex noctilio (Sirex wood wasp)..........................................................................................................8 Ips grandicollis (Fivespined Bark Beetle) and other bark beetle species ..............................................8 Essigella californica (Monterey Pine Aphid) ........................................................................................9 Diseases .....................................................................................................................................................9 Dothistroma ..........................................................................................................................................9 Cyclaneusma Needle Cast.....................................................................................................................9 Other .....................................................................................................................................................9 Bursaphelenchus ...................................................................................................................................9 Eucaluyptus spp. ...........................................................................................................................10 Insect Pests............................................................................................................................................... 10 Mnesampela privata (Autumn Gum Moth)......................................................................................... 10 Chrysophtharta and Paropsis (Chrysomelid Leaf beetles) .................................................................. 10 Perga spp. (Sawflies) .......................................................................................................................... 11 Phorocantha spp. (Longicorn Borers) ................................................................................................. 11 Cardiaspina spp. (Psyllids).................................................................................................................. 11 Other Pests of Eucalypts ..................................................................................................................... 12 Diseases ................................................................................................................................................... 13 Mycosphaerella leaf diseases.............................................................................................................. 13 NATIVE FORESTS (EUCALYPTUS SPP.) .................................................................................................13 Didymuria violescens (Spurlegged Phasmatid) .................................................................................. 13 Cardiaspina bilobata (Mountain ash psyllid)....................................................................................... 13 Eucalyptus Leaf Beetle (Chrysophtharta agricola).............................................................................. 13 Cardiaspina retator (Red gum basket lerp).......................................................................................... 14 Doratifera vulnerans (Mottled cup moth)............................................................................................ 14 Diseases .............................................................................................................................................. 16 NURSERIES .........................................................................................................................................16 Conifer ..........................................................................................................................................16 Eucalypt ........................................................................................................................................16 NATIVE PLANT COMMUNITIES............................................................................................................16 URBAN ...............................................................................................................................................16 MONITORING AND SURVEILLANCE .....................................................................................................17 Lymantria dispar (Asian Gypsy Moth) ............................................................................................... 17 Plantations and Native Forests Monitoring......................................................................................... 17 NEW SOUTH WALES ........................................................................................................................18 PLANTATIONS.....................................................................................................................................18 Pinus spp.......................................................................................................................................18 Insect Pests............................................................................................................................................... 18 Sirex noctilio (Sirex wood wasp) (DW).............................................................................................. 18 Ips grandicollis (Fivespined bark beetle) and other bark beetles ........................................................ 20 Essigella californica (Monterey pine aphid) ....................................................................................... 20 Diseases ................................................................................................................................................... 21 Dothistroma septosporum (Dothistroma needle blight & cast) ........................................................... 