Project Argo

Total Page:16

File Type:pdf, Size:1020Kb

Project Argo Project Argo A Proposal for a Mars Sample Return System J. Cunningham, S. Thompson, C. Ayon, W. Gallagher, E. Gomez, A. Kechejian, A. Miller Pyxis Aerospace, Cal Poly Pomona, Pomona, CA, 91768, USA AIAA Undergraduate Team Space Transportation Design Competition, 2016 Abstract Pyxis Aerospace at Cal Poly Pomona is pleased to present Project Argo, its proposal for a Mars Sample Return System as requested by the American Institute of Aeronautics and Astronautics. The goal of Project Argo is to travel to Mars, retrieve a sample collected by a rover on the Martian surface, and return it to Earth. To accomplish this goal, we have designed three vehicles: the Earth Return Vehicle (ERV), the Mars Ascent Vehicle (MAV), and the Mars Landing Platform (MLP). The three vehicles will launch on July 24, 2020 and travel together as one unit. The MAV and the MLP will be enclosed in a backshell/heat shield similar to previous Mars missions, and the ERV will act as the cruise stage. The vehicles will arrive at Mars Feb 17, 2021. After Mars orbit capture, the MAV/MLP will separate and enter the Martian atmosphere. The MLP, carrying the MAV, will make a precision landing within 5 km of the rover location. After the sample cache has been received and secured, the MAV will launch from the Martian surface and rendezvous with the ERV, which will have been left in a parking orbit. The sample cache will be transferred to the ERV, and the ERV will return to Earth, arriving in May 2025. The ERV will capture into Earth orbit using a combination of propulsive maneuvers and aerobraking to bring it to a suitable orbit, and rendezvous with the ISS. ISS crew will retrieve the sample and the ERV will be secured, thereby completing Project Argo. The total mission estimated cost is FY2020$1.7B. Pyxis Aerospace of Cal Poly Pomona: Project Argo Design Team We, the Project Argo team members, retain copyright ownership of this proposal. We grant an irrevocable license to AIAA to copy, display, publish, and distribute this proposal and to use it for all of AIAA's current and future print and electronic uses. Project Argo AIAA Mars Sample Return System, 2016 2 Nomenclature/Acronyms AIAA – American Institute of Aeronautics and Astronautics ACS - Attitude Control System CAD – Computer Aided Design CDS - Command and Data System CEP – Circular Error Probability EDL – Entry, Decent, and Landing ERV – Earth Return Vehicle EVA – Extravehicular Activity FOM – Figure of Merit FOV – Field of View FRGF – Flight Releasable Grapple Fixture G-FOLD – Guidance for Fuel Optimal Large Diverts GMAT – General Mission Analysis Tool GNC – Guidance, Navigation, and Control IR – Infrared ISRU – In Situ Resource Utilization ISS – International Space Station JPL – Jet Propulsion Laboratory Ksps – Kilo Symbols per Second MAV – Mars Ascent Vehicle MLP – Mars Launch Platform MOI – Moments of Inertia MMH – Monomethylhydrazine Nms – Newton * meter * seconds NPR – NASA Procedural Requirements NTO - Nitrogen Tetroxide RFP – Request for Proposal Project Argo AIAA Mars Sample Return System, 2016 3 SOI – Sphere of Influence SSTO – Single Stage to Orbit TOF – Time of Flight TRN – Terrain Relative Navigation Table of Contents Project Argo Mission Objectives ................................................................................................................................... 7 A. Scientific background and goals ....................................................................................................................... 7 B. AIAA Request For Proposal (RFP) .................................................................................................................. 7 Project Argo Overview .................................................................................................................................................. 8 A. Selecting the Overall Mission Architecture ...................................................................................................... 8 B. Project Argo Concept of Operations Overview .............................................................................................. 10 1. Major Mission Phases ................................................................................................................................ 10 C. Vehicle Description ........................................................................................................................................ 10 D. Overview of Key Vehicle Design Features .................................................................................................... 11 1. Earth Launch Configuration ....................................................................................................................... 11 2. ERV drop tanks .......................................................................................................................................... 11 3. ERV capture cone ...................................................................................................................................... 12 4. MAV sample storage and deploy system ................................................................................................... 12 5. MLP Terrain Relative Navigation system .................................................................................................. 12 E. Design and Analysis Tools ............................................................................................................................. 12 Project Argo Concept of Operations ............................................................................................................................ 14 A. ConOp Phase I: Earth launch, transit, Mars capture ....................................................................................... 14 1. Earth to Mars Trajectory ............................................................................................................................ 14 2. Earth Launch Vehicle ................................................................................................................................. 16 3. Earth-Mars transit ...................................................................................................................................... 17 4. Mars Capture .............................................................................................................................................. 18 B. ConOp Phase II: MAV separation, EDL, sample transfer .............................................................................. 19 1. MAV/MLP Detach and De-Orbit ............................................................................................................... 20 2. Mars Entry Aerothermodynamics .............................................................................................................. 20 3. MAV Landing: Terrain Relative Navigation ............................................................................................. 23 4. Mars Landing: Mars Landing Platform Propulsion System ....................................................................... 24 5. ERV parking orbit ...................................................................................................................................... 25 6. MAV Sample Stow and Transfer Subsystem ............................................................................................. 26 C. ConOp Phase III: MAV Mars launch, ascent, ERV rendezvous and sample transfer .................................... 29 1. MAV Architecture Selection ...................................................................................................................... 29 Project Argo AIAA Mars Sample Return System, 2016 4 2. MAV Launch ............................................................................................................................................. 30 3. ERV/MAV Rendezvous ............................................................................................................................. 32 D. ConOp Phase IV: Mars escape, transit, Earth capture and aerobraking, ISS rendezvous............................... 36 1. ERV Maneuvers in Preparation for Escape ................................................................................................ 36 2. ERV Departs Mars ..................................................................................................................................... 37 3. Mars-Earth Transit ..................................................................................................................................... 37 4. Earth Capture ............................................................................................................................................. 37 5. Earth Aerobraking ...................................................................................................................................... 38 6. ERV/ISS Rendezvous ................................................................................................................................ 40 7. Transfer of the Mars Sample to ISS ........................................................................................................... 41 8. ERV disposal.............................................................................................................................................. 41 Vehicle Design ...........................................................................................................................................................
Recommended publications
  • Tailoring of the Controlling and Monitoring Tools for Operations in Shallow Coastal Waters
    Tailoring of the controlling and monitoring tools for operations in shallow coastal waters Ref.: D6.1_V1.1 Date: 08/01/2021 Euro-Argo Research Infrastructure Sustainability and Enhancement Project (EA RISE Project) - 824131 Under EC_review This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 824131. Call INFRADEV-03-2018-2019: Individual support to ESFRI and other world-class research infrastructures Disclaimer: This Deliverable reflects only the author’s views and the European Commission is not responsible for any use that may be made of the information contained therein. 2 Project Euro-Argo RISE - 824131 Deliverable number D6.1 Deliverable title Tailoring of the controlling and monitoring tools for operations in shallow coastal waters Description Report that details the existing Euro-Argo controlling and monitoring tools implemented, developed, tested and tailored for Argo float operations in shallow coastal areas of the Mediterranean, Black and Baltic Seas. Work Package number 6 Work Package title Extension to Marginal Seas Lead Institute OGS Lead authors Giulio Notarstefano Contributors Massimo Pacciaroni, Dimitris Kassis, Atanas Palazov, Violeta Slabakova, Laura Tuomi, Siiriä Simo-Matti, Waldemar Walczowski, Małgorzata Merchel, John Allen, Inmaculada Ruiz, Lara Diaz, Vincent Taillandier, Luca Arduini Plaisant, Romain Cancouët Submission date 08/01/2021 Due date [M18] 30 June 2020 Comments This deliverable was postponed due to Covid-19 pandemic (Article
    [Show full text]
  • Coplanar Air Launch with Gravity-Turn Launch Trajectories
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AFTI Scholar (Air Force Institute of Technology) Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-23-2004 Coplanar Air Launch with Gravity-Turn Launch Trajectories David W. Callaway Follow this and additional works at: https://scholar.afit.edu/etd Part of the Aerospace Engineering Commons Recommended Citation Callaway, David W., "Coplanar Air Launch with Gravity-Turn Launch Trajectories" (2004). Theses and Dissertations. 3922. https://scholar.afit.edu/etd/3922 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. COPLANAR AIR LAUNCH WITH GRAVITY-TURN LAUNCH TRAJECTORIES THESIS David W. Callaway, 1st Lieutenant, USAF AFIT/GAE/ENY/04-M04 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GAE/ENY/04-M04 COPLANAR AIR LAUNCH WITH GRAVITY-TURN LAUNCH TRAJECTORIES THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineeering David W.
    [Show full text]
  • Charon Tectonics
    Icarus 287 (2017) 161–174 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Charon tectonics ∗ Ross A. Beyer a,b, , Francis Nimmo c, William B. McKinnon d, Jeffrey M. Moore b, Richard P. Binzel e, Jack W. Conrad c, Andy Cheng f, K. Ennico b, Tod R. Lauer g, C.B. Olkin h, Stuart Robbins h, Paul Schenk i, Kelsi Singer h, John R. Spencer h, S. Alan Stern h, H.A. Weaver f, L.A. Young h, Amanda M. Zangari h a Sagan Center at the SETI Institute, 189 Berndardo Ave, Mountain View, California 94043, USA b NASA Ames Research Center, Moffet Field, CA 94035-0 0 01, USA c University of California, Santa Cruz, CA 95064, USA d Washington University in St. Louis, St Louis, MO 63130-4899, USA e Massachusetts Institute of Technology, Cambridge, MA 02139, USA f Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA g National Optical Astronomy Observatories, Tucson, AZ 85719, USA h Southwest Research Institute, Boulder, CO 80302, USA i Lunar and Planetary Institute, Houston, TX 77058, USA a r t i c l e i n f o a b s t r a c t Article history: New Horizons images of Pluto’s companion Charon show a variety of terrains that display extensional Received 14 April 2016 tectonic features, with relief surprising for this relatively small world. These features suggest a global ex- Revised 8 December 2016 tensional areal strain of order 1% early in Charon’s history. Such extension is consistent with the presence Accepted 12 December 2016 of an ancient global ocean, now frozen.
    [Show full text]
  • Modeling Rocket Flight in the Low-Friction Approximation
    Undergraduate Journal of Mathematical Modeling: One + Two Volume 6 | 2014 Fall Article 5 2014 Modeling Rocket Flight in the Low-Friction Approximation Logan White University of South Florida Advisors: Manoug Manougian, Mathematics and Statistics Razvan Teodorescu, Physics Problem Suggested By: Razvan Teodorescu Follow this and additional works at: https://scholarcommons.usf.edu/ujmm Part of the Mathematics Commons UJMM is an open access journal, free to authors and readers, and relies on your support: Donate Now Recommended Citation White, Logan (2014) "Modeling Rocket Flight in the Low-Friction Approximation," Undergraduate Journal of Mathematical Modeling: One + Two: Vol. 6: Iss. 1, Article 5. DOI: http://dx.doi.org/10.5038/2326-3652.6.1.4861 Available at: https://scholarcommons.usf.edu/ujmm/vol6/iss1/5 Modeling Rocket Flight in the Low-Friction Approximation Abstract In a realistic model for rocket dynamics, in the presence of atmospheric drag and altitude-dependent gravity, the exact kinematic equation cannot be integrated in closed form; even when neglecting friction, the exact solution is a combination of elliptic functions of Jacobi type, which are not easy to use in a computational sense. This project provides a precise analysis of the various terms in the full equation (such as gravity, drag, and exhaust momentum), and the numerical ranges for which various approximations are accurate to within 1%. The analysis leads to optimal approximations expressed through elementary functions, which can be implemented for efficient flight
    [Show full text]
  • A Tool for Preliminary Design of Rockets Aerospace Engineering
    A Tool for Preliminary Design of Rockets Diogo Marques Gaspar Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor : Professor Paulo Jorge Soares Gil Examination Committee Chairperson: Professor Fernando José Parracho Lau Supervisor: Professor Paulo Jorge Soares Gil Members of the Committee: Professor João Manuel Gonçalves de Sousa Oliveira July 2014 ii Dedicated to my Mother iii iv Acknowledgments To my supervisor Professor Paulo Gil for the opportunity to work on this interesting subject and for all his support and patience. To my family, in particular to my parents and brothers for all the support and affection since ever. To my friends: from IST for all the companionship in all this years and from Coimbra for the fellowship since I remember. To my teammates for all the victories and good moments. v vi Resumo A unica´ forma que a humanidade ate´ agora conseguiu encontrar para explorar o espac¸o e´ atraves´ do uso de rockets, vulgarmente conhecidos como foguetoes,˜ responsaveis´ por transportar cargas da Terra para o Espac¸o. O principal objectivo no design de rockets e´ diminuir o peso na descolagem e maximizar o payload ratio i.e. aumentar a capacidade de carga util´ ao seu alcance. A latitude e o local de lanc¸amento, a orbita´ desejada, as caracter´ısticas de propulsao˜ e estruturais sao˜ constrangimentos ao projecto do foguetao.˜ As trajectorias´ dos foguetoes˜ estao˜ permanentemente a ser optimizadas, devido a necessidade de aumento da carga util´ transportada e reduc¸ao˜ do combust´ıvel consumido. E´ um processo utilizado nas fases iniciais do design de uma missao,˜ que afecta partes cruciais do planeamento, desde a concepc¸ao˜ do ve´ıculo ate´ aos seus objectivos globais.
