2020 Conservation Outlook Assessment

Total Page:16

File Type:pdf, Size:1020Kb

2020 Conservation Outlook Assessment IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Laurisilva of Madeira - 2020 Conservation Outlook Assessment Laurisilva of Madeira 2020 Conservation Outlook Assessment SITE INFORMATION Country: Portugal Inscribed in: 1999 Criteria: (ix) (x) The Laurisilva of Madeira is an outstanding relict of a previously widespread laurel forest type. It is the largest surviving area of laurel forest and is believed to be 90% primary forest. It contains a unique suite of plants and animals, including many endemic species such as the Madeiran long-toed pigeon. © UNESCO SUMMARY 2020 Conservation Outlook Finalised on 02 Dec 2020 GOOD WITH SOME CONCERNS The site’s World Heritage values have so far been mostly preserved and remain stable and a number of recent studies show continued presence and stable trends in many endemic and rare species preserved thanks to the remaining good condition of some of the habitats within the site. However, the site is facing a number of threats with invasive species and forest fires being the most serious ones and the synergetic effects of fire and spread of invasive species is also of concern. A number of projects have been initiated recently to control invasive species and the capacity to respond to forest fires has been significantly increased recently through the introduction of a Plan for the prevention of and watch for forest fires and the reinforcement of human resources and capacities. These increased management responses to the key threats represent a positive step, however, they will need be sustained in the longer-term, as threats to the site are predicted to increase in the future, facilitated by climate change. IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Laurisilva of Madeira - 2020 Conservation Outlook Assessment FULL ASSESSMENT Description of values Values World Heritage values ▶ An outstanding relict of a previously widespread laurel Criterion:(ix) forest type The Laurisilva of Madeira is an outstanding relict of a previously widespread laurel forest type, which covered much of Southern Europe 15-40 million years ago. The forest of the property completely covers a series of very steep, V-shaped valleys leading from the plateau and east-west ridge in the centre of the island to the north coast. The forests of the property and their associated biological and ecological process are largely undisturbed, and play a predominant role in the island´s hydrological balance. The forest is mainly comprised of evergreen trees and shrubs, with flat, dark green shiny leaves. The property provides a wealth of ecological niches, complex food webs and examples of co-evolution of species. A range of climax vegetation communities such as the "Til Laurisilva", the "Barbusano Laurisilva" and the "Vinhático Laurisilva", have been identified within the property. Ancient trees in the valley bottoms, waterfalls and cliffs add to the experience of the values of the property (World Heritage Committee, 2010). As well as many microhabitats found within the forest, namely: epiphytic communities; communities of shady earthy walls; shady wet rock walls. Also of importance are caulirosetted communities associated with landslides within the forest and rocky ground of small streams. Streams may hold both madeiran elder (Sambucus lanceolata) community and ebony riverine forests of Persea indica or a willow community of Salix canariensis (Capelo et al., 2005). ▶ Rare and endemic plants Criterion:(x) At least 76 vascular plant species endemic to Madeira occur in the site. Endemic trees belonging to the Lauraceae family predominate such as Canary Laurel Apollonias barbujana ssp. barbujana, Laurel Tree Laurus novocanariensis, Madeira stink Laurel (Til) Ocotea foetens, Madeira Mahogany Persea indica, Clethra arborea, Ilex perado subsp. Perado or Heberdenia excelsa. Of the endemic shurbs, particularly interesting are the Pride of Madeira Echium candicans, Honey Spurge Euphorbia mellifera, Madeira Foxglove Isoplexis spectrum, Musschia wollastonii, Sonchus fruticosus, and Melanoselinum decipiens as well as Erica platycodon subsp. maderincola. Bryophythes and lichens are abundant and some species are indicative of high environmental quality and the absence of pollution. Of its large bryophyte flora, 13 liverwort species and 20 moss species are listed as rare or threatened on a European scale (World Heritage Committee, 2010). ▶ Rare and endemic vertebrates Criterion:(x) The vertebrates include a limit number of species and a high rate of endemics, including two rare taxa of bats, Madeira Pipistrelle Pipistrellus maderensis and Leisler’s Bat Nyctalus leisleri verrucosus and several birds, such as Madeira Laurel Pigeon Columba trocaz, Madeiran Firecrest Regulus madeirensis and the Madeiran Chaffinch Fringilla coelebs madeirensis. There is also an endemic species of lizard Madeira Wall Lizard Lacerta dugesii (World Heritage Committee, 2010). ▶ Rare and endemic invertebrates Criterion:(x) The invertebrates are apparently more discreet although much more numerous. There are more than 500 endemic species, ranging from molluscs, to arachnids and insects (World Heritage Committee, 2010; Secretaria Regional do Ambiente e Recursos Naturais, 2004). The wolf