21 Cyclaneusma minus ............................................................................................................................ 21 Sphaeropsis sapinea (=Diplodia) ........................................................................................................ 21 Armillaria novae-zelandiae................................................................................................................. 21 Phytophthora cinnamomi.................................................................................................................... 21 Environmental (drought, frost, fire, nutrient, weeds, etc.)........................................................................ 21 Vertebrate pests........................................................................................................................................ 21 Possum................................................................................................................................................ 21 Wallaby............................................................................................................................................... 22 Pseudotsuga menziesii (Douglas fir) ............................................................................................22 2 Diseases ................................................................................................................................................... 22 Phaecryptogus gaeumannii (Swiss needle cast) .................................................................................. 22 Insect pests............................................................................................................................................... 22 Adelges cooleyi (Cooley spruce gall aphid)........................................................................................ 22 Hoop pine (Araucaria cunninghamii)...........................................................................................22 Eucalyptus species ........................................................................................................................22 Insect Pests............................................................................................................................................... 22 Mnesampela
Recommended publications
  • A New Leaf-Mining Moth from New Zealand, Sabulopteryx Botanica Sp
    A peer-reviewed open-access journal ZooKeys 865: 39–65A new (2019) leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. 39 doi: 10.3897/zookeys.865.34265 MONOGRAPH http://zookeys.pensoft.net Launched to accelerate biodiversity research A new leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae), feeding on the rare endemic shrub Teucrium parvifolium (Lamiaceae), with a revised checklist of New Zealand Gracillariidae Robert J.B. Hoare1, Brian H. Patrick2, Thomas R. Buckley1,3 1 New Zealand Arthropod Collection (NZAC), Manaaki Whenua–Landcare Research, Private Bag 92170, Auc- kland, New Zealand 2 Wildlands Consultants Ltd, PO Box 9276, Tower Junction, Christchurch 8149, New Ze- aland 3 School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand Corresponding author: Robert J.B. Hoare ([email protected]) Academic editor: E. van Nieukerken | Received 4 March 2019 | Accepted 3 May 2019 | Published 22 Jul 2019 http://zoobank.org/C1E51F7F-B5DF-4808-9C80-73A10D5746CD Citation: Hoare RJB, Patrick BH, Buckley TR (2019) A new leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae), feeding on the rare endemic shrub Teucrium parvifolium (Lamiaceae), with a revised checklist of New Zealand Gracillariidae. ZooKeys 965: 39–65. https://doi.org/10.3897/ zookeys.865.34265 Abstract Sabulopteryx botanica Hoare & Patrick, sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae) is described as a new species from New Zealand. It is regarded as endemic, and represents the first record of its genus from the southern hemisphere. Though diverging in some morphological features from previously de- scribed species, it is placed in genus Sabulopteryx Triberti, based on wing venation, abdominal characters, male and female genitalia and hostplant choice; this placement is supported by phylogenetic analysis based on the COI mitochondrial gene.
    [Show full text]
  • The Taxonomy, Phylogeny and Impact of Mycosphaerella Species on Eucalypts in South-Western Australia
    The Taxonomy, Phylogeny and Impact of Mycosphaerella species on Eucalypts in South-Western Australia By Aaron Maxwell BSc (Hons) Murdoch University Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological Sciences and Biotechnology Murdoch University Perth, Western Australia April 2004 Declaration I declare that the work in this thesis is of my own research, except where reference is made, and has not previously been submitted for a degree at any institution Aaron Maxwell April 2004 II Acknowledgements This work forms part of a PhD project, which is funded by an Australian Postgraduate Award (Industry) grant. Integrated Tree Cropping Pty is the industry partner involved and their financial and in kind support is gratefully received. I am indebted to my supervisors Associate Professor Bernie Dell and Dr Giles Hardy for their advice and inspiration. Also, Professor Mike Wingfield for his generosity in funding and supporting my research visit to South Africa. Dr Hardy played a great role in getting me started on this road and I cannot thank him enough for opening my eyes to the wonders of mycology and plant pathology. Professor Dell’s great wit has been a welcome addition to his wealth of knowledge. A long list of people, have helped me along the way. I thank Sarah Jackson for reviewing chapters and papers, and for extensive help with lab work and the thinking through of vexing issues. Tania Jackson for lab, field, accommodation and writing expertise. Kar-Chun Tan helped greatly with the RAPD’s research. Chris Dunne and Sarah Collins for writing advice.