    [Show full text]
  • The Mars Project: Avoiding Decompression Sickness on a Distant Planet
    NASA/TM--2000-210188 The Mars Project: Avoiding Decompression Sickness on a Distant Planet Johnny Conkin, Ph.D. National Space Biomedical Research Institute Houston, Texas 77030-3498 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058-3696 May 2000 Acknowledgments The following people provided helpful comments and suggestions: Amrapali M. Shah, Hugh D. Van Liew, James M. Waligora, Joseph P. Dervay, R. Srini Srinivasan, Michael R. Powell, Micheal L. Gernhardt, Karin C. Loftin, and Michael N. Rouen. The National Aeronautics and Space Administration supported part of this work through the NASA Cooperative Agreement NCC 9-58 with the National Space Biomedical Research Institute. The views expressed by the author do not represent official views of the National Aeronautics and Space Administration. Available from: NASA Center for AeroSpace Information National Technical Information Service 7121StandardDrive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 301-621-0390 703-605-6000 This report is also available in electronic form at http://techreports.larc.nasa.gov/cgi-bin/NTRS Contents Page Acronyms and Nomenclature ................................................................................................ vi Abstract ................................................................................................................................. vii Introduction ..........................................................................................................................
    [Show full text]
  • Hybrid Rocket Engine Design Optimization at Politecnico Di Torino: a Review
    aerospace Review Hybrid Rocket Engine Design Optimization at Politecnico di Torino: A Review Lorenzo Casalino † , Filippo Masseni † and Dario Pastrone *,† Politecnico di Torino, Dipartimento di Ingegneria Meccanica e Aerospaziale, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; [email protected] (L.C.); fi[email protected] (F.M.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Optimization of Hybrid Rocket Engines at Politecnico di Torino began in the 1990s. A comprehensive review of the related research activities carried out in the last three decades is here presented. After a brief introduction that retraces driving motivations and the most significant steps of the research path, the more relevant aspects of analysis, modeling and achieved results are illustrated. First, criteria for the propulsion system preliminary design choices (namely the propellant combination, the feed system and the grain design) are summarized and the engine modeling is presented. Then, the authors describe the in-house tools that have been developed and used for coupled trajectory and propulsion system design optimization. Both deterministic and robust-based approaches are presented. The applications that the authors analyzed over the years, starting from simpler hybrid powered sounding rocket to more complex multi-stage launchers, are then presented. Finally, authors’ conclusive remarks on the work done and their future perspective in the context of the optimization of hybrid rocket propulsion systems are reported. Citation: Casalino, L.; Masseni, F.; Pastrone, D. Hybrid Rocket Engine Keywords: Hybrid Rocket Engines; multidisciplinary optimization; robust optimization Design Optimization at Politecnico di Torino: A Review. Aerospace 2021, 8, 226.
    [Show full text]
  • Orbital Rendezvous Using an Augmented Lambert Guidance Scheme By
    Orbital Rendezvous Using an Augmented Lambert Guidance Scheme by Sara Jean MacLellan B.S. Aerospace Engineering Embry-Riddle Aeronautical University, 2003 SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2005 @ 2005 Sara Jean MacLellan. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author: Department of Aeronautics and Astronautics May 06, 2005 Certified by: V Andrew Staugler Senior Member of the Technical Staff The Charles Stark Draper Laboratory, Inc. Technical Advisor Accepted by: Richard H. Battin, Ph.D. Senior Lecturer of Aeronautics and Astronautics Thesis Supervisor Accepted bv Jaime Peraire, Ph.D. MASSACHUSS INS E Professor of Aeronautics and Astronautics OF TECHNOLOGY Chair, Committee on Graduate Students DEC 1E2005 LIBRARIES AERO I [This page intentionally left blank.] 40600 Orbital Rendezvous Using an Augmented Lambert Guidance Scheme by Sara Jean MacLellan Submitted to the Department of Aeronautics and Astronautics on May 06, 2005, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics Abstract The development of an Augmented Lambert Guidance Algorithm that matches the po- sition and velocity of an orbiting target spacecraft is presented in this thesis. The Aug- mented Lambert Guidance Algorithm manipulates the inputs given to a preexisting Lam- bert guidance algorithm to control the boost of a launch vehicle, or chaser, from the surface of the Earth to a transfer trajectory enroute to the aim point.
    [Show full text]
  • Record of Vessel in Foreign Trade Entrances
    Filing Last Port Call Sign Foreign Trade Official Voyage Vessel Type Dock Code Filing Port Name Manifest Number Filing Date Last Domestic Port Vessel Name Last Foreign Port Number IMO Number Country Code Number Number Vessel Flag Code Agent Name PAX Total Crew Operator Name Draft Tonnage Owner Name Dock Name InTrans 3801 DETROIT, MI 3801-2021-00374 8/13/2021 - ALGOMA NIAGARA PORT COLBORNE, ONT CFFO 9619270 CA 2 840674 30 CA 330 WORLD SHIPPING INC 0 19 ALGOMA CENTRAL CORP. 23'0" 8979 ALGOMA CENTRAL CORP. ST. MARYS CEMENT CO., DETROIT PLANT WHARF D 5301 HOUSTON, TX 5301-2021-05471 8/13/2021 - IONIC STORM PUERTO QUETZAL V7BQ9 9332963 GT 1 5190 71 MH 229 Southport Agencies 0 20 IONIC SHIPPING (MGT) INC 32'0" 18504 SCOTIA PROJECTS LTD CITY DOCK NOS. 41 - 46 L 3002 TACOMA, WA 3002-2021-00775 8/13/2021 - HYUNDAI BRAVE VANCOUVER, BC V7EY4. 9346304 CA 3 7477 95 MH 310 HYUNDAI AMERICA SHIPPING AGENCY 0 25 HMM OCEAN SERVICE CO. LTD 38'5" 51638 SHIP OWNER INVESTMENT CO NO 7 S.A. WASHINGTON UNITED TERMINALS, TACOMA WHARF (WUT) DFL 5301 HOUSTON, TX 5301-2021-05472 8/13/2021 - NAVIGATOR EUROPA DAESAN D5FZ3 9661807 KR 2 16397 2102 LR 150 Fillette Green Shipping 0 20 NAVIGATOR EUROPA LLC 36'5" 5163 NAVIGATO EUROPA LLC BAYPORT RO RO TERMINAL D 1816 PORT CANAVERAL, FL 1816-2021-00412 8/13/2021 - DISNEY DREAM CASTAWAY CAY C6YR6 9434254 BS 1 8001800 1081 BS 350 Disney Cruise Lines 1348 1230 MAGICAL CRUISE COMPANY LIMITED 28'2" 104345 MAGICAL CRUISE COMPANY LIMITED CT8 DISNEY CRUISE TERMINAL 8 N 3001 SEATTLE, WA 3001-2021-01615 8/13/2021 SKAGWAY, AK CELEBRITY MILLENNIUM - 9HJF9 9189419 - 4 9189419 56800 MT 350 INTERCRUISES SHORESIDE & PORT SERVICES 1142 744 CELEBRITY CRUISES INC.
    [Show full text]
  • On Four New Methods of Analytical Calculation of Rocket Trajectories
    aerospace Article On Four New Methods of Analytical Calculation of Rocket Trajectories Luís M. B. C. Campos *,† and Paulo J. S. Gil † CCTAE, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-21-841-72-67 † These authors contributed equally to this work. Received: 15 June 2018 ; Accepted: 27 July 2018; Published: 15 August 2018 Abstract: The calculation of rocket trajectories is most often performed using purely numerical methods that account for all relevant parameters and provide the required results. There is a complementary need for analytical methods that make more explicit the effect of the various rocket and atmospheric parameters of the trajectory and can be used as test cases with unlimited accuracy. The available analytical methods take into account (i) variable rocket mass due to propellant consumption. The present paper includes four new analytical methods taking into account besides (i) also (ii) nonlinear aerodynamic forces proportional to the square of the velocity and (iii) exponential dependence of the mass density with altitude for an isothermal atmospheric layer. The four new methods can be used in “hybrid analytical-numerical” approach in which: (i) the atmosphere is divided into isothermal rather than homogeneous layers for greater physical fidelity; and (ii) in each layer, an exact analytical solution of the equations of motion with greater mathematical accuracy than a numerical approximation is used. This should allow a more accurate calculation of rocket trajectories while discretizing the atmosphere into a smaller number of layers.
    [Show full text]
  • Planum: Eagle Crater to Purgatory Ripple S
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. Ill, E12S12, doi:10.1029/2006JE002771, 2006 Click Here tor Full Article Overview of the Opportunity Mars Exploration Rover Mission to Meridian! Planum: Eagle Crater to Purgatory Ripple S. W. Squyres,1 R. E. Arvidson,2 D. Bollen,1 J. F. Bell III,1 J. Bruckner/ N. A. Cabrol,4 W. M. Calvin,5 M. H. Carr,6 P. R. Christensen,7 B. C. Clark,8 L. Crumpler,9 D. J. Des Marais,10 C. d'Uston,11 T. Economou,12 J. Farmer,7 W. H. Farrand,13 W. Folkner,14 R. Gellert,15 T. D. Glotch,14 M. Golombek,14 S. Gorevan,16 J. A. Grant,17 R. Greeley,7 J. Grotzinger,18 K. E. Herkenhoff,19 S. Hviid,20 J. R. Johnson,19 G. Klingelhofer,21 A. H. Knoll,22 G. Landis,23 M. Lemmon,24 R. Li,25 M. B. Madsen,26 M. C. Malin,27 S. M. McLennan,28 H. Y. McSween,29 D. W. Ming,30 J. Moersch,29 R. V. Morris,30 T. Parker,14 J. W. Rice Jr.,7 L. Richter,31 R. Rieder,3 C. Schroder,21 M. Sims,10 M. Smith,32 P. Smith,33 L. A. Soderblom,19 R. Sullivan,1 N. J. Tosca,28 H. Wanke,3 T. Wdowiak,34 M. Wolff,35 and A. Yen14 Received 9 June 2006; revised 18 September 2006; accepted 10 October 2006; published 15 December 2006. [I] The Mars Exploration Rover Opportunity touched down at Meridian! Planum in January 2004 and since then has been conducting observations with the Athena science payload.
    [Show full text]
  • Rapid Trajectory Optimization for the ARES I Launch Vehicle
    Rapid Trajectory Optimization For the ARES I Launch Vehicle Greg A. Dukeman∗ NASA Marshall Space Flight Center, Huntsville, Alabama, 35812, USA Ashley D. Hilly Dynamic Concepts Incorporated, Huntsville, Alabama, 35812, USA A simplified ascent trajectory optimization procedure has been developed with appli- cation to NASA's proposed Ares I launch vehicle. In the interest of minimizing bending loads and ensuring safe separation of the first-stage solid rocket motor, the vehicle is con- strained to follow a gravity-turn trajectory. This reduces the design space to just two free parameters, the pitch rate after a short vertical rise phase to clear the launch pad, and initial launch azimuth. The pitch rate primarily controls the in-plane parameters (altitude, speed, flight path angle) of the trajectory whereas the launch azimuth primarily controls the out-of-plane portion (velocity heading.) Thus, the optimization can be mechanized as two one-dimensional searches that converge quickly and reliably. The method is compared with POST-optimized trajectories to verify its optimality. Nomenclature DOLILU Day-Of-Launch I-Load Update ISS International Space Station KSC Kennedy Space Center MAV ERIC Marshall Aerospace Vehicle Representation in C MECO Main Engine Cutoff OT IS Optimal Trajectories by Implicit Simulation P OST Program to Optimize Simulated Trajectories SRB Solid Rocket Booster i orbital inclination φ geocentric latitude launch azimuth, positive clockwise from local North I. Introduction An important ingredient of launch vehicle design and analysis and, ultimately, launch operations, is the capability to optimize ascent trajectories while satisfying constraints such as bending moments. These constraints are significantly influenced by wind conditions that exist in the region of maximum dynamic pressure.
    [Show full text]