spider Lycosa blackwalli is endemic to the forest (World Heritage Committee, 2010). About 20% of the nearly 3000 known species IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Laurisilva of Madeira - 2020 Conservation Outlook Assessment of insects are endemic (Regional Forestry Department, 2009). Assessment information Threats Current Threats High Threat The difficult access to the core areas of Laurisilva of Madeira and long history of protection have until recently resulted in generally low levels of impact in these core areas. However, some threats exist, with invasive species and risks of forest fires being the most serious ones. Laurisilva of Madeira is a very humid forest but the presence of invasive plants both at the lowest limit of this natural forest and already inside it in many reported cases allied with increasing temperatures, presents risk for the occurrence and increased area of forest fires, the uncertain behavior of forest communities related to decrease water availability. The synergetic effects of fire and spread of invasive species is also of concern. On the other hand, other threats remain at low level or very localized. These include construction or maintenance of roads and opening of new trails for extreme sports (e.g. mountain biking). Concerns have previously been expressed regarding impacts of tourism due to growing demand, however, the impacts of the 2020 COVID- 19 pandemic on visitation will now need to be assessed. ▶ Dams/ Water Management or Use Low Threat (Water channels (levadas) and trails maintenance) Inside site, throughout(>50%) Outside site Maintenance works on water channels (called "levadas") might represent a threat through the potential introduction of non-native species (for example, for ornamental purposes), as well as direct disturbance, even if the maintenance works are monitored by the management entity IFCN (IUCN Consultation, 2020). In 2015, in the framework of the Life Fura-bardos project “Conservation of the Madeira sparrowhawk and the Laurisilva habitat on the island of Madeira”, all invasive plants along the Levada do Norte, in the area of Caramujo, were replaced with native species with ornamental value (IUCN Consultation, 2020a). However, such use of native species with ornamental value should be carefully managed as it implies the widespread dissemination of plants with reduced genetic variability outside their original distribution areas with a high risk of hybridization leading to a possible outbreeding depression (IUCN Consultation, 2020b). ▶ Earthquakes/ Tsunamis, Avalanches/ Landslides Low Threat (Landslides) Inside site, scattered(5-15%) Although some landslides are accidental many can be linked to human activities such as levadas, roads, trails etc. Recent studies have also proven the high risk of landslides in areas covered by invasive species such as Acacia mearnsii and Cytisus scoparius, and therefore a synergic link between distinct threats (Figueiredo, Pupo-Correia & Sequeira 2013, 2016). However, overall this threat remains low and measures are being taken to restore vegetation cover in degraded areas to reduce the reduce surface runoff and therefore reduce the risks of landslides and torrents (IUCN Consultation, 2020a). ▶ Invasive Non-Native/ Alien Species Very High Threat (Expansion of Invasive Alien Species) Inside site, throughout(>50%) Outside site The presence of invasive plants at the lowest limit of the natural forest, in the transition zones and on former agricultural land, endangers its regeneration and expansion, leading to areas of deterioration and of replacement of the indigenous flora, constituting a serious threat to the balance and consequent permanence of this habitat. Possible introduction of invasive species from agriculture and forestry activities has been previously noted (World Heritage Committee, 2010). The recent spread of some invasive species such as Leptospermum scoparius, Cyathea cooperi or Psidium littorale (among many others) poses a new challenge to management since these plants are able to colonize close to climax communities (IUCN Consultation, 2017). Several projects have been initiated recently to control invasive species, many co-financed by the European Union. While most of them are implemented in the areas IUCN World Heritage
Recommended publications
  • The Status and Distribution of Mediterranean Mammals
    THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod AN E AN R R E IT MED The IUCN Red List of Threatened Species™ – Regional Assessment THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod The IUCN Red List of Threatened Species™ – Regional Assessment The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of IUCN or other participating organizations, concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland and Cambridge, UK Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Red List logo: © 2008 Citation: Temple, H.J. and Cuttelod, A. (Compilers). 2009. The Status and Distribution of Mediterranean Mammals. Gland, Switzerland and Cambridge, UK : IUCN. vii+32pp. ISBN: 978-2-8317-1163-8 Cover design: Cambridge Publishers Cover photo: Iberian lynx Lynx pardinus © Antonio Rivas/P. Ex-situ Lince Ibérico All photographs used in this publication remain the property of the original copyright holder (see individual captions for details).
    [Show full text]
  • Look What the Cat Dragged In: Felis Silvestris Catus As Predators of Insular Bats and Instance of Predation on the Endangered Pipistrellus Maderensis
    Ricardo Rocha Barbastella 8 (1) Open Access ISSN: 1576-9720 SECEMU www.secemu.org Look what the cat dragged in: Felis silvestris catus as predators of insular bats and instance of predation on the endangered Pipistrellus maderensis Ricardo Rocha1,2 ¹ Centre for Ecology, Evolution and Environmental Changes Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal). 2 Metapopulation Research Centre University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 Helsinki (Finland). *Corresponding author e-mail: [email protected] DOI: http://dx.doi.org/10.14709/BarbJ.8.1.2015.04 © 2015 Published by SECEMU. Spanish title: Felis silvestris catus como predador de murciélagos insulares y cita de depredación sobre el amenazado Pipistrellus madei- rensis. Abstract: This note reports the predation of a threatened Madeira pipistrelle bat by a domestic house cat. This represents the first confirmed record of cat predation upon a Macaronesian bat and adds to an increasing body of evidence suggesting that free-ranging cats pose a strong negative impact to native insular vertebrate populations. Keywords: bats, domestic cats, non-native species, Madeira pipistrelle, Macaronesia. received: January 2nd. 2015 accepted: February 7th 2015 The impact of non-native species is one of the most influential forces underpinning the global biodiversity crisis (Nogales et al. 2013, Dirzo et al. 2014). Since the domestication of the African wildcat Felis silvestris lybica some 9500 years ago, the domestic counterpart F. s. catus (Fig. 1) has become one of the world’s most abundant and widespread pets and has established feral populations in both continental and island ecosystems (Driscoll et al.
    [Show full text]
  • Impacts of Laurel Wilt Disease on Native Persea of the Southeastern United States Timothy M
    Clemson University TigerPrints All Dissertations Dissertations 5-2016 Impacts of Laurel Wilt Disease on Native Persea of the Southeastern United States Timothy M. Shearman Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Shearman, Timothy M., "Impacts of Laurel Wilt Disease on Native Persea of the Southeastern United States" (2016). All Dissertations. 1656. https://tigerprints.clemson.edu/all_dissertations/1656 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. IMPACTS OF LAUREL WILT DISEASE ON NATIVE PERSEA OF THE SOUTHEASTERN UNITED STATES A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Forest Resources by Timothy M. Shearman May 2016 Accepted by: Dr. G. Geoff Wang, Committee Chair Dr. Saara J. DeWalt Dr. Donald L. Hagan Dr. Julia L. Kerrigan Dr. William C. Bridges ABSTRACT Laurel Wilt Disease (LWD) has caused severe mortality in native Persea species of the southeastern United States since it was first detected in 2003. This study was designed to document the range-wide population impacts to LWD, as well as the patterns of mortality and regeneration in Persea ecosystems. I used Forest Inventory and Analysis (FIA) data from the U.S. Forest Service to estimate Persea borbonia (red bay) populations from 2003 to 2011 to see if any decline could be observed since the introduction of LWD causal agents.
    [Show full text]
  • EU Action Plan for the Conservation of All Bat Species in the European Union
    Action Plan for the Conservation of All Bat Species in the European Union 2018 – 2024 October 2018 Action Plan for the Conservation of All Bat Species in the European Union 2018 - 2024 EDITORS: BAROVA Sylvia (European Commission) & STREIT Andreas (UNEP/EUROBATS) COMPILERS: MARCHAIS Guillaume & THAURONT Marc (Ecosphère, France/The N2K Group) CONTRIBUTORS (in alphabetical order): BOYAN Petrov * (Bat Research & Conservation Centre, Bulgaria) DEKKER Jasja (Animal ecologist, Netherlands) ECOSPHERE: JUNG Lise, LOUTFI Emilie, NUNINGER Lise & ROUÉ Sébastien GAZARYAN Suren (EUROBATS) HAMIDOVIĆ Daniela (State Institute for Nature Protection, Croatia) JUSTE Javier (Spanish association for the study and conservation of bats, Spain) KADLEČÍK Ján (Štátna ochrana prírody Slovