Lecture 3 Thermodynamic Principles of Energy Conversion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Analysis of the Brayton Cycle As a Cryogenic Refrigerator
jbrary, E-01 Admin. BJdg. OCT 7 1968 NBS 366 An Analysis of the Brayton Cycle As a Cryogenic Refrigerator ITATIONAL BURSAL' OF iTANDABD8 LIBRABT MAR 6 J973 V* 0F c J* 0a <5 Q \ v S. DEPARTMENT OF COMMERCE in Q National Bureau of Standards %. *^CAU 0? * : NATIONAL BUREAU OF STANDARDS The National Bureau of Standards 1 was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maxi- mum application of the physical and engineering sciences to the advancement of tech- nology in industry and commerce. To this end the Bureau conducts research and provides central national services in three broad program areas and provides cen- tral national services in a fourth. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology. The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, and the Center for Radiation Research. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement, coor- dinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Standard Reference Data and a group of divisions organized by the following areas of science and engineering Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Phys- 2 2 ics—Cryogenics-—Radio Physics-—Radio Engineering —Astrophysics —Time and Frequency. -
A Turbo-Brayton Cryocooler for Future European Observation Satellite Generation
C19_078 1 A Turbo-Brayton Cryocooler for Future European Observation Satellite Generation J. Tanchon1, J. Lacapere1, A. Molyneaux2, M. Harris2, S. Hill2, S.M. Abu-Sharkh2, T. Tirolien3 1Absolut System SAS, Seyssinet-Pariset, France 2Ofttech, Gloucester, United Kingdom 3European Space Agency, Noordwijk, The Netherlands ABSTRACT Several types of active cryocoolers have been developed for space and military applications in the last ten years. Performances and reliability continuously increase to follow the requirements evolution of new generations of satellite: less power consumption, more cooling capacity, increased life duration. However, in addition to this increase of performances and reliability, the microvibrations re- quirement becomes critical. In fact, with the development of vibration-free technologies, classical Earth Observation cryocoolers (Stirling, Pulse Tube) will become the main source of microvibra- tions on-board the satellite. A new generation cryocooler is being developed at Absolut System using very high speed turbomachines in order to avoid any generated perturbations below 1000 Hz. This development is performed in the frame of ESA Technical Research Program - 4000113495/15/NL/KML. This paper presents the status of this development project based on Reverse Brayton cycle with very high speed turbomachines. INTRODUCTION The space cryogenics sector is characterized by a large number of applications (detection, im- aging, sample conservation, propulsion, telecommunications etc.) that lead to various requirements (temperature range, microvibration, lifetime, power consumption etc.) that can be met by different solutions (Stirling or JT coolers, mechanical or sorption compressors etc.). The recent years saw, in Europe, the developments of coolers to meet Earth Observation mission UHTXLUHPHQWVWKDWDUHFDSDEOHWRSURYLGHVLJQL¿FDQWFRROLQJSRZHUDWDQRSHUDWLRQDOWHPSHUDWXUH around 50K (for IR detection). -
First and Second Law Evaluation of Combined Brayton-Organic Rankine Power Cycle
Journal of Thermal Engineering, Vol. 6, No. 4, pp. 577-591, July, 2020 Yildiz Technical University Press, Istanbul, Turkey FIRST AND SECOND LAW EVALUATION OF COMBINED BRAYTON-ORGANIC RANKINE POWER CYCLE Önder Kaşka1, Onur Bor2, Nehir Tokgöz3* Muhammed Murat Aksoy4 ABSTRACT In the present work, we have conducted thermodynamic analysis of an organic Rankine cycle (ORC) using waste heat from intercooler and regenerator in Brayton cycle with intercooling, reheating, and regeneration (BCIRR). First of all, the first law analysis is used in this combined cycle. Several outputs are revealed in this study such as the cycle efficiencies in Brayton cycle which is dependent on turbine inlet temperature, intercooler pressure ratios, and pinch point temperature difference. For all cycles, produced net power is increased because of increasing turbine inlet temperature. Since heat input to the cycles takes place at high temperatures, the produced net power is increased because of increasing turbine inlet temperature for all cycles. The thermal efficiency of combined cycle is higher about 11.7% than thermal efficiency of Brayton cycle alone. Moreover, the net power produced by ORC has contributed nearly 28650 kW. The percentage losses of exergy for pump, turbine, condenser, preheater I, preheater II, and evaporator are 0.33%, 33%, 22%, 23%, 6%, and16% respectively. The differences of pinch point temperature on ORC net power and efficiencies of ORC are investigated. In addition, exergy efficiencies of components with respect to intercooling pressure ratio and evaporator effectiveness is presented. Exergy destructions are calculated for all the components in ORC. Keywords: Brayton Cycle, Organic Rankine Cycle, Bottoming Cycle, Pinch Point Temperature, Waste Heat, Energy and Exergy Analysis INTRODUCTION Thermal energy systems as well as corresponding all parts have been challenged to improve overall efficiency due to lack of conventional fuels, reduce climate change and so on for recent years. -