    [Show full text]
  • Lepidoptera: Geometridae), a Defoliator of Eucalyptus Martin J
    Research Collection Journal Article Identification, synthesis and activity of sex pheromonegland components of the autumn gum moth (Lepidoptera:Geometridae), a defoliator of Eucalyptus Author(s): Steinbauer, Martin J.; Östrand, Fredrik; Bellas, Tom E.; Nilson, Anna; Andersson, Fredrik; Hedenström, Erik; Lacey, Michael J.; Schiestl, P. Florian Publication Date: 2004 Permanent Link: https://doi.org/10.3929/ethz-b-000422591 Originally published in: Chemoecology 14(3-4), http://doi.org/10.1007/s00049-004-0281-5 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Chemoecology14:217–223 (2004) 0937–7409/04/040217–7 CHEMOECOLOGY © Birkhäuser Verlag, Basel, 2004 DOI 10.1007/s00049-004-0281-5 Identification, synthesis and activity of sex pheromone gland components of the autumn gum moth (Lepidoptera: Geometridae), a defoliator of Eucalyptus Martin J. Steinbauer1, Fredrik Östrand2, Tom E. Bellas3, Anna Nilsson4, Fredrik Andersson4, Erik Hedenström4, Michael J. Lacey3 and Florian P. Schiestl5,6 1Co-operative Research Centre (CRC) for Sustainable Production Forestry and CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia 2Chemical Ecology and Ecotoxicology, Department of Ecology, Lund University, SE-223 62 Lund, Sweden 3CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia 4Department of Natural and Environmental Sciences, Mid Sweden University, SE-851 70 Sundsvall, Sweden 5Department of Evolutionary Biology, University of Vienna and School of Botany and Zoology, Australian National University, Canberra, ACT 0200, Australia 6Present address: Geobotanical Institute ETH, 107 Zollikerstrasse, CH-8008 Zürich, Switzerland Summary. The autumn gum moth, Mnesampela privata Introduction (Guenée) (Lepidoptera: Geometridae), is native to Australia and can be a pest of plantation eucalypts.
    [Show full text]
  • Forest Health News No
    forest health news No. 181, February 2008 ISSN 1175-9755 BUDDLEIA LEAF WEEVIL UPDATE indicate weevils become inactive and hide at high temperatures. However, large numbers of very small larvae and eggs were found As reported in an earlier FH News (FH News 169, January 2007) in mid-February at all sites. the buddleia leaf weevil, Cleopus japonicus, was released by Scion staff at five sites in North Island plantations from October 2006 to The weevil can be considered established at all sites as more than January 2007. Release sites were established in Whakarewarewa, two generations have been recorded, weevils were found after Kinleith, Lake Taupo, Esk, and Rawhiti Forests. These forests winter, and numbers have increased. Buddleia leaf weevil feeding were selected because they represent a range of different climatic has been found 145 m from the release plants at Kinleith and conditions. The sites have since been monitored closely for weevil 200 m from them at Lake Taupo. It is only early days, but feeding establishment, dispersal, and feeding damage to buddleia. Despite damage to some plants is impressive. Very heavy defoliation will many years of research in quarantine, how well the weevil would be needed, however, to reduce the vigorous growth of buddleia. do in New Zealand forests was uncertain. Further releases have been made in the Kaikoura area, Whanganui, In particular, we were interested to see if cleopus would survive Masterton, and Bay of Plenty between November 2007 and winter as adult weevils and/or pupae, and would larvae be found February 2008. in the cooler months.
    [Show full text]
  • E.Quadrangulata
    Durable Eucalypt Leaflet Series Eucalyptus quadrangulata Ian Nicholas and Paul Millen December 2012 Why grow durable eucalypts? New Zealand’s agricultural landscapes need sustainable land use options adapted to droughts and floods which complement pastoral farming while reducing soil erosion, improving water quality and habitat for native biodiversity. Eucalypts are renowned for their adaptability to droughty and eroding landscapes. They also provide excellent habitat for nectar-feeding birds and insects. With over 400 eucalypt species to select from there is a great opportunity to select appropriate species for the planting objective. With CCA (copper chrome arsenic)-treated wood now banned for many uses by the USA and several European countries, there are significant international and domestic markets for naturally-durable hardwoods. The wood properties of New Zealand grown durable eucalypts ensure they can replace CCA treated material for many uses and are also ideal for a wide range of agricultural and land-based industrial applications, particularly for posts, poles and utility cross-arms as well as heavy structural timbers. NZDFI (New Zealand Dryland Forests Initiative) has selected eucalypt species which can be sawn to produce durable hardwood. Using these species, NZDFI is committed to developing viable best-practice forest management systems to complement livestock farming. NZDFI wants to encourage planting durable hardwood forests and woodlots to protect steeplands and waterways, for shade and shelter, and to generate income from carbon credits and sustainable timber harvesting. Why NZDFI have selected E. quadrangulata? NZDFI have selected species that: • Produce highly durable timber (Class 1 and 2 Australian Standard, AS5606-2005) • Are drought tolerant • Coppice vigorously after fire and harvesting • Do not appear to spread as wildings • Have the potential to sequester carbon faster than pine on drylands • Provide nectar/pollen for native biodiversity.
