PROTOCOL 1 A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Published Estimates of Life History Traits for 84 Populations of Teleost
Summary of data on fishing pressure group (G), age at maturity (Tm, years), length at maturity (Lm, cm), length-at-5%-survival (L.05, cm), time-to-5%-survival 3 (T.05, years), slope of the log-log fecundity-length relationship (Fb), fecundity the year of maturity (Fm), and egg volume (Egg, mm ) for the populations listed in the first three columns. Period is the period of field data collection. Species Zone Period G Tm Lm L.05 T.05 Fb Fm Egg Data sources (1) (1) (2) (3) (4) (4) (5) (1) (2) (3) (4) (5) Clupeiformes Engraulis capensis S. Africa 71-74 2 1 9.5 11.8 1.8 3.411 4.856E+04 0.988 118 119 137 118 138 Engraulis encrasicholus B. Biscay 87-92 2 1 11.5 14 1.4 3.997 9.100E+04 1.462 125 30, 188 170, 169 133, 23 145 Medit. S. 84-90 1 1 12.5 13.4 2.3 4.558 9.738E+04 0.668 161 161 160 161, 120 120 Sprattus sprattus Baltic S. 85-91 1 2 12 13.8 6.2 2.84 2.428E+05 1.122 15 19 26 184, 5 146 North S. 73-77 1 2 11.5 14.3 3 4.673 8.848E+03 0.393 8 107 106 33 169 Clupea harengus Baltic S. 75-82 1 3 16 24 4.9 3.206 4.168E+04 0.679 116 191 191 116 169 North S. 60-69 3 3 22 26.9 2.7 4.61 2.040E+04 0.679 52 53, 7 52 39 169 Baltic S. -
Scenario Calculations of Mercury Exposure
VKM Report 2019:3 Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment Report from the Norwegian Scientific Committee for Food and Environment (VKM) 2019:3 Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment 05.04.2019 ISBN: 978-82-8259-319-9 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] vkm.no vkm.no/english Cover photo: Colourbox Suggested citation: VKM, Heidi Amlund, Kirsten Eline Rakkestad, Anders Ruus, Jostein Starrfelt, Jonny Beyer, Anne Lise Brantsæter, Sara Bremer, Gunnar Sundstøl Eriksen, Espen Mariussen, Ingunn Anita Samdal, Cathrine Thomsen and Helle Katrine Knutsen (2019). Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations. Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment. VKM report 2019:3, ISBN: 978-82-8259-319-9, ISSN: 2535-4019. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway. Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations Preparation of the opinion The Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) appointed a project group to answer the request from the Norwegian Food Safety Authority. The project group consisted of three VKM-members, and three employees, including a project leader, from the VKM secretariat. -
9.2 Greater North Sea Ecoregion – Fisheries Overview
ICES Fisheries Overviews Greater North Sea Ecoregion Published 4 July 2017 DOI: 10.17895/ices.pub.3116 9.2 Greater North Sea Ecoregion – Fisheries overview Executive summary Around 6600 fishing vessels are active in the Greater North Sea. Total landings peaked in the 1970s at 4 million tonnes and have since declined to about 2 million tonnes. Total fishing effort has declined substantially since 2003. Pelagic fish landings are greater than demersal fish landings. Herring and mackerel, caught using pelagic trawls and seines, account for the largest portion of the pelagic landings, while sandeel and haddock, caught using otter trawls/seines, account for the largest fraction of the demersal landings. Catches are taken from more than 100 stocks. Discards are highest in the demersal and benthic fisheries. The spatial distribution of fishing gear varies across the Greater North Sea. Static gear is used most frequently in the English Channel, the eastern part of the Southern Bight, the Danish banks, and in the waters east of Shetland. Bottom trawls are used throughout the North Sea, with lower use in the shallower southern North Sea where beam trawls are most commonly used. Pelagic gears are used throughout the North Sea. In terms of tonnage of catch, most of the fish stocks harvested from the North Sea are being fished at levels consistent with achieving good environmental status (GES) under the EU’s Marine Strategy Framework Directive; however, the reproductive capacity of the stocks has not generally reached this level. Almost all the fisheries in the North Sea catch more than one species; controlling fishing on one species therefore affects other species as well. -
Intrinsic Vulnerability in the Global Fish Catch
The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae -
European Trawlers Are Destroying the Oceans
EUROPEAN TRAWLERS ARE DESTROYING THE OCEANS Introduction Nearly 100,000 vessels make up the European Union fishing fleet. This includes boats that fish both in EU waters (the domestic fleet), in the waters of other countries and in international waters (the deep-sea fleet). In addition, there is an unknown number of vessels belonging to other European countries that are not members of the EU which could approach a figure half that of the EU fleet. The majority of these vessels sail under the flag of a European country but there are also boats, particularly those fishing on the high seas, which despite being managed, chartered or part owned by European companies, use the flag of the country where they catch their fish or sail under flags of convenience (FOCs). The Fisheries Commission has called for a reform of the Common Fisheries Policy (CFP) to achieve a reduction of 40% in the EU fishing capacity, as forecasts show that by simply following the approved multi-annual plans, barely 8.5% of vessels and 18% of gross tonnage would be decommissioned1; an achievement very distant from scientific recommendations. Moreover, from among these almost 100,000 vessels, the EU is home to a particularly damaging fleet: the 15,000 trawlers that operate in European waters, as well as those of third countries or those fishing on the high seas. These trawlers are overexploiting marine resources and irreversibly damaging some of the most productive and biodiverse ecosystems on the planet. The 40% reduction called for by the Commission could be easily achieved if the primary objective of this proposal was focused both on eliminating the most destructive fishing techniques and reducing fishing overcapacity. -
