Chapter 8 Contents

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 8 Contents 8 Design of river and canal structures 1 2 3 4 5 6 7 8 9 10 CIRIA C683 965 8 Design of river and canal structures CHAPTER 8 CONTENTS 8.1 Introduction. 970 8.1.1 Context . 970 8.1.2 Types of structures and functions. 971 8.1.3 Design methodolology. 973 8.1.3.1 Approach to the design . 973 8.1.3.2 Functional requirements . 974 8.1.3.3 Detailed design . 975 8.1.3.4 Economic considerations . 975 8.1.3.5 Environmental and social considerations . 976 8.1.3.6 Physical conditions . 976 8.1.3.7 Materials related considerations. 977 8.1.3.8 Construction related considerations . 979 8.1.3.9 Operation and maintenance related considerations . 980 8.2 River training works . 980 8.2.1 Erosion processes . 980 8.2.2 Types of river training structures . 982 8.2.2.1 Revetments . 983 8.2.2.2 Spur-dikes and hard points . 984 8.2.2.3 Guide banks . 985 8.2.2.4 Works to improve navigation . 986 8.2.2.5 Flood protection . 986 8.2.2.6 Selection of the appropriate solution. 987 8.2.3 Data collection . 988 8.2.4 Determination of the loadings . 988 8.2.4.1 Hydraulic loads. 988 8.2.4.2 Other types of loads . 989 8.2.5 Plan layout . 989 8.2.5.1 General points. 989 8.2.5.2 Bank protection . 990 8.2.5.3 Spur-dikes . 992 8.2.5.4 Longitudinal dikes or guide banks . 993 8.2.6 Cross-section design . 994 8.2.6.1 Design considerations for selection of the cross-section . 994 8.2.6.2 Cross-section design and typical cross-sections . 1000 8.2.7 Structural details . 1004 8.2.7.1 Head and berm of spur-dikes or guide bunds . 1004 8.2.7.2 Crest level and width of spur and longitudinal dikes . 1005 8.2.7.3 Stability of revetment toes . 1005 8.2.7.4 Falling aprons . 1007 8.2.7.5 Flexible open revetment. 1009 8.2.7.6 Transitions. 1013 8.2.8 Materials issues that influence design. 1020 8.2.8.1 Materials availability . 1020 8.2.8.2 Materials supply and transport . 1021 966 CIRIA C683 Contents 8.2.9 Construction issues that influence design . 1022 1 8.2.9.1 Approaches to construction . 1022 8.2.9.2 Construction situations. 1022 8.2.10 Maintenance issues that influence design. 1024 8.2.11 Repair and upgrading. 1025 2 8.3 Navigation and water conveyance canals. 1026 8.3.1 Introduction . 1026 8.3.2 Types of structures and functions. 1026 8.3.2.1 Navigation canals . 1026 8.3.2.2 Water conveyance canals . 1027 3 8.3.3 Plan layout and overall concept . 1027 8.3.4 Cross-section design . 1028 8.3.4.1 General . 1028 8.3.4.2 Navigation canals . 1028 8.3.4.3 Water conveyance canals . 1030 4 8.3.5 Structural details . 1030 8.3.5.1 General . 1030 8.3.5.2 Calculation of ship-induced hydraulic loads . 1031 8.3.5.3 Design of the cover layer against waves. 1034 8.3.5.4 Design of the filter layer. 1035 5 8.3.6 Issues that influence design . 1035 8.3.6.1 Construction issues . 1035 8.3.6.2 Maintenance issues . 1035 8.3.6.3 Repair and upgrading . 1036 6 8.4 Rock works in small rivers . 1036 8.4.1 Types of structure and functions . 1037 8.4.2 Plan layout and overall concept . 1038 8.4.3 Cross-section design . 1039 8.4.3.1 General . 1039 7 8.4.3.2 Forms of revetment using stone. 1041 8.4.3.3 River restoration . 1041 8.4.4 Issues that influence design . 1043 8.4.4.1 Materials aspects . 1043 8.4.4.2 Construction aspects . 1043 8 8.4.4.3 Maintenance aspects . 1045 8.5 Special structures . 1045 8.5.1 General . 1045 8.5.1.1 Water levels . 1045 8.5.1.2 Current velocities . 1046 9 8.5.2 Fishways. ..
Recommended publications
  • Protection Against Wave-Based Erosion
    Protection against Wave­based Erosion The guidelines below address the elements of shore structure design common to nearly all erosion control structures subject to direct wave action and run-up. 1. Minimize the extent waterward. Erosion control structures should be designed with the smallest waterward footprint possible. This minimizes the occupation of the lake bottom, limits habitat loss and usually results in a lower cost to construct the project. In the case of stone revetments, the crest width should be only as wide as necessary for a stable structure. In general, the revetment should follow the cross-section of the bluff or dune and be located as close to the bluff or dune as possible. For seawalls, the distance that the structure extends waterward of the upland must be minimized. If the seawall height is appropriately designed to prevent the majority of overtopping, there is no engineering rationale based only on erosion control which justifies extending a seawall out into the water. 2. Minimize the impacts to adjacent properties. The design of the structure must consider the potential for damaging adjacent property. Projects designed to extend waterward of the shore will affect the movement of littoral material, reducing the overall beach forming process which in turn may cause accelerated erosion on adjacent or down-drift properties with less protective beaches. Seawalls, (and to a lesser extent, stone revetments) change the direction (wave reflection) and intensity of wave energy along the shore. Wave reflection can cause an increase in the total energy at the seawall or revetment interface with the water, allowing sand and gravel to remain suspended in the water, which will usually prevent formation of a beach directly fronting the structure.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Stream Restoration, a Natural Channel Design
    Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state.
    [Show full text]
  • Is Hydrology Kinematic?
    HYDROLOGICAL PROCESSES Hydrol. Process. 16, 667–716 (2002) DOI: 10.1002/hyp.306 Is hydrology kinematic? V. P. Singh* Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803-6405, USA Abstract: A wide range of phenomena, natural as well as man-made, in physical, chemical and biological hydrology exhibit characteristics similar to those of kinematic waves. The question we ask is: can these phenomena be described using the theory of kinematic waves? Since the range of phenomena is wide, another question we ask is: how prevalent are kinematic waves? If they are widely pervasive, does that mean hydrology is kinematic or close to it? This paper addresses these issues, which are perceived to be fundamental to advancing the state-of-the-art of water science and engineering. Copyright 2002 John Wiley & Sons, Ltd. KEY WORDS biological hydrology; chemical hydrology; physical hydrology; kinematic wave theory; kinematics; flux laws INTRODUCTION There is a wide range of natural and man-made physical, chemical and biological flow phenomena that exhibit wave characteristics. The term ‘wave’ implies a disturbance travelling upstream, downstream or remaining stationary. We can visualize a water wave propagating where the water itself stays very much where it was before the wave was produced. We witness other waves which travel as well, such as heat waves, pressure waves, sound waves, etc. There is obviously the motion of matter, but there can also be the motion of form and other properties of the matter. The flow phenomena, according to the nature of particles composing them, can be distinguished into two categories: (1) flows of discrete noncoherent particles and (2) flows of continuous coherent particles.
    [Show full text]
  • Marine Nearshore Restoration Recommendations Whatcom County Shoreline Management Project
    Marine Nearshore Restoration Recommendations Whatcom County Shoreline Management Project 1 7 Old Fish 6 Packers Pier Tongue Point Blaine Marina Site Specific Recommendations t pi S o o hm ia m e S Semiahmoo Restoration Site 5 Marina Shoreline Reach Breaks The large platform and foundation could be removed to restore the beach and fringing marsh D Shoreline Modifications 1 2 a kota Cr 3 Removal of bulkheads that protrude into 4 Retaining Walls Remove the intertidal dilapidated Groins and Jetties dock 5 6 Miscellaneous Structures 1 7 C al 8 Piers ifo rn ia 9 2 C r Platforms 4 3 C r 4 nd Bulkheads ra rt Birch Point 5 e Outfall PipesB Cottonwood Beach 6 Building (Shorelines Only) 7 Administrative Boundries r 2 e Birch Bay v Village Marina 3 i 8 R Lummi Nation k Remove groins and bulkheads c a along Birch Bay Drive to restore upper s k beach and backshore habitats Whatcom County oo N e m ns t Mai 2 For more information on restoration sites, includi1ng non site-specific recommendations, see the Whatcom County Shoreline Management Project Inventory & 1 Characterization Report (Backgr1ound document Vol. I) and the Marine Resources Committee Document, Restoration Recommendations by Shoreline Reach by Coastal Ge1o1logic Services and Adolfson and9 Assoc1ia0 tes (2006). 2 DATA SOURCES: Restoration Sites - Coastal Geologic Remove bulkheads along these bluffs, which are the sole Services, Inc., Mod8ifications - WC 2005 (Pictometry 2004), T sediment source for accretionary shoreforms and valuable er r ell C Outfall Pipes - REsources, DNR, Pictometry, Contour lines 2 habitat in Birch Bay and State Park reaches r 1 10 meter intervals, USGS Elevation labels in feet.
    [Show full text]
  • LOUISIANA K. Meyer-Arendt Department of Geography
    65. USA--LOUISIANA K. Meyer-Arendt D.W. Davis Department of Geography Department of Earth Science Mississippi State University Nicholls State University Starkville, Mississippi 38759 Thibodaux, Louisiana 70301 United States of America United States of America INTRODUCTION Louisiana's 40,000 Inn 2 coastal zone developed over the last 7,000 years by the progradation, aggradation, and accretion of sediments introduced via various courses of the Mississippi River (Frazier 1967). The deltaic plain (32,000 km'), through which the modern river cuts diagon­ ally !Fig , 1), consists of vast wetlands and waterbodies. With eleva­ tions ranging from sea level up to 1.5 m, it is interrupted by natural levee ridges which decrease distally until they disappear beneath the marsh surface. The downdrift chenier plain of southwest Louisiana (8,000 km') consists of marshes, large round-to-oblong lakes, and stranded, oak covered beach ridges known as cheniers (Howe et al. 1935). This landscape is the result of alternating long-term phases of shoreline accretion and erosion that were dependent upon the proximit of an active sediment-laden river, and a low-energy marine environment (Byrne et al. 1959). Since the dyking of the Mississippi River, fluvial sedimentation in the deltaic plain has effectively been halted. Today, most Missis­ sippi River sediment is deposited on the outer continental shelf; only at the mouth of the Atchafalaya River distributary is deltaic sedimen­ tation subaerially significant (Adams and Baumann 1980). Over mos of the coastal zone, subsidence, saltwater intrusion, wave erosion, canalization, and other hydrologic modification have led to a rapid increase in the surface area of water (Davis 1986, Walker e al.
    [Show full text]
  • MF2294 Streambank Revetment
    Outdated Publication, for historical use. CAUTION: Recommendations in this publication may be obsolete. Kansas State University Agricultural Experiment Station and Cooperative Extension Service Kansas State University, Division of Biology Kansas Cooperative Fish and Wildlife Research Unit U.S. Environmental Protection Agency Kansas Department of Wildlife & Parks STREAMBANK REVETMENT 1 Outdated Publication, for historical use. CAUTION: Recommendations in this publication may be obsolete. Introduction Streambank erosion is a naturally occurring process in streams and rivers throughout the United States. Accelerated streambank erosion occurs when natural events or human activities cause a higher than expected amount of erosion, and is typically a result of reduced or eliminated riparian (streamside) vegetation. The removal of riparian vegetation is the primary factor influenc- ing streambank stability. Historically, channel straightening (channelization) was the primary method used to control streambank erosion. However, since the 1970s, riparian and in-stream habitat restoration by natural or artificial meth- ods has grown in popularity because channel- ization typically caused problems, such as ero- sion and flooding dowstream. Natural resource agencies throughout the Midwest have been using tree revetments as one type of streambank stabilization structure. What are tree revetments? Tree revetments are a series of trees laid in the stream along the eroding bank. They are de- signed to reduce water velocity, increase siltation within the trees, and reduce slumping of the streambank. Tree revetments are not designed to permanently stabilize eroding streambanks. They should stabilize the streambank until other stabi- lization techniques, such as tree plantings in the riparian area become established. Tree revet- ments are not designed to fix problems at a watershed level.
    [Show full text]
  • Channel Stabilization Publications Available in Corps of Engineers Offices
    TECHNICAL REPORT NO. 4 CHANNEL STABILIZATION PUBLICATIONS AVAILABLE IN CORPS OF ENGINEERS OFFICES i <SESS> ¡01 101 LfU U-U lOi 00¡DE November 1966 Committee on Channel Stabilization CORPS OF ENGINEERS, U. S. ARMY REPORTS OF COMMITTEE ON CHANNEL STABILIZATION ¿i BUREAU OF RECLAMATION DENVER Lll 92035635 VT ■ieD3Sb3S nsJjfe-» TECHNICAL REPORT 4 7 3 CHANNEL STABILIZATION PUBLICATIONS AVAILABLE IN CORPS OF ENGINEERS OFFICES j f November 1966 f Committee on Channel Stabilization - i / y > CORPS OF ENGINEERS/ U. S. ARMY ARM Y-MRC VICKSBURG. MISS. PRESENT MEMBERSHIP OF COMMITTEE ON CHANNEL STABILIZATION J. H. Douma Office, Chief of Engineers Chairman E. B. Lipscomb Lower Mississippi Valley Division Recorder D. C. Bondurant Missouri River Division R. H. Haas Lower Mississippi Valley Division W. E. Isaacs Little Rock District C. P. Lindner South Atlantic Division E. B. Madden Southwestern Division H. A. Smith North Pacific Division J. B. Tiffany Waterways Experiment Station G. B. Fenwick Consultant FOREWORD Establishment of the Committee on Channel Stabilization in April 1962 was confirmed by Engineer Regulation 15-2-1, dated 1 November 1962. As stated in ER 15-2-1, the objectives of the Committee with respect to channel stabilization are: a. To review and evaluate pertinent information and disseminate the results thereof. b. To determine the need for and recommend a program of research; and to have advisory technical review responsibility for research assigned to the Committee. £. To determine basic principles and design criteria. d. To provide, at the request of field offices, advice on design and operational problems. In accordance with the desire of the Committee to inventory available data, reports, papers, etc., pertaining to channel stabilization, arrangements were made for the Research Center Library, U.
    [Show full text]
  • River Engineering John Fenton
    River Engineering John Fenton Institute of Hydraulic Engineering and Water Resources Management Vienna University of Technology, Karlsplatz 13/222, 1040 Vienna, Austria URL: http://johndfenton.com/ URL: mailto:[email protected] 1. Introduction 1.1 The nature of what we will and will not do – illuminated by some aphorisms and some people “There is nothing so practical as a good theory” – stated in 1951 by Kurt Lewin (D-USA, 1890-1947): this is essentially the guiding principle behind these lectures. We want to solve practical problems, both in professional practice and research, and to do this it is a big help to have a theoretical understanding and a framework. “The purpose of computing is insight, not numbers” – the motto of a 1973 book on numerical methods for practical use by the mathematician Richard Hamming (USA, 1915-1998). That statement has excited the opinions of many people (search any three of the words in the Internet!). However, numbers are often important in engineering, whether for design, control, or other aspects of the practical world. A characteristic of many engineers, however, is that they are often blinded by the numbers, and do not seek the physical understanding that can be a valuable addition to the numbers. In this course we are not going to deal with many numbers. Instead we will deal with the methods by which numbers could be obtained in practice, and will try to obtain insight into those methods. Hence we might paraphrase simply: "The purpose of this course is insight into the behaviour of rivers; with that insight, numbers can be often be obtained more simply and reliably".
    [Show full text]
  • Hydraulic Structures & Hydropower Engineering Module Course Title
    Hydraulic Structures & Hydropower Engineering Module Course Title River Engineering Course Code WRIE3151 Program B.Sc in Water Resources and Irrigation Engineering Module name Hydraulic Structures & Hydropower Engineering Module Coordinator Name: . …………………………….. Office location . ……………………….. Mobile: . ………………….; e-mail: ……………………………. Consultation Hours: Instructor Name Name: . …………………………….. Office location . ……………………….. Mobile: . ………………….; e-mail: ……………………………. Consultation Hours: Academic Year Course Information Year: III Semester : II Meeting Day: To be arranged at the beginning of the semester Meeting Time: To be arranged at the beginning of the semester Meeting Location: To be arranged at the beginning of the semester ECTS 5 ECTS Students’ work load Lecture Tutorial Lab Home study in hrs 2 2 0 4 Course objectives To introduce students to the mechanisms of sediment transport and enable them design stable channels and river training works. River characteristics. River Hydraulics. River morphology and regime. Sediment transport: Origin and properties of sediment, initiation of particle motion. Transportation mechanics, Bed load, suspended load, wash load and total load Course Description transport. Alluvial roughness. Calculation of sediment transport. Local scours near structures. River training and flood control. Erosion protection and discharge control. River flow forecasting. Hydraulics of bridges, culverts and aqueducts. Sediment transport: bed load sampler: trap sampling, bed form tracking; suspended load sampler: classification of samplers, instruments for concentration, point- integrating measurements (bottle and trap samplers, pump-samplers, optical and acoustical sampling methods), instruments for discharge, point integrating measurements, instruments for concentration, depth-integrating measurement. Pre-requisite Open Channel Hydraulics Course status Core Schedule/syllabus Week Topics Required Text 1. Introduction (Lec=5hrs, Tut=5hrs) Lelaviasky, S., (1965). River 1.1 River characteristics and Canal Hydraulics, Vol.
    [Show full text]
  • Tree Revetments
    Tree Revetments Tree revetments are cut increase bank erosion. It trees anchored at the bottom is extremely important (or toe) of unstable stream- to anchor each tree in the banks. These anchored trees revetment at the base or toe serve to slow the current of the eroding bank. This is along the bank, decreasing the point of the bank where erosion and allowing the vertical bank meets the sediment to be deposited horizontal bottom (Figure 2). within the tree branches. If the trees are anchored too Trees with many fine limbs high on the bank, the water and branches are best at may undercut the structure. slowing near-bank currents, If they are placed out in the catching sediment carried channel too far, the current in the stream, and catching Figure 1. Cedar revetment and willow stakes after 3 months. will continue to erode the slump material from the bank. bank behind the revetment. example of this would be stream For this reason, eastern redcedar Another consideration is the soil straightening (or channelization). is usually the best choice. Eastern type and texture that the anchors One indication of this situation redcedar is also more resistant to will be driven into. Sandy or rocky is when a streambank is covered decay than hardwood trees. soils will usually require a larger with trees and vegetation and is The sediment trapped in and anchor driven to a greater depth still eroding. If that is the case, behind revetments provides a while smaller anchors may be a tree revetment may not work. moist, fertile seedbed for vegetation used in heavier clay soils.
    [Show full text]
  • APPENDIX L L.1 Principal Mechanism of Sea Dike and Revetment Failure In
    APPENDIX L FAILURE MECHANISMS AND PROTECTION OF DIKE SLOPE AND DIKE TOE L.1 Principal mechanism of sea dike and revetment failure in Vietnam Fig. L-1 illustrates common failure mechanism for sea dikes. Note that the occurrence of a certain mechanism will sequentially result in others, and consequently leads to dike breach. For example, the foreshore erosion or dike toe erosion will cause the instability of toe structures or dike toe. This instability will result in the instability and failure of the revetment if no remedial solutions are adopted. Consequently, under the impacts of waves, unprotected dike slopes will be eroded. The erosion continues until the dike body is entirely destroyed, leading to dike failure. Figure L-1. Diagram of dike & revetment failure 4 2 3 DWL 0 i 1 h original cross-shore profile h at design situation scour holes 1- instability of toe structures 2- instability of slope protection 3- erosion of outer slope 4- erosion of dike crest and inner slope Foreshore erosion (3) Instability of toe protection structures (1) Overflow due to foreshore erosion and local erosion of dike toe (1a) Overtopping; resulting in erosion (4) Inner slope sliding of crest and inner slope (1b) Overtopping; resulting in inner (5) Outer slope sliding slope sliding (6) Internal erosion; piping (2) Instability of outer amour structures/dike slope and body erosion Figure L-2. Typical failure of sea dike In the following sections, details of common failure mechanism of sea dike and revetment system in Vietnam will be given. L.1.1 Wave overtopping Wave overtopping is the dominant mechanism of sea dike failure in Vietnam, as most of sea dikes are overtopped during storms and flood, even in the long-lasting monsoon period.
    [Show full text]