PHYTOCHEMICAL ASSESSMENT on N-HEXANE EXTRACT and FRACTIONS of Marsilea Crenata Presl
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review on Fern Marsilea Minuta Linn (Marsileaceae)
INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689 Volume-13, Number - 01, 2015 Review on Fern Marsilea Minuta Linn (Marsileaceae) Modak Dwiti M. Pharm (Ayu.) Scholar, Ayurvedic Pharmacy, Lovely School of Pharmaceutical Sciences Lovely Professional University, Phagwara-144402 Punjab, India Abstract- Marsilea minuta Linn. is a fern belongs to the family III. FAMILY FEATURE Marsileaceae. The plant is distributed throughout India. According to Acharya Charak and Susruth it possess tridosaghan Aquatic or marsh plants with slender creeping rhizomes, property and grahi in nature. The synonyms of the plant are growing in mud, the leaf with blades (when present) often Sitivara and Svastika. The chemical constituent marsilene, a floating on surface of water and petioles arising from macrocyclic ketone has been isolated from the plant which rootstocks, the blades simple or with 2 or 4 pinnae, fan- possesses sedative and anti-convulsant properties. The plant has shaped, the veins dichotomous and anostomosing at margin; been studied for their various pharmacological activities like plants monoecious, producing megasporangia and adaptogenic-antistress, anti-depressant, anti-diabetic, anti- aggressive, anti-fertility, anti-tussive, hepatoprotective, analgesic microsporangia; the sporocarps hard and bean-shaped, borne and hypocholesterolemic activity. Ethno botanically the plant is on the petioles laterally or at their bases, stalked, solitary or important as it is used in the treatment of diabetes by local people numerous. Morphologically, the sporocarps are a modified in Javadhu Hills Tamil Nadu, India. Though, systemic leaf segment, folded together, containing 2 rows of information on various aspects of this species is unavailable. In indusiated sori within. Megasporangia produce megaspores present review, an attempt has been made to present the which on germination give rise to egg cells, while the information regarding plant profile, pharmacological properties microsporangia produce microspores that give rise to sperm- and ethno botany. -
Marsilea Aegyptiaca (Marsileaceae) on the Mediterranean Island of Elafonisos (Laconia, Peloponnese, Greece)
FERN GAZ. 20(7): 293-300. 2018 293 MARSILEA AEGYPTIACA (MARSILEACEAE) ON THE MEDITERRANEAN ISLAND OF ELAFONISOS (LACONIA, PELOPONNESE, GREECE) Armin Jagel1 & Marcus Lubienski2 1 Danziger Str. 2, 44789 Bochum, Germany; [email protected] 2 Am Quambusch 25, 58135 Hagen, Germany; [email protected] Key Words: Marsilea aegyptiaca, Elafonisos, Greece, European species ABSTRACT The water-clover species Marsilea aegyptiaca was first detected on the Mediterranean island of Elafonisos (Peloponnese, Greece) nearly 25 years ago. This was the first record for the species as part of the European flora. Recent work has shown that M. aegyptiaca still occurs at the site, and data are presented concerning its identification, habitat and distribution. Morphological characters of all known European species within the genus are compared. INTRODUCTION Water-clovers (Marsilea L.) are heterosporous ferns and the most species rich group within the Marsileaceae. The family additionally comprises the pillworts (Pilularia L.) and the monotypic genus Regnellidium Lindm. All three genera are aquatic to semi- aquatic rhizomatous plants with roots and leaves born at nodes and sori arranged in sporocarps (Kramer, 1990; Nagalingum et al., 2006). Recent phylogenetic studies have revealed that the Clover ferns (Marsileaceae) together with the Floating ferns (Salviniaceae; Salvinia Seg. and Azolla Lam.) represent a monophyletic group of heterosporous ferns within the fern clade, which evolved in the Mesozoic (Pryer, 1999; Smith et al., 2006; Nagalingum et al., 2006). Twentieth century treatments of the genus mainly focussing on morphology have been published for Africa (Launert, 1968, 1970, 1971, 1984), Australia (Jones, 1998), India (Gupta, 1962), and the Americas (Johnson, 1986). -
Plants Diversity for Ethnic Food and the Potentiality of Ethno-Culinary Tourism Development in Kemiren Village, Banyuwangi, Indonesia
Journal of Indonesian Tourism and doi: 10.21776/ub.jitode.2017.005.03.04 Development Studies E-ISSN : 2338-1647 http://jitode.ub.ac.id Plants Diversity for Ethnic Food and the Potentiality of Ethno-culinary Tourism Development in Kemiren Village, Banyuwangi, Indonesia 1* 2 2 Wahyu Kusumayanti Putri , Luchman Hakim , Serafinah Indriyani 1Master Program of Biology, Faculty of Mathematic and Natural Sciences, University of Brawijaya, Malang, Indonesia 2Department of Biology, Faculty of Mathematic and Natural Sciences, University of Brawijaya, Malang, Indonesia Abstract Recent rapid grow of culinary tourism has significant potential contribution to enhancing biodiversity conservation especially biodiversity of local plant species for local food and food preparation tradition in local community. Ethnic food has been explored as one of the indigenous resources for community-based tourism, in which it is important in community development and biodiversity conservation. The aim of the study was to describe the involvement of plant in local cuisine and the concept of ethno-culinary tourism products development. The research was based on ethno- botanical study through observation and interviews with local community and tourism stakeholder in Kemiren Village, Banyuwangi. This study found that there was 108 ethnic food menu in Kemiren Village. There are 67 species of 35 plant family were used in local cuisine. Kemiren Village has been identified rich in term of traditional culinary which are able to be developed as attractive cuisine in culinary tourism. Keywords: culinary tourism,ethnicfood, Kemiren Village. INTRODUCTION* culinary tourism. The development of culinary Special interest tourism recently grows tourism sector in Banyuwangi relevant with the significantly, and many developing countries with recent trend of tourism development in abundance nature and culture are the favorite Banyuwangi Regency. -
Marsilea Crenata Ethanol Extract Prevents Monosodium Glutamate Adverse Effects on the Serum Levels of Reproductive Hormones
Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.14/June-2021/16.pdf Open Access Marsilea crenata ethanol extract prevents monosodium glutamate adverse effects on the serum levels of reproductive hormones, sperm quality, and testis histology in male rats Sri Rahayu , Riska Annisa , Ivakhul Anzila , Yuyun Ika Christina , Aries Soewondo , Agung Pramana Warih Marhendra and Muhammad Sasmito Djati Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang 65145, East Java, Indonesia. Corresponding author: Sri Rahayu, e-mail: [email protected] Co-authors: RA: [email protected], IA: [email protected], YIC: [email protected], AS: [email protected], APWM: [email protected], MSD: [email protected] Received: 28-12-2020, Accepted: 28-04-2021, Published online: 15-06-2021 doi: www.doi.org/10.14202/vetworld.2021.1529-1536 How to cite this article: Rahayu S, Annisa R, Anzila I, Christina YI, Soewondo A, Marhendra APW, Djati MS (2021) Marsilea crenata ethanol extract prevents monosodium glutamate adverse effects on the serum levels of reproductive hormones, sperm quality, and testis histology in male rats, Veterinary World, 14(6): 1529-1536. Abstract Background and Aim: Marsilea crenata is an aquatic plant that contains high antioxidants level and could prevent cell damages caused by free radicals. The present study aimed to investigate the effect of M. crenata ethanol extract on luteinizing hormone (LH), testosterone levels, sperm quality, and testis histology of adult male rats induced by monosodium glutamate (MSG). Materials and Methods: This study randomly divided 48 male rats into eight groups (n=6): control group; MSG group (4 mg/g body weight [b.w.] for 30 days); MS1, MS2, and MS3 groups (4 mg/g b.w. -
DENR Administrative Order. 2017. Updated National List of Threatened
Republic of the Philippines Department of Environment and Natural Resources Visayas Avenue, Diliman, Quezon City Tel. Nos. 929-6626; 929-6628; 929-6635;929-4028 929-3618;426-0465;426-0001; 426-0347;426-0480 VOiP Trunkline (632) 988-3367 Website: http://www.denr.gov.ph/ E-mail: [email protected] DENR ADMINISTRATIVE ORDER No. 2017----------11 MAVO 2 2017 SUBJECT UPDATED NATIONAL LIST OF THREATENED PHILIPPINE PLANTS AND THEIR CATEGORIES Pursuant to Section 22 of Republic Act No. 9147otherwise known as the "Wildlife Resources Conservation and Protection Act"and in accordance with Section 6 of DENR Administrative Order No. 2007-01 (Establishing the National List of Threatened Philippines Plants and their Categories and the List of Other Wildlife Species), the National List of Threatened Philippine Plants and their categories, is hereby updated. Section 1. Definition of Terms. As used in this Order, the following terms shall mean as follows: a. CITES - refers to the Convention on International Trade in Endangered Species of Wild Fauna and Flora, a treaty regulating international trade of fauna and flora listed in its Appendices; CITES Appendix I - species threatened with extinction, which are or may be affected by trade. International (commercial) trade in wild-taken specimens is generally prohibited. CITES Appendix II -species not necessarily threatened with extinction, but for which trade must be controlled to avoid their becoming so, and species that resemble species already included in Appendix II. International trade is permitted but regulated through appropriate permits/certificates. CITES Appendix III - species included at the request of a Party that already regulates trade in the species and that needs the cooperation of other countries to prevent unsustainable or illegal exploitation. -
The Vegetation of the Western Australian Deserts
©Reinhold-Tüxen-Gesellschaft (http://www.reinhold-tuexen-gesellschaft.de/) Ber. d. Reinh.-Tüxen-Ges. 18, 219-228. Hannover 2006 The Vegetation of the Western Australian Deserts - Erika and Sandro Pignatti, Rom - Abstract The internal area of W. Australia has arid climate and conditions for plant growth are particularly difficult. The surface of this huge, almost uninhabited territory consists of four landscape systems: the Great Sandy Desert, the Little Sandy Desert, the Great Victoria Desert, the Gibson Desert. The four deserts extend between 21-26° of south- ern latitude, linking to the central Australian deserts and the Nullarbor Plain in the South. Meteorological stations are only in settlements of the surrounding semi-desert areas (Wiluna, Meekatharra, Cue, Warburton), and all show around 200-250 mm year- ly rainfall; in the centre of the deserts rainfall is still much lower, and indicated as “erratic and unreliable”; some areas may lack rain for several years. Despite of the par- ticularly severe ecological conditions, most of the surface is covered by vegetation (at least a discontinuous one) and during expeditions in 2001 and 2002 over 700 species were collected and more than 350 phytosociological relevés were carried out.Two main habitat types can be recognized: Mulga – scattered growth of treelets (Acacia aneura, generally about 3-4 m height), with open understorey (Senna, Eremophila, Solanum) and herbs usually covering less than 20 % of the surface; in the Gibson Desert mulga occurs mainly on hard rock sub- strate (granite, laterite). Because of the discontinuous plant cover, fire can spread only over limited areas. Spinifex – Quite a compact cover of perennial grasses (several species of Triodia, with sharply pointed leaves in dense tussocks 3-5 dm high, panicles up to 1 m and high- er) in monospecific populations covering 60-80 % of the surface; in the sandy deserts, on siliceous sand. -
Tropical Australian Water Plants Care and Propagation in Aquaria
Tropical Australian Water Plants Care and propagation in Aquaria Dave Wilson Aquagreen Phone – 08 89831483 or 0427 212 782 Email – [email protected] 100 Mahaffey Rd Howard Springs NT 0835 Introduction There is a growing interest in keeping native fishes and plants. Part of the developing trend in keeping aquaria and ponds is to set up a mini habitat for selected species from the one place and call it a biotope. Some enthusiasts have indicated that in recent times there is not much technical information for beginners about native Australian aquatic plant growing. Generally, if you can provide good conditions for the plants, the other inhabitants, fish, crustaceans and mollusc will be happy. This will set out water quality management, fertiliser and its management, describe an aquarium system that incorporates technology to achieve a nice aquarium. The fourth part will describe some native plants that can be trialled in the aquarium. Soft water plants Hard Water plants Part 1 - Water Quality - Measuring and Management Most people are familiar with pH, alkalinity, hardness, salinity and temperature. The system described here needs control over these parameters which link in with the fertilisers required for good plant growth. A couple of others that can be measured are phosphate and nitrate. Fertilisers produced from feeding fish can be used and are calculated into the system but are usually in the wrong proportions for good plant growth management. A fresh water planted aquarium does better with a 25% to 50% water change per week, test the water you use for the change to make sure that it is better than the water you have already. -
MARSILEA.Pdf
Marsilea: Habit and Habitat of Marsilea: Marsilea is commonly known as “pepper wort” or “water fern” (although it is a fern but hardly resembles a true fern). It is represented by about 53 species which are cosmopolitan in distribution but abundantly found in tropical countries like Africa and Australia. About 9 species have been reported from India. Either the species are hydrophytic or amphibious i.e., they grow rooted in mud or marshes and shallow pools or are completely submerged or partially or entirely out of water in wet habitats. M. hirsuta is an Australian xerophytic species. M. hirsuta and M. quadrifolia are two most common Indian species usually found growing in marshy places, wet soil or near muddy margins of ponds and are commonly found in U.P., Punjab, Bihar, Delhi etc. External Features of Marsilea: The mature sporophyte is an herbaceous plant. Its underground rhizome spreads in a diameter of 25 meter or more. The plant body is distinctly differentiated into rhizome, leaves and roots (Fig. 1 A). 1. Rhizome: All the species possess a rhizome which creeps on or just beneath the soil surface. It is slender, dichotomously branched with distinct nodes and internodes and is capable of indefinite growth in all directions as a result of which it occupies an area of 25 metre or more in diameter. In aquatic species the internodes are long while in sub-terrestrial species they are short. Usually from the upper side at nodes, the leaves are given out while from their lower side, the roots. 2. Leaves: They are borne alternately on upper side of rhizome at nodes, in two rows. -
A Rapid Participatory Biodiversity Assessment
A Rapid Participatory Biodiversity Assessment Stora Enso Eucalypt Plantation in Southern Lao PDR Conducted by IUCN (International Union for Conservation of Nature) in Lao PDR May 19, 2008 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. Authored by: IUCN Lao PDR Copyright: © 2007 International Union for Conservation of Nature and Natural Resources Resources: Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. IUCN International Union for Conservation of Nature and Natural Resources Lao PDR Country Office: 082/01 Fa Ngum Road Ban watt Chan P.O. Box 4340 Vientiane, Lao PDR www. iucn.org Tel: +856 -21 216401 Fax: +856 -21216127 2 Contents Executive Summary................................................................................................... i Recommendations................................................................................................... iii 5.1 Recommendations to strengthen the -
Sites of Botanical Significance Vol1 Part1
Plant Species and Sites of Botanical Significance in the Southern Bioregions of the Northern Territory Volume 1: Significant Vascular Plants Part 1: Species of Significance Prepared By Matthew White, David Albrecht, Angus Duguid, Peter Latz & Mary Hamilton for the Arid Lands Environment Centre Plant Species and Sites of Botanical Significance in the Southern Bioregions of the Northern Territory Volume 1: Significant Vascular Plants Part 1: Species of Significance Matthew White 1 David Albrecht 2 Angus Duguid 2 Peter Latz 3 Mary Hamilton4 1. Consultant to the Arid Lands Environment Centre 2. Parks & Wildlife Commission of the Northern Territory 3. Parks & Wildlife Commission of the Northern Territory (retired) 4. Independent Contractor Arid Lands Environment Centre P.O. Box 2796, Alice Springs 0871 Ph: (08) 89522497; Fax (08) 89532988 December, 2000 ISBN 0 7245 27842 This report resulted from two projects: “Rare, restricted and threatened plants of the arid lands (D95/596)”; and “Identification of off-park waterholes and rare plants of central Australia (D95/597)”. These projects were carried out with the assistance of funds made available by the Commonwealth of Australia under the National Estate Grants Program. This volume should be cited as: White,M., Albrecht,D., Duguid,A., Latz,P., and Hamilton,M. (2000). Plant species and sites of botanical significance in the southern bioregions of the Northern Territory; volume 1: significant vascular plants. A report to the Australian Heritage Commission from the Arid Lands Environment Centre. Alice Springs, Northern Territory of Australia. Front cover photograph: Eremophila A90760 Arookara Range, by David Albrecht. Forward from the Convenor of the Arid Lands Environment Centre The Arid Lands Environment Centre is pleased to present this report on the current understanding of the status of rare and threatened plants in the southern NT, and a description of sites significant to their conservation, including waterholes. -
MARSILEACEAE 1. MARSILEA Linnaeus, Sp. Pl. 2: 1099. 1753
This PDF version does not have an ISBN or ISSN and is not therefore effectively published (Melbourne Code, Art. 29.1). The printed version, however, was effectively published on 6 June 2013. Lin, Y. X. & D. M. Johnson. 2013. Marsileaceae. Pp. 123–124 in Z. Y. Wu, P. H. Raven & D. Y. Hong, eds., Flora of China, Vol. 2–3 (Pteridophytes). Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. MARSILEACEAE 蘋科 ping ke Lin Youxing (林尤兴)1; David M. Johnson2 Plants small, herbaceous, in shallow water or on shores of lakes and ponds. Rhizomes slender and creeping with a siphonostele, covered with short side-attached hairs or glabrous. Fronds linear or with 2–4 obtriangular or fan-shaped pinnae attached at top of stipe, these floating on water surface or emergent. Spores formed inside bean-shaped sporocarps attached to stipe by a short peduncle. Sporocarps containing 2–30 sori, each sorus including both megasporangia and microsporangia. Megasporangium with 1 large spore; microsporangium with 16–64 small spores. Three genera and ca. 60 species: Africa and Australia are the centers of diversity; one genus and three species in China. Lin Youxing. 2000. Marsileaceae. In: Lin Youxing, ed., Fl. Reipubl. Popularis Sin. 6(2): 336–339. 1. MARSILEA Linnaeus, Sp. Pl. 2: 1099. 1753, nom. cons. 蘋属 ping shu Lemma Adanson; Spheroidia Dulac; Zaluzianskia Necker. Fronds in deeper water with stipes lax and slender and pinnae floating upon water surface; fronds in shallow water or on land with erect stipes and pinnae oriented in various positions by action of basal pulvini; pinnae 4, obtriangular to fan-shaped, clustered at tip of stipe. -
Wetland Plants of the Townsville − Burdekin
WETLAND PLANTS OF THE TOWNSVILLE − BURDEKIN Dr Greg Calvert & Laurence Liessmann (RPS Group, Townsville) For Lower Burdekin Landcare Association Incorporated (LBLCA) Working in the local community to achieve sustainable land use THIS PUBLICATION WAS MADE POSSIBLE THROUGH THE SUPPORT OF: Burdekin Shire Council Calvert, Greg Liessmann, Laurence Wetland Plants of the Townsville–Burdekin Flood Plain ISBN 978-0-9925807-0-4 First published 2014 by Lower Burdekin Landcare Association Incorporated (LBLCA) PO Box 1280, Ayr, Qld, 4807 Graphic Design by Megan MacKinnon (Clever Tangent) Printed by Lotsa Printing, Townsville © Lower Burdekin Landcare Association Inc. Copyright protects this publication. Except for purposes permitted under the Copyright Act, reproduction by whatever means is prohibited without prior permission of LBLCA All photographs copyright Greg Calvert Please reference as: Calvert G., Liessmann L. (2014) Wetland Plants of the Townsville–Burdekin Flood Plain. Lower Burdekin Landcare Association Inc., Ayr. The Queensland Wetlands Program supports projects and activities that result in long-term benefits to the sustainable management, wise use and protection of wetlands in Queensland. The tools developed by the Program help wetlands landholders, managers and decision makers in government and industry. The Queensland Wetlands Program is currently funded by the Queensland Government. Disclaimer: This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The authors and funding bodies hold no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy.