Larval Rearing and Spat Production of the Windowpane Shell Placuna Placenta

Total Page:16

File Type:pdf, Size:1020Kb

Larval Rearing and Spat Production of the Windowpane Shell Placuna Placenta Research and farming techniques Larval rearing and spat production of the windowpane shell Placuna placenta S. Dharmaraj, K. Shanmugasundaram and C.P. Suja Central Marine Fisheries Research Institute, Tuticorin Research Centre, 115, N.K.Chetty street, Tuticorin-628001 (India), e-mail:[email protected] The windowpane shell, Placuna In Tuticorin Bay, the windowpane and antibiotics were not used during placenta is one among the pearl shell occurs in a 0.46 ha bed and its larval development. We observed the producing bivalves. It was identified as exploitation during the fishery is almost development under an inverted the second-priority mollusc species for total leading to the depletion of stock microscope using 10x10 magnification. research during the Second Conference in the bay. The natural population has After 24 hours straight-hinged larvae on Aquaculture Development in to be augmented in order to meet the were collected in 40µm mesh sieve. The Southeast Asia held in the Philippines needs of mariculture. We therefore larvae were reared in two 75 liter in July 1994 and is the basis for a undertook to develop the technology rectangular fiberglass tanks. Feeding ‘kapis’ (windowpane shell) fishery in for the production of seed of the was initiated at veliger stage on day the Philippines. Windowpane shell species in the hatchery and to sea two. The unicellular microalga provides fishermen an additional ranch them for the replenishment of Isochrysis galbana was given as food income-generating source through the wild stock. The report is the first to be to the larvae once in a day at a sale of its pearls and shells. The empty published on larval rearing and seed concentration of 5,000 cells larva -1 day - shells are used as raw material in production of P. placenta from India. 1 (10 cells µl -1) from day two; 10,000 making shell craft products and are cells day -1 (20 cells µl -1) from day five; exported. Techniques 15,000 cells day -1 (30 cells µl -1) from In India the distribution of the day seven; and 20,000 cells day -1 (40 species is confined to the Kakinada Bay The windowpane shells, collected from cells µl -1 from day ten. The microalga in Andhra Pradesh1,2,3,4; to the the Tuticorin Bay in the Gulf of was cultured in Conway medium15 and Okhamandal Coast in the Gulf of Mannar, were brought to the Shellfish harvested during its exponential phase. Kutch5,6; to the Nauxim Bay of Goa7 and Hatchery of the Tuticorin Research Algal density was assessed using to Tuticorin Bay8 and Vellapatti near Centre of the Central Marine Fisheries haemocytometer and proportionate Tuticorin9. The oysters were fished from Research Institute. Prior to the feed was given. Water change was these areas in considerable quantities experiment, these broodstock animals done once in two days by siphoning every year for pearls and shells causing were kept for 24 hours in aerated the larvae through a sieve with the concern about over exploitation of wild seawater held in a rectangular tank. mesh size smaller than the larval size. stocks. The development of techniques The oysters were treated for spawning Random sample of 50 larvae was on breeding, larval rearing and spat on the following day by thermal measured along the dorsoventral axis production of the species might stimulation at 37ºC at 1445 hours. (DVM) and anteroposterior axis (APM) eventually help to sustain the fishery. Males started to spawn at 1530 hours as a parameter to assess the growth. Hence efforts are made in different parts followed by females. When the The spat were allowed to settle free in of the world to breed the windowpane spawning was over the brood stock the tank itself, as they did not have shell in captivity and produce the seeds animals were removed and the eggs byssus thread or cement gland for for replenishment of wild stocks. allowed to fertilize. The eggs were attachment. No cultch material was Previous research has documented the yellow in colour. provided for settlement of spat. spawning and larval development of P. We collected the fertilized eggs by Aeration was given only after spat placenta10; documented the techniques gently siphoning through a 30µm sieve. setting. Unicellular microalga I. in induced spawning and early The material collected in the sieve galbana was continued to be supplied embryonic and larval development11; contained fertilized eggs, faecal as food for the spat up to 1.0mm and studied the effect of salinity on the matters, broken tissues, shell fragments was gradually replaced afterwards by embryonic development, larval growth and other waste materials. The mixed algal food. The mixed algae, and survival at metamorphosis12; contents