Recording and Evaluating the Pv Diagram with CASSY
LD Heat Physics Thermodynamic cycle Leaflets P2.6.2.4 Hot-air engine: quantitative experiments The hot-air engine as a heat engine: Recording and evaluating the pV diagram with CASSY Objects of the experiment Recording the pV diagram for different heating voltages. Determining the mechanical work per revolution from the enclosed area. Principles The cycle of a heat engine is frequently represented as a closed curve in a pV diagram (p: pressure, V: volume). Here the mechanical work taken from the system is given by the en- closed area: W = − ͛ p ⋅ dV (I) The cycle of the hot-air engine is often described in an idealised form as a Stirling cycle (see Fig. 1), i.e., a succession of isochoric heating (a), isothermal expansion (b), isochoric cooling (c) and isothermal compression (d). This description, however, is a rough approximation because the working piston moves sinusoidally and therefore an isochoric change of state cannot be expected. In this experiment, the pV diagram is recorded with the computer-assisted data acquisition system CASSY for comparison with the real behaviour of the hot-air engine. A pressure sensor measures the pressure p in the cylinder and a displacement sensor measures the position s of the working piston, from which the volume V is calculated. The measured values are immediately displayed on the monitor in a pV diagram. Fig. 1 pV diagram of the Stirling cycle 0210-Wei 1 P2.6.2.4 LD Physics Leaflets Setup Apparatus The experimental setup is illustrated in Fig. 2. 1 hot-air engine . 388 182 1 U-core with yoke . -
Novel Hot Air Engine and Its Mathematical Model – Experimental Measurements and Numerical Analysis
POLLACK PERIODICA An International Journal for Engineering and Information Sciences DOI: 10.1556/606.2019.14.1.5 Vol. 14, No. 1, pp. 47–58 (2019) www.akademiai.com NOVEL HOT AIR ENGINE AND ITS MATHEMATICAL MODEL – EXPERIMENTAL MEASUREMENTS AND NUMERICAL ANALYSIS 1 Gyula KRAMER, 2 Gabor SZEPESI *, 3 Zoltán SIMÉNFALVI 1,2,3 Department of Chemical Machinery, Institute of Energy and Chemical Machinery University of Miskolc, Miskolc-Egyetemváros 3515, Hungary e-mail: [email protected], [email protected], [email protected] Received 11 December 2017; accepted 25 June 2018 Abstract: In the relevant literature there are many types of heat engines. One of those is the group of the so called hot air engines. This paper introduces their world, also introduces the new kind of machine that was developed and built at Department of Chemical Machinery, Institute of Energy and Chemical Machinery, University of Miskolc. Emphasizing the novelty of construction and the working principle are explained. Also the mathematical model of this new engine was prepared and compared to the real model of engine. Keywords: Hot, Air, Engine, Mathematical model 1. Introduction There are three types of volumetric heat engines: the internal combustion engines; steam engines; and hot air engines. The first one is well known, because it is on zenith nowadays. The steam machines are also well known, because their time has just passed, even the elder ones could see those in use. But the hot air engines are forgotten. Our aim is to consider that one. The history of hot air engines is 200 years old. -
Design of a Cryogenic Turbine for a Hybrid Cryocooler
Design of a Cryogenic Turbine for a Hybrid Cryocooler by Thomas L. Fraser A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Mechanical Engineering) at the UNIVERISTY OF WISCONSIN-MADISON 2006 Approved by _____________________________________________ ______________ Professor Gregory F. Nellis Date i Abstract The hybrid pulse tube-reverse Brayton cycle cryocooler has the potential for cooling to temperatures on the order of 10 K. By using the rectifying interface which converts the oscillating pulse tube flow to continuous flow, both vibrations and low temperature regenerator losses are overcome, making the hybrid an ideal candidate for cooling infrared focal plane arrays which demand low temperature and low vibration. However, the turboexpander within the reverse Brayton cycle is complex and its performance is highly dependent on the performance of its subcomponents, thus necessitating a model predicting the turboexpander performance. A model was developed to predict the performance of the reverse Brayton cycle stage including the recuperative heat exchanger and turboexpander components. The turboexpander was numerically modeled in detail to include the sub-models of rotordynamics, the thermal and leakage performance of the seal, and the turboalternator. Where possible, the models were verified against either an analytical model or experimental data. A parametric analysis was carried out to determine the optimal design and conditions for the turboexpander. ii Acknowledgements First and foremost I would like to thank Greg Nellis. Besides being my advisor for this project he is also responsible for sparking an interest in energy science through his heat transfer courses I took as an undergrad. -
Supercritical Carbon Dioxide(S-CO2) Power Cycle for Waste Heat Recovery: a Review from Thermodynamic Perspective
processes Review Supercritical Carbon Dioxide(s-CO2) Power Cycle for Waste Heat Recovery: A Review from Thermodynamic Perspective Liuchen Liu, Qiguo Yang and Guomin Cui * School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; [email protected] (L.L.); [email protected] (Q.Y.) * Correspondence: [email protected] Received: 11 October 2020; Accepted: 13 November 2020; Published: 15 November 2020 Abstract: Supercritical CO2 power cycles have been deeply investigated in recent years. However, their potential in waste heat recovery is still largely unexplored. This paper presents a critical review of engineering background, technical challenges, and current advances of the s-CO2 cycle for waste heat recovery. Firstly, common barriers for the further promotion of waste heat recovery technology are discussed. Afterwards, the technical advantages of the s-CO2 cycle in solving the abovementioned problems are outlined by comparing several state-of-the-art thermodynamic cycles. On this basis, current research results in this field are reviewed for three main applications, namely the fuel cell, internal combustion engine, and gas turbine. For low temperature applications, the transcritical CO2 cycles can compete with other existing technologies, while supercritical CO2 cycles are more attractive for medium- and high temperature sources to replace steam Rankine cycles. Moreover, simple and regenerative configurations are more suitable for transcritical cycles, whereas various complex configurations have advantages for medium- and high temperature heat sources to form cogeneration system. Finally, from the viewpoints of in-depth research and engineering applications, several future development directions are put forward. This review hopes to promote the development of s-CO2 cycles for waste heat recovery. -
Cryogenic Refrigeration Using an Acoustic Stirling Expander
CRYOGENIC REFRIGERATION USING AN ACOUSTIC STIRLING EXPANDER Masters Thesis by Nick Emery Department of Mechanical Engineering, University of Canterbury Christchurch, New Zealand Abstract A single-stage pulse tube cryocooler was designed and fabricated to provide cooling at 50 K for a high temperature superconducting (HTS) magnet, with a nominal electrical input frequency of 50 Hz and a maximum mean helium working gas pressure of 2.5 MPa. Sage software was used for the thermodynamic design of the pulse tube, with an initially predicted 30 W of cooling power at 50 K, and an input indicated power of 1800 W. Sage was found to be a useful tool for the design, and although not perfect, some correlation was established. The fabricated pulse tube was closely coupled to a metallic diaphragm pressure wave generator (PWG) with a 60 ml swept volume. The pulse tube achieved a lowest no-load temperature of 55 K and provided 46 W of cooling power at 77 K with a p-V input power of 675 W, which corresponded to 19.5% of Carnot COP. Recommendations included achieving the specified displacement from the PWG under the higher gas pressures, design and development of a more practical co-axial pulse tube and a multi-stage configuration to achieve the power at lower temperatures required by HTS. ii Acknowledgements The author acknowledges: His employer, Industrial Research Ltd (IRL), New Zealand, for the continued support of this work, Alan Caughley for all his encouragement, help and guidance, New Zealand’s Foundation for Research, Science and Technology for funding, University of Canterbury – in particular Alan Tucker and Michael Gschwendtner for their excellent supervision and helpful input, David Gedeon for his Sage software and great support, Mace Engineering for their manufacturing assistance, my wife Robyn for her support, and HTS-110 for creating an opportunity and pathway for the commercialisation of the device. -
Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle
entropy Article Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle Fuli Zhu 1,2,3, Lingen Chen 1,2,3,* and Wenhua Wang 1,2,3 1 Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan 430033, China; [email protected] (F.Z.); [email protected] (W.W.) 2 Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan 430033, China 3 College of Power Engineering, Naval University of Engineering, Wuhan 430033, China * Correspondence: [email protected] or [email protected]; Tel.: +86-27-8361-5046; Fax: +86-27-8363-8709 Received: 20 January 2018; Accepted: 2 March 2018; Published: 5 March 2018 Abstract: An irreversible Maisotsenko reciprocating Brayton cycle (MRBC) model is established using the finite time thermodynamic (FTT) theory and taking the heat transfer loss (HTL), piston friction loss (PFL), and internal irreversible losses (IILs) into consideration in this paper. A calculation flowchart of the power output (P) and efficiency (η) of the cycle is provided, and the effects of the mass flow rate (MFR) of the injection of water to the cycle and some other design parameters on the performance of cycle are analyzed by detailed numerical examples. Furthermore, the superiority of irreversible MRBC is verified as the cycle and is compared with the traditional irreversible reciprocating Brayton cycle (RBC). The results can provide certain theoretical guiding significance for the optimal design of practical Maisotsenko reciprocating gas turbine plants. Keywords: finite-time thermodynamics; irreversible Maisotsenko reciprocating Brayton cycle; power output; efficiency 1. Introduction The revolutionary Maisotsenko cycle (M-cycle), utilizing the psychrometric renewable energy from the latent heat of water evaporating, was firstly provided by Maisotsenko in 1976. -