    [Show full text]
  • 01/02 Annual Report (PDF, 6741KB)
    M 56 CBC for Sustarnable Production Forestry — Annual Report 2001/02 Publications Genetic Improvement Program McGowen MH, Wiltshire RJ, Potts BM, Vaillancourt RE (2001). The origin of Eucalyptus vernicosa, a Books and book chapters unique shrub eucalypt. Biological Journal of the Auckland LD, Bui T, Zhou Y, Shepherd M, Williams CG Linnean Society 74, 397-405. (2002). Transpecific recovery of pine microsatellite. In ‘Conifer Microsatellite Handbook’. (Eds CG Williams McKinnon GE, Vaillancourt RE, Tilyard PA, Potts BM and LD Auckland) pp. 27-28. (Texas A & M University: (2001). Maternal inheritance of the chloroplast genome College Station, Texas, USA) in Eucalyptus globulus and interspecific hybrids, Genome 44, 831-835. Refereed publications Costa e Silva J, Dutkowski GW, Gilmour AR (2001). Patterson B, Vaillancourt RE, Potts BM (2001). Analysis of early tree height in forest genetic trials is Eucalypt seed collectors: beware of sampling seedlots enhanced by including a spatially correlated residual. from low in the canopy! Australian Forestry 64, 139- Canadian Journal of Forest Research 31, 1887-1893. 142. Dungey HS, Potts BM (2002). Susceptibility of Potts BM, Potts WC, Kantvilas G (2001). The Miena some Eucalyptus species and their hybrids to possum cider gum, Eucalyptus gunnii subsp. (livaricata damage. Australian Forestry 65, 16-23. (Myrtaceae): a taxon in rapid decline. Proceedings of the Royal Society of Tasmania 135, 57-6l. Freeman JS, Jackson HD, Steane DA, McKinnon GE, Dutkowski GW, Potts BM, Vaillancourt RE (2001). Pound LM, Wallwork MAB, Potts BM, Sedgley M _iii_.-_,_ Chloroplast DNA phylogeography of Eucalyptus (2002). Self-incompatibility in Eucalyptus globulus globulus. Australian Journal ofBotany 49, 585-589.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Genetic Variability and Leaf Waxes of Some Eucalyptus Species with Horticultural Potential
    29. *t Genetic Variability and Leaf Waxes of some Eucalyptus Species with Horticultural Potential Michelle Gabrielle Wirthensohn B.Ag.Sc. (Hons) Submitted in fulfîllment of the requirements for the degree of Doctor of Philosophy Department of Horticulture, Viticulture and Oenology Waite Agricultural Research Institute University of Adelaide September 1998 Eucalyptus macrocarpa Anne.ndix Table of Contents Abstract I Declaration iv Acknowledgements v List of Tables vi List of Figures viii Glossary xi Chapter 1 General lntroduction I The genus EucalYPtus 2 Lignotubers and mallee 3 Leaf phases 4 Leaf waxes 5 Wax structure 5 Wax chemistry 5 Ontogenetic variation 8 Wax extraction and seParation t0 Functions of epicuticular wax l0 Glaucousness 10 Environmental adaPtations 11 Influencing factors on epicuticular wax t2 Light t2 Temperature and other environmental effects 12 Etfect of agricultural chemicals on leaf waxes 13 Taxonomic significance of wax structure and composition 13 Thesis aims I4 Chapter 2 Plant Material t6 Species Descriptions and Taxonomy l9 Ghapter 3 Species Evaluation and Pruning lntroduction 25 Materials and Methods Species evaluation 26 Pruning trial on E. globulus 26 Pruning trial on 16 species ol Eucalyptus 27 Pruning trial on E. gunnii 27 Results Species evaluation 28 Pruning trial on E. globulus 28 Pruning trial on 16 species ol Eucalyptus 28 Pruning trial on E. gunnii 30 Discussion 47 Chapter 4 Postharvest Treatment of Gut Stems lntroduction 51 Materials and Methods Plant material 5l Vase life 52 Pulsing 52 Pulsing and
    [Show full text]
  • Fhnews 171 Mar.P65
    forest health news No. 171, March 2007 ISSN 1175-9755 ENSIS SCIENTISTS CONTRIBUTE TO FOREST LIGHT BROWN APPLE MOTH IN CALIFORNIA BIOSECURITY CONFERENCE IN THE USA Epiphyas postvittana (light brown apple moth) is a south-east The USDA Interagency Research Forum on Invasive Species, one Australian leaf-rolling moth that was first found in New Zealand of the principal conferences on invasive forest pests and diseases, in 1887. It has also become established in Tasmania, south-western takes place in Annapolis, Maryland, every January. Ensis scientists Australia, New Caledonia, Hawaii, and the United Kingdom. have attended this forum on several occasions and this year Ecki Brockerhoff and Tod Ramsfield were invited to contribute new information on bark beetle introductions and on genetic tools used in pathogen research, respectively. This conference has become an important forum for the exchange of information on invasive species and their management, and for encouraging collaboration among scientists from around the world. Colleagues in the USA have their hands full due to a series of recent incursions and introductions including the Asian long- horned beetle (Anoplophora glabripennis) (FH News 123:2), the emerald ash borer (Agrilus planipennis) (FH News 125:2), Sirex noctilio, and sudden oak death (Phytophthora ramorum) (FH News 123:1). In addition, there is much ongoing work on attempting to Epiphyas postvittana adult minimise the impact and to prevent the further spread of earlier introductions such as gypsy moth (Lymantria dispar) which causes Recently two E. postvittana moths were caught in a light trap much defoliation in the eastern USA during periodic outbreaks.
    [Show full text]
  • Foliage Insect Diversity in Dry Eucalypt Forests in Eastern Tasmania
    Papers and Proceedings of the Royal Society of Tasmania, Volume 136, 2002 17 FOLIAGE INSECT DIVERSITY IN DRY EUCALYPT FORESTS IN EASTERN TASMANIA by H.J. Elliott, R. Bashford, S.J. Jarman and M.G. Neyland (with four tables, one text-figure and two appendices) ELLIOTT, H.]., BASHFORD, R., JARMAN,S.]' & NEYLAND, M.G., 2002 (3l:xii): Foliage insect diversity in dry eucalypt forests in eastern Tasmania. Papers and Proceedings ofthe Royal Society afTasmania 136: 17-34. ISSN 0080-4703. Forestry Tasmania, 79 Melville St., Hobart, Tasmania 7000, Australia. Species numbers and composition of the insect fauna occurring on trees and shrubs were studied in dry eucalypt forests in eastern Tasmania over nine years. In all, 1164 named and putative species representing 17 orders and 157 families were collected. The bulk of the species belonged to the orders Coleoptera (28%), Hymenoptera (25%), Hemiptera (18%), Lepidoptera (14%) and Diptera (10%). Of the species collected, 388 -- about one-third -- were identified at least to genus or species level. These included 21 named species not previously listed in the Tasmanian insect fauna and 90 undescribed species. A list of 22 host plants for 171 insect species was compiled from records of 132 insect species observed feeding during the study and from previous records ofinsect/host plant associations for 39 insect species found on the study plots. Most insects were feeding on eucalypts (127 insect species) and acacias (38 species). The most widely distributed and commonly collected species were several well-known pests ofeucalypts: Gonipterus scutellatus (Coleoptera: Curculionidae), Uraba lugens (Lepidoptera: N octuidae), Amorbus obscuricornis (Hemiptera: Coreidae), Chaetophyes compacta (Hemiptera: Machaerotidae) and Eriococcus coriaceous(Hemiptera: Eriococcidae).
    [Show full text]
  • Biosecurity 29
    Issue 29 • 1 August 2001 A publication of MAF Biosecurity Authority Expensive produce: $200 instant fines introduced p4 Also in this issue: Should pig feeding be regulated? BSE: an international public health, animal health and trade issue Precaution and the management of biosecurity risks More resources needed for international plant work security Import risk analysis for Cordyline and Dracaena Painted apple moth response report released Sudden oak death – new disease identified in US Developing codes of welfare: a consultative process Pipfruit industry certification post deregulation Biosecurity How to contact us: Contents Everyone listed at the end of an article as a contact point, unless otherwise indicated, is part of the Ministry of Agriculture and Forestry Biosecurity Authority. 3 Biosecurity takes a stand All MAF staff can be contacted by e-mail, FMD campaign wound up and the standard format for all addresses is 4 Cover story: Instant fines catch 454 travellers in first fortnight [email protected] For example Ralph Hopcroft would be New Zealand experts contribute to risk analysis text [email protected] (There are slight 5 Should pig feeding be regulated? exceptions for people with similar names, but these addresses are given where necessary.) 6 BSE: an international public health, animal health and trade issue 7 Varroa update: varroa control book published by MAF PO Box 2526, Wellington New Zealand 8 Biosecurity Council position statement on the application of precaution in managing biosecurity risks associated with
    [Show full text]
  • Modelling a Forest Lepidopteran: Phenological Plasticity Determines Voltinism Which Influences Population Dynamics Martin J
    Forest Ecology and Management 198 (2004) 117–131 Modelling a forest lepidopteran: phenological plasticity determines voltinism which influences population dynamics Martin J. Steinbauera,b,*, Darren J. Kriticosb,1, Zoltan Lukacsc, Anthony R. Clarked aCo-operative Research Centre for Sustainable Production Forestry, GPO Box 1700, Canberra 2601, ACT, Australia bCSIRO Entomology, GPO Box 1700, Canberra 2601, ACT, Australia cGrains Research and Development Corporation, PO Box 5367, Kingston 2604, ACT, Australia dSchool of Natural Resource Sciences, Queensland University of Technology, GPO Box 2434, Qld. 4001, Australia Received 7 January 2004; received in revised form 26 March 2004; accepted 27 March 2004 Abstract Mnesampela privata is an Australian geometrid moth that is considered to have resource-driven outbreaks. An autumnal oviposition/larval development cycle is considered the ‘‘norm’’ in this species, but spring/summer activity has also been observed. This apparent plasticity of phenology and probable concomitant changes in voltinism have not been considered as possible causes of moth outbreaks. We developed GumMoth, a phenological model for M. privata that uses temperature to predict development times of immatures. Photoperiod determines whether individuals undergo direct development or pupal diapause. We used known catch dates of moths (in the same moth-active season or 365-day period) to simulate population phenologies on the Australian mainland (278280Sto388140S) and in Tasmania (408540Sto428570S). GumMoth successfully simulated phenological patterns that agreed with published records and demonstrated for the first time that multivoltinism is possible in M. privata. In seven paired simulations using dates for first and last moth catches, the earliest moth activity resulted in the pupae of four out of 11 generations undergoing diapause, whereas the latest moth activity resulted in pupae of five out of eight generations undergoing diapause (diapause individuals emerged the following moth-active season).
    [Show full text]