of the sieve were passed chiefly containing Chaetoceros sp.and evaluated the effect of microalgal diets through an 80µm sieve and the other diatoms, were developed in and rearing condition on gonad maturity, unwanted materials discarded. The outdoor tanks. During larval rearing the fecundity and embryonic fertilized eggs that passed through water temperature ranged from 28ºC to development13; and reported on 80µm sieve were allowed to develop in 30ºC; salinity 34.6 – 35.2 ppt. and pH hatchery management techniques14. the tank and the larval development 7.91-8.09. was studied. No aeration was provided 20 aquaculture Asia Research and farming techniques Window-pane shell Placuna placenta. Fertilized eggs with polar body, size 50µm. 4-celled, 8-celled and 32-celled stages. Straight-hinge larvae, average size 79.9 x 65.2µm. Typical umbo stage, size 140 x 130 µm. Spat with its transparent shell. Larval development The spawned eggs are spherical in shape measuring 50µm. Fertilization was immediate and the first polar body was released 15 minutes after fertilization. First cleavage started after another 15minutes leading to the two-celled stage. The two-celled stage had a smaller micromere and a larger macromere along with a polar body at the furrow of cleavage. The trefoil stage, containing three micromeres and one macromere was obtained four minutes. After the two- celled stage. The cell wall of the 3 micromeres slowly disappeared and resulted in the four-celled stage 65 minutes after fertilization. The macromere did not take part in further Hatchery reared juveniles of P. placenta, average size 26.4 x 10.6 cell divisions. The 8-celled, 16-celled and 32-celled stages mm on day 135. are obtained in 80 minutes, 100 minutes and 155 minutes respectively after fertilization. Morula stage was reached in April-June 2004 (Vol. IX No. 2) 21 Research and farming techniques four hours and 45 minutes. The embryo conspicuous granules. The time 200µm on day five, pediveliger at 215 x began to move at the morula stage. As sequence of early embryonic 205µm on day seven, and plantigrade at the larvae move in water column, the development of larvae of P. placenta is 235 x 210µm on day eight. On day nine morula is transformed to a blastula given in Table 1 and the time series the umbo larvae constituted 14%, stage by the development of a growth data of the species from veliger eyespot 28%, pediveliger 34% and blastocoel, which opens to the exterior to spat is presented in Table 2. plantigrade 24% of the population. The through blastopore. Gastrulation spat had grown to 340 x 300µm on day commenced at this stage by Larval growth ten. On day thirteen the pediveliger convolution of cells to interior through formed 14%, plantigrade 36% and spat blastopore. After completion of The relationship between the larval 50% of the population. In view of such gastrulation, the dermal layers namely shell length (APM) and shell height heterogeneity in growth, the average ectoderm, mesoderm and endoderm are (DVM) is linear and is described by the size of larvae at different stages was formed along with an archenteron. By equation: taken into account in working out the the formation of single flagellum at the Y=17.982 + 0.9595X with r = 0.9981 growth rate. The average shell height apical end, the embryo reached Where Y represents APM and X on day one is 65.2µm; 81.6 µm on day trochophore stage in 5 hours and 41 represents DVM in µm. three; 121.6 µm on day six; 205.8 µm on minutes. The ectodermal cells secrete On day three all larvae were at day nine and 300 µm on day thirteen. embryonic shell material veliger stage and subsequently the D- The average daily rate of growth of the (prodissoconch 1) and formed a D- shaped veliger became globular at larvae is 23.0 µm from day 0 to 13. shaped veliger 18 hours and 45 minutes 110µm APM x 100µm DVM resulting in post fertilization and measured an the disappearance of straight hinge Spat setting and spat average of 65.2µm in DVM or shell line. On day four the typical umbo production height and 79.9µm in APM or shell stage constituted 90% of the length. The shell valves of the veliger population measuring 140 x 130µm. The The larvae set as spat on day 7-8. The are equivalve and transparent with late umbo stage is reached at 210 x spat has neither byssus nor cement gland for attachment and hence they Table 1. Time sequence of early embryonic development of larvae of Placuna were allowed to settle on tank surface. placenta The spat has an exceptionally long foot which would be of much use in Stage Time after fertilization burrowing. The shell is highly Madrones-Ladja (1997) Present study transparent with concentric growth Egg 0 0 line. The initial larval population in all First polar body 15 min 15 min the culture tanks was 1.5 x 105 in a total Second polar body - 20 min volume of 150 litres of seawater.