Gas Power Cycles
Week 11 Gas Power Cycles ME 300 Thermodynamics II 1 Today’s Outline • Gas turbine engines • Brayton cycle • Analysis • Example ME 300 Thermodynamics II 2 Gas Turbine Engine • Produces shaft power by GE H series power generation gas turbine. This 480-megawatt unit has a rated thermal expanding high enthalpy gas efficiency of 60% in combined cycle through a turbine configurations. • A compressor and a combustor produce the enthalpy increasing pressure and temperature, resp. • The spinning turbine rotates a shaft which drives the compressor • Remaining enthalpy can be used to drive a generator or can be expanded in a nozzle producing kinetic energy e.g. thrust ME 300 Thermodynamics II 3 Enthalpy Generation and Conversion Turbine Fuel converts enthalpy Generator to shaft power for Compressor Combustor electricity increases increases pressure Temperature Air (pv) (u) Nozzle converts enthalpy into kinetic energy ME 300 Thermodynamics II 4 Gas Turbine Engine Components http://www.stanford.edu/group/ctr/ResBriefs/temp05/schluter2.pdf www.aem.umn.edu/research/Images/pw_GasTurbine.gif ME 300 Thermodynamics II 5 Combustor Simulations ME 300 Thermodynamics II 6 Schematic • Fresh air enters compressors ~constant pressure • Air compressed to high pressure in compressor e.g. 23:1 • High pressure air is mixed with injected fuel spray in combustor raising temperatures • High enthalpy product gases expand in turbine producing shaft work to run compressor or Open cycle generator ME 300 Thermodynamics II 7 Air Standard Brayton Cycle • Model as closed cycle -
Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste
Sustainability 2014, 6, 5714-5729; doi:10.3390/su6095714 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste Franco Cotana 1,†, Antonio Messineo 2,†, Alessandro Petrozzi 1,†,*, Valentina Coccia 1, Gianluca Cavalaglio 1 and Andrea Aquino 1 1 CRB, Centro di Ricerca sulle Biomasse, Via Duranti sn, 06125 Perugia, Italy; E-Mails: [email protected] (F.C.); [email protected] (V.C.); [email protected] (G.C.); [email protected] (A.A.) 2 Università degli Studi di Enna “Kore” Cittadella Universitaria, 94100 Enna, Italy; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-075-585-3806; Fax: +39-075-515-3321. Received: 25 June 2014; in revised form: 5 August 2014 / Accepted: 12 August 2014 / Published: 28 August 2014 Abstract: The Biomass Research Centre, section of CIRIAF, has recently developed a biomass boiler (300 kW thermal powered), fed by the poultry manure collected in a nearby livestock. All the thermal requirements of the livestock will be covered by the heat produced by gas combustion in the gasifier boiler. Within the activities carried out by the research project ENERPOLL (Energy Valorization of Poultry Manure in a Thermal Power Plant), funded by the Italian Ministry of Agriculture and Forestry, this paper aims at studying an upgrade version of the existing thermal plant, investigating and analyzing the possible applications for electricity production recovering the exceeding thermal energy. A comparison of Organic Rankine Cycle turbines and Stirling engines, to produce electricity from gasified poultry waste, is proposed, evaluating technical and economic parameters, considering actual incentives on renewable produced electricity. -
Chapter 9, Problem 16. an Air-Standard Cycle Is Executed in A
COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Problem 16. An air-standard cycle is executed in a closed system and is composed of the following four processes: 1-2 Isentropic compression from 100 kPa and 27°C to 1 MPa 2-3 P = constant heat addition in amount of 2800 kJ/kg 3-4 v = constant heat rejection to 100 kPa 4-1 P = constant heat rejection to initial state (a) Show the cycle on P-v and T-s diagrams. (b) Calculate the maximum temperature in the cycle. (c) Determine the thermal efficiency. Assume constant specific heats at room temperature. * Problems designated by a “C” are concept questions, and students are encouraged to answer them all. Problems designated by an “E” are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text. Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles, © 2006 The McGraw-Hill Companies. COSMOS: Complete Online Solutions Manual Organization System Chapter 9, Problem 37. The compression ratio of an air-standard Otto cycle is 9.5. Prior to the isentropic compression process, the air is at 100 kPa, 35°C, and 600 cm3. The temperature at the end of the isentropic expansion process is 800 K. Using specific heat values at room temperature, determine (a) the highest temperature and pressure in the cycle; (b) the amount of heat transferred in, in kJ; (c) the thermal efficiency; and (d) the mean effective pressure.