A Cyprinid Fish
DFO - Library / MPO - Bibliotheque 01005886 c.i FISHERIES RESEARCH BOARD OF CANADA Biological Station, Nanaimo, B.C. Circular No. 65 RUSSIAN-ENGLISH GLOSSARY OF NAMES OF AQUATIC ORGANISMS AND OTHER BIOLOGICAL AND RELATED TERMS Compiled by W. E. Ricker Fisheries Research Board of Canada Nanaimo, B.C. August, 1962 FISHERIES RESEARCH BOARD OF CANADA Biological Station, Nanaimo, B0C. Circular No. 65 9^ RUSSIAN-ENGLISH GLOSSARY OF NAMES OF AQUATIC ORGANISMS AND OTHER BIOLOGICAL AND RELATED TERMS ^5, Compiled by W. E. Ricker Fisheries Research Board of Canada Nanaimo, B.C. August, 1962 FOREWORD This short Russian-English glossary is meant to be of assistance in translating scientific articles in the fields of aquatic biology and the study of fishes and fisheries. j^ Definitions have been obtained from a variety of sources. For the names of fishes, the text volume of "Commercial Fishes of the USSR" provided English equivalents of many Russian names. Others were found in Berg's "Freshwater Fishes", and in works by Nikolsky (1954), Galkin (1958), Borisov and Ovsiannikov (1958), Martinsen (1959), and others. The kinds of fishes most emphasized are the larger species, especially those which are of importance as food fishes in the USSR, hence likely to be encountered in routine translating. However, names of a number of important commercial species in other parts of the world have been taken from Martinsen's list. For species for which no recognized English name was discovered, I have usually given either a transliteration or a translation of the Russian name; these are put in quotation marks to distinguish them from recognized English names. -
(Pollachius Virens) Fishery
MACALISTER ELLIOTT AND PARTNERS LTD Final Report UK Fisheries Ltd. / DFFU / Doggerbank saithe (Pollachius virens) fishery 22 NOVEMBER 2010 MacAlister Elliott and Partners Ltd 56 High Street, Lymington Hampshire SO41 9AH United Kingdom Tel: 01590 679016 Fax: 01590 671573 E-mail: [email protected] Website: www.macalister-elliott.com 2187R01C Table of contents Contents Report summary .................................................................................................................. 5 1. Introduction ..................................................................................................................... 6 1.1 General background .................................................................................................. 6 1.2 Client ......................................................................................................................... 6 1.3 Units of certification ................................................................................................. 7 1.4 Assessment team and peer reviewers ........................................................................ 7 1.5 Previous assessments by MEP .................................................................................. 8 1.6 Report structure ......................................................................................................... 8 2. Background to the fishery ............................................................................................... 9 2.1 Target species........................................................................................................... -
The Poor Health of Deep‐Water Species in the Context Of
1 Journal of Fish Biology Archimer June 2021, Volume 98, Issue 6, Pages 1572-1584 https://doi.org/10.1111/jfb.14347 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00623/73502/ The poor health of deep-water species in the context of fishing activity and a warming climate: will populations of Molva species rebuild or collapse? Lloret Josep 1, *, Serrat Alba 1, Þórðarson Guðmundur 2, Helle Kristin 3, Jadaud Angelique 4, Bruno Isabel 5, Ordines Francesc 6, Sartor Paolo 7, Carbonara Pierluigi 8, Rätz Hans-Joachim 9 1 University of Girona; Institute of Aquatic Ecology; Girona Catalonia, Spain 2 Marine and Freshwater Research Institute; Reykjavík, Iceland 3 Institute of Marine Research; Bergen,Norway 4 MARBEC, Ifremer, Université de Montpellier, CNRS, IRD; Sète, France 5 Centro Oceanográfico de Vigo, Instituto Español de Oceanografía; Vigo ,Spain 6 Centre Oceanogràfic de Balears, Instituto Español de Oceanografía; Palma de Mallorca, Spain 7 CIBM Consorzio per il Centro Internuniversitario di Biologia Marina ed Ecologia Applicata “G. Bacci”; Livorno ,Italy 8 COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare; Bari, Italy 9 Thünen Institut; Bremerhaven, Germany * Corresponding author : Josep Lloret, email address : [email protected] Abstract : Many deep‐water fish populations, being k‐selected species, have little resilience to overexploitation and may be at serious risk of depletion as a consequence. Sea warming represents an additional threat. In this study, the condition, or health, of several populations of common ling (Molva molva), blue ling (M. dypterygia) and Mediterranean or Spanish ling (M. macrophthalma) inhabiting different areas in the North Atlantic and the Mediterranean was evaluated, in order to shed light on the challenges these deep water species are facing in the context of fishing activity and a warming climate. -
Chapter 15: Fish and Shellfish Ecology
Chapter 15: Fish and Shellfish Ecology NorthConnect KS Phone +47 38 60 70 00 Serviceboks 603, Lundsiden Mail: [email protected] N-4606 Kristiansand Web: www.northconnect.no Norway Chapter 15: Fish and Shellfish Ecology Contents 15 Fish and Shellfish Ecology ...................................................................................................... 15-1 15.1 Introduction ........................................................................................................................... 15-1 15.2 Legislation, Policy and Guidance ............................................................................................ 15-1 15.2.1 Legislative Framework .................................................................................................... 15-1 15.2.2 Policy Framework ............................................................................................................ 15-2 15.2.3 Guidance ......................................................................................................................... 15-3 15.2.4 Consultation .................................................................................................................... 15-3 15.3 Assessment Methodology ...................................................................................................... 15-4 15.3.1 Overview ......................................................................................................................... 15-4 15.3.2 Desk Study ...................................................................................................................... -
Purpose of White Fish Study
A.I.P.C.E. White Fish Study 2008 A.I.P.C.E. EU Fish Processors’ Association Brussels, October 2008 List of Contents 1. Purpose of White Fish Study 2. Overview of the Study Findings 3. Methods of Back-calculation to Whole Fish Live Weight for Imported Headed and Gutted Fish, Fillets and Portions 3.1 Explanation of Derivation of Factors for Calculating Live Weight of Fish from Fishery Products 3.2 Impacts of Variable Conversion Factors on Apparent Volumes of Live Weight Fish Processed 3.3 Justification for Use of New Conversion Factors in the Report 4. Supply Trends 4.1 Total Fish Supply 4.1.1 Total Supply Balance 4.2 Total Whitefish Supply of Imports 4.2.1 Principle Supplying Third Countries 4.2.2 Importance of Semi-Prepared Fish Imports 4.3 Total Supply of Surimi 4.4 Total Supply Surimi Preparation 4.5 Supply of Freshwater Fish 4.6 Supply of Salmon 5. EU Supply Base 5.1 Quota by Species 5.2 EU Catches by Quota Species 6. Carbon Footprint 7. Illegal, Unreported and Unregulated Fish, Confidence in the Supply Chain and DG Mare IUU Regulations 8. Ecolabelling, EU Proposals and MSC Developments 9. Import Tariffs 10. Background to Challenges of the Integrity of the Import Supply Base 11. Nutritional Values of Fish Species 12. Food Labelling Requirements and Declarations 13. Import Price Trends Tables 2 1. Purpose of White Fish Study The European white fish seafood processing industry relies on a consistent and sustainable supply of raw materials in order to satisfy the ever increasing demand of consumers for added value seafood products by consumers, both for domestic and out-of-home consumption. -
Ireland's Understudied Flatfish: Reproduction, Age and Growth Of
Ireland’s understudied flatfish: Reproduction, age and growth of the dab Limanda limanda(L.) in Irish coastal waters ^ g oiNSTirjg; GMIT I GALWAY-MAYO INSTITUTE OF TECHNOLOGY IlHSTiriUID TEICNEOLAtOCHTA NA GAILUHHEMAIGH EO Laura M. Langan Department of Life Science Galway -Mayo Institute of Technology Submitted in partial fulfilment of the requirements for the degree of Masters of Research in Fisheries Science Supervisors: Dr. Pauline A King and Dr. Hans Gerritsen Submitted to the Higher Education and Training Awards Council, October 2012 Contents List of Figures......................................................................................... v List of Tables .................. vi Abstract.................................................................................................. vii Acknowledgements................................................................................ x 1 Literary Review 1 1.1 Fisheries: stock assessment and management........................... 2 1.1.1 Europe............................................................................... 2 1.2 Management of Limanda lirnanda.......................................... 3 1.3 Taxonomy and description......................................................... 5 1.4 Habitat and distribution............................................................ 7 1.5 Age and Growth ......................................................................... 8 1.6 Reproductive B iology.................................................................. 9 1.7 The role of -
Icelandic Waters Ecoregion Published 29 November 2019
ICES Fisheries Overviews Icelandic Waters ecoregion Published 29 November 2019 11.2 Icelandic Waters ecoregion – Fisheries overview Table of contents Executive summary ...................................................................................................................................................................................... 1 Who is fishing ............................................................................................................................................................................................... 3 Catch over time ............................................................................................................................................................................................ 4 Description of the fisheries........................................................................................................................................................................... 6 Fisheries management ................................................................................................................................................................................. 9 Status of the fisheries resources ................................................................................................................................................................ 11 Mixed fisheries ..........................................................................................................................................................................................