Recommended publications
  • Journal of Threatened Taxa
    PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles online OPEN ACCESS every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Short Communication The windowpane oyster family Placunidae Rafinesque, 1815 with additional description of Placuna quadrangula (Philipsson, 1788) from India Rocktm Ramen Das, Vijay Kumar Deepak Samuel, Goutham Sambath, Pandian Krishnan, Purvaja Ramachandran & Ramesh Ramachandran 26 December 2019 | Vol. 11 | No. 15 | Pages: 15061–15067 DOI: 10.11609/jot.5049.11.15.15061-15067 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors.
    [Show full text]
  • Annual Report 2001-2002, in Which Multiple Activities of Agricultural Research, Education and Extension Are Highlighted
    DARE/ICARDARE/ICAR AnnualAnnual ReportReport 2001-20022001-2002 Department of Agricultural Research Indian Council of and Education Agricultural Research Ministry of Agriculture New Delhi Government of India Indian Council of Agricultural Research President Shri Nitish Kumar (Up to 22.7.2001) Minister of Agriculture Shri Ajit Singh (Since 23.7.2001) Minister of Agriculture Vice-President Dr Debendra Pradhan (Up to 1.9.2001) Minister of State (AH&D & DARE) Director-General Dr R S Paroda (Up to 14.8.2001) Secretary Department of Agricultural Research and Education Shri J N L Srivastava (15.8.2001 to 3.10.2001) Secretary, Ministry of Agriculture Dr Panjab Singh (Since 4.10.2001) Secretary Department of Agricultural Research and Education Secretary Smt Shashi Misra (Since 22.2.2001) Additional Secretary Department of Agricultural Research and Education Financial Adviser Shri R S Prasad (Up to 7.6.2001) Joint Secretary and FA Department of Agricultural Research and Education Shri P Sinha (Since 7.6.2001) Additional Secretary and FA Department of Agricultural Research and Education iii OVERVIEW Foreword The National Agricultural Research System (NARS) with the Indian Council of Agricultural Research (ICAR) as an apex body is striving for the holistic development of agriculture at the national level through planning, promoting, conducting and coordinating research, education and extension and training on all aspects of agriculture for ensuring optimal utilization of land, water and plant and animal genetic resources. India has achieved worldwide acclaim in the field of agricultural research, education and extension by achieving more than four-fold increase in foodgrains production besides significant increases in the milk, oilseeds, fruits, vegetables and fish production since independence.
    [Show full text]
  • The Roles of Endolithic Fungi in Bioerosion and Disease in Marine Ecosystems. II. Potential Facultatively Parasitic Anamorphic A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs Gleason, Frank H.; Gadd, Geoffrey M.; Pitt, John I.; Larkum, Anthony W.D. Published in: Mycology DOI: 10.1080/21501203.2017.1371802 Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Gleason, F. H., Gadd, G. M., Pitt, J. I., & Larkum, A. W. D. (2017). The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs. Mycology, 8(3), 216-227. https://doi.org/10.1080/21501203.2017.1371802 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Mycology An International Journal on Fungal Biology ISSN: 2150-1203 (Print) 2150-1211 (Online) Journal homepage: http://www.tandfonline.com/loi/tmyc20 The roles of endolithic fungi in bioerosion and disease in marine ecosystems.
    [Show full text]
  • New Distributional Records of Placuna Ephippium (Reizius 1788) Family: Placunidae from Mandapam Area -South East Coast of India
    World Journal of Fish and Marine Sciences 2 (1): 40-41, 2010 ISSN 2078-4589 © IDOSI Publications, 2010 New Distributional Records of Placuna ephippium (Reizius 1788) Family: Placunidae from Mandapam Area -South East Coast of India 1C. Stella, 2J. Sesh Serebiah and 1J. Siva 1Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi Campus - 623409, India 2Madras Christian College -Chennai, India Abstract: The new occurrence of bivalve species of Placuna ephippium is recorded for the first time from Mandapam area, based on a few shells collected from the fish landing centers. The common name of the species is Saddle Oysters. In Anomiidae family, the only one species of Placuna placenta was recorded so far. The present paper described the taxonomic status and the description of the new record of Placuna ephippium under the family of Placunidae. Key words: Placuna ephippium % Placunidae % Mandapam area % India INTRODUCTION Systematic Position: In Gulf of Mannar and Lakshadweep area, 428 and Phylum : Mollusca 424 species of mollusks have been recorded, respectively. Class : Bivalvia Eight species of Oysters, 2 species of Mussels, 17 species Order : Ostreoida of Clams, 6 species of Pearl Oysters, 4 species of Giant Family : Placunidae Gray 1842 Clams and One species of Window pane Oysters of Genus : Placuna Placuna placenta was recorded [1]. During a regular survey at Mandapam fish landing centers Lat 8° 47' - 9° Species: 15'N and Long 78° 12' - 79° 14'E (Map. 1), the shells of Placuna ephippium (Reizius 1788) were collected, 2 right Placuna Lightfoot, 1786 valves and 3 left valves of different individuals for Placuna ephippium identification, which have not been recorded by earlier Placuna lobata workers from this area.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIOXS. 227 AEEANGEMENT FAMILIES OF MOLLUSKS. PREPARED FOR THE SMITHSONIAN INSTITUTION BY THEODORE GILL, M. D., Ph.D. WASHINGTON: PUBLISHED BY THE SMITHSONIAN INSTITUTION, FEBRUARY, 1871. ^^1 I ADVERTISEMENT. The following list has been prepared by Dr. Theodore Gill, at the request of the Smithsonian Institution, for the purpose of facilitating the arrangement and classification of the Mollusks and Shells of the National Museum ; and as frequent applica- tions for such a list have been received by the Institution, it has been thought advisable to publish it for more extended use. JOSEPH HENRY, Secretary S. I. Smithsonian Institution, Washington, January, 1871 ACCEPTED FOR PUBLICATION, FEBRUARY 28, 1870. (iii ) CONTENTS. VI PAGE Order 17. Monomyaria . 21 " 18. Rudista , 22 Sub-Branch Molluscoidea . 23 Class Tunicata , 23 Order 19. Saccobranchia . 23 " 20. Dactjlobranchia , 24 " 21. Taeniobranchia , 24 " 22. Larvalia , 24 Class Braehiopoda . 25 Order 23. Arthropomata , 25 " . 24. Lyopomata , 26 Class Polyzoa .... 27 Order 25. Phylactolsemata . 27 " 26. Gymnolseraata . 27 " 27. Rhabdopleurse 30 III. List op Authors referred to 31 IV. Index 45 OTRODUCTIO^. OBJECTS. The want of a complete and consistent list of the principal subdivisions of the mollusks having been experienced for some time, and such a list being at length imperatively needed for the arrangement of the collections of the Smithsonian Institution, the present arrangement has been compiled for that purpose. It must be considered simply as a provisional list, embracing the results of the most recent and approved researches into the systematic relations and anatomy of those animals, but from which innova- tions and peculiar views, affecting materially the classification, have been excluded.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Shelled Molluscs
    Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1.
    [Show full text]
  • Molluscs Gastropods
    Group/Genus/Species Family/Common Name Code SHELL FISHES MOLLUSCS GASTROPODS Dentalium Dentaliidae 4500 D . elephantinum Elephant Tusk Shell 4501 D . javanum 4502 D. aprinum 4503 D. tomlini 4504 D. mannarense 450A D. elpis 450B D. formosum Formosan Tusk Shell 450C Haliotis Haliotidae 4505 H. varia Variable Abalone 4506 H. rufescens Red Abalone 4507 H. clathrata Lovely Abalone 4508 H. diversicolor Variously Coloured Abalone 4509 H. asinina Donkey'S Ear Abalone 450G H. planata Planate Abalone 450H H. squamata Scaly Abalone 450J Cellana Nacellidae 4510 C. radiata radiata Rayed Wheel Limpet 4511 C. radiata cylindrica Rayed Wheel Limpet 4512 C. testudinaria Common Turtle Limpet 4513 Diodora Fissurellidae 4515 D. clathrata Key-Hole Limpets 4516 D. lima 4517 D. funiculata Funiculata Limpet 4518 D. singaporensis Singapore Key-Hole Limpet 4519 D. lentiginosa 451A D. ticaonica 451B D. subquadrata 451C Page 1 of 15 Group/Genus/Species Family/Common Name Code D. pileopsoides 451D Trochus Trochidae 4520 T. radiatus Radiate Top 4521 T. pustulosus 4522 T. stellatus Stellate Trochus 4523 T. histrio 4524 T. maculatus Maculated Top 452A T. niloticus Commercial Top 452B Umbonium Trochidae 4525 U. vestiarium Common Button Top 4526 Turbo Turbinidae 4530 T. marmoratus Great Green Turban 4531 T. intercostalis Ribbed Turban Snail 4532 T. brunneus Brown Pacific Turban 4533 T. argyrostomus Silver-Mouth Turban 4534 T. petholatus Cat'S Eye Turban 453A Nerita Neritidae 4535 N. chamaeleon Chameleon Nerite 4536 N. albicilla Ox-Palate Nerite 4537 N. polita Polished Nerite 4538 N. plicata Plicate Nerite 4539 N. undata Waved Nerite 453E Littorina Littorinidae 4540 L. scabra Rough Periwinkle 4541 L.
    [Show full text]
  • THE FESTIVUS ISSN: 0738-9388 a Publication of the San Diego Shell Club
    (?mo< . fn>% Vo I. 12 ' 2 ? ''f/ . ) QUfrl THE FESTIVUS ISSN: 0738-9388 A publication of the San Diego Shell Club Volume: XXII January 11, 1990 Number: 1 CLUB OFFICERS SCIENTIFIC REVIEW BOARD President Kim Hutsell R. Tucker Abbott Vice President David K. Mulliner American Malacologists Secretary (Corres. ) Richard Negus Eugene V. Coan Secretary (Record. Wayne Reed Research Associate Treasurer Margaret Mulliner California Academy of Sciences Anthony D’Attilio FESTIVUS STAFF 2415 29th Street Editor Carole M. Hertz San Diego California 92104 Photographer David K. Mulliner } Douglas J. Eernisse MEMBERSHIP AND SUBSCRIPTION University of Michigan Annual dues are payable to San Diego William K. Emerson Shell Club. Single member: $10.00; American Museum of Natural History Family membership: $12.00; Terrence M. Gosliner Overseas (surface mail): $12.00; California Academy of Sciences Overseas (air mail): $25.00. James H. McLean Address all correspondence to the Los Angeles County Museum San Diego Shell Club, Inc., c/o 3883 of Natural History Mt. Blackburn Ave., San Diego, CA 92111 Barry Roth Research Associate Single copies of this issue: $5.00. Santa Barbara Museum of Natural History Postage is additional. Emily H. Vokes Tulane University The Festivus is published monthly except December. The publication Meeting date: third Thursday, 7:30 PM, date appears on the masthead above. Room 104, Casa Del Prado, Balboa Park. PROGRAM TRAVELING THE EAST COAST OF AUSTRALIA Jules and Carole Hertz will present a slide program on their recent three week trip to Queensland and Sydney. They will also bring a display of shells they collected Slides of the Club Christmas party will also be shown.
