The Evolution of Red Color Vision Is Linked to Coordinated Rhodopsin Tuning in Lycaenid Butterflies
The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies Marjorie A. Liénarda,b,1,2, Gary D. Bernardc, Andrew Allena, Jean-Marc Lassanceb, Siliang Songb,3, Richard Rabideau Childersb, Nanfang Yud, Dajia Yeb,4, Adriana Stephensonb,4, Wendy A. Valencia-Montoyab, Shayla Salzmanb,5, Melissa R. L. Whitakerb,6, Michael Calonjee, Feng Zhanga,f,g,h,i, and Naomi E. Pierceb,1 aBroad Institute of MIT and Harvard University, Cambridge, MA 02142; bDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138; cDepartment of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195; dDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027; eMontgomery Botanical Center, Miami, FL 33156; fDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; gDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; hMcGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and iHoward Hughes Medical Institute, Cambridge, MA 02139 Edited by Jeanne M. Serb, Iowa State University, Ames, IA, and accepted by Editorial Board Member Jeremy Nathans December 1, 2020 (received for review June 22, 2020) Color vision has evolved multiple times in both vertebrates and (Gt) signaling pathway, which activates cyclic nucleotide phos- invertebrates and is largely determined by the number and varia- phodiesterase, ultimately resulting in a hyperpolarization re- tion in spectral sensitivities of distinct opsin subclasses. However, sponse in photoreceptor cells through the opening of selective because of the difficulty of expressing long-wavelength (LW) inver- K+ channels (31, 36).
[Show full text]