    [Show full text]
  • Back Matter (PDF)
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B VOLUME 276 BIOLOGICAL SCIENCES 1976-7 PUBLISHED BY THE ROYAL SOCIETY 6 CARLTON HOUSE TERRACE LONDON SW1Y5AG CONTENTS Series B Volume 276 No. 943 30 November 1976 A Discussion on the assembly of regular viruses. Organized by A. K lug, F.R.S. and P. J . G. Butler ..... page 1 No. 944 30 November 1976 Organization of motoneurones in the prothoracic ganglion of the cockroach Periplaneta americana (L.). By J . F. Iles ............. 205 No. 945 7 December 1976 The history of the mammal fauna during the Ipswichian/Last interglacial in England. By A. J . St u a r t ....................................................................................................................... 221 No. 946 25 January 1977 Late-Devensian and Flandrian vegetational history of Bodmin Moor, Cornwall. By A. P. Brown ............. 251 No. 947 25 January 1977 Studies on the eyes of anchovies Anchoa mitchilli and A. hepsetus (Engraulidae) with particular reference to the pigment epithelium. By B. A. Fineran and J. A. C. N icol, F.R .S.................................................................... 321 No. 948 25 January 1977 The nervous system of Loligo III. Higher motor centres: the basal supraoesophageal lobes. By J. Z. Young, F.R.S.................................................................................................... 351 No. 949 25 January 1977 Polymorphism and selection in Cochlicella acuta. By G. Lewis ............. 399 No. 950 11 February 1977 Form and evolution in the Anomiacea (Mollusca: Bivalvia) - Pododesmus, Anomia, , Enigmonia (Anomiidae): Placunanomia , Placuna (Placunidae Fam. Nov.). By C. M. Yonge, F.R.S................................................................................................. 453 Indexes 525 PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON CONTENTS OF VOLUME 276 (SERIES B) No. 943 A Discussion on the assembly of regular viruses.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • IJF Front Pages 55-1
    EDITORIAL BOARD Dr. S. Ayyappan, Deputy Director General, Dr. Dilip Kumar, Director Indian Council of Agricultural Research, Central Institute of Fisheries Education, Fisheries Division, Krishi Anusandhan Bhavan-II, Jaiprakash Road, Seven Bungalows, Versova, Pusa, New Delhi-110 012. Mumbai-400 061, Maharashtra. Dr. G. Syda Rao Director, Dr. W. S. Lakra, Director Central Marine Fisheries Research Institute, National Bureau of Fish Genetic Resources, P.B. No. 1603, Ernakulam North P.O., Canal Ring Road, Cochin - 682 018, Kerala. P.O. Dilkusha, Lucknow - 226 002, Uttar Pradesh. Dr. K. Devadasan, Director, Central Institute of Fisheries Technology, Dr. A. G. Ponniah, Director Matsyapuri, P.O., Willingdon Island, Cochin - 682 029, Kerala. Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A. Puram, Dr. A. E. Eknath, Director Chennai - 600 028, Tamil Nadu. Central Institute of Freshwater Aquaculture, Dhauli P.O., Kausalyaganga, Dr. K. K. Vass, Director Bhubaneswar - 751 002, Orissa. Central Inland Fisheries Research Institute, Dr. P. C. Mahanta, Director Barrackpore, Kolkata - 743 101, National Research Centre on Cold Water Fisheries, Bhimtal - 263 136, West Bengal. Haldwani, Nainital Dt., Uttar Pradesh. Managing Editor Dr. G. Syda Rao Director, CMFRI, Cochin Editor Dr. Rani Mary George CMFRI, Cochin Sub-Editors Dr. K. S. Sobhana Dr. K. Vinod CMFRI, Cochin CMFRI, Cochin N. Venugopal V. Edwin Joseph CMFRI, Cochin CMFRI, Cochin Publication Committee Dr. N. G. K. Pillai Dr. Rani Mary George Dr. B. Meenakumari CMFRI, Cochin - Member CMFRI, Cochin - Member CIFT, Cochin - Member C. V. Jayakumar CMFRI, Cochin - Member Secretary INDIAN JOURNAL OF FISHERIES Volume 55 : Numbers 1 & 2 January - June 2008 CENTRAL MARINE FISHERIES RESEARCH INSTITUTE (Indian Council of Agricultural Research) COCHIN - 682 018 INDIA Published by The Director, Central Marine Fisheries Research Institute Cochin - 682 018, India On behalf of The Indian Council of Agricultural Research New Delhi - 110 001, India Inland Foreign Annual Subscription Rs.
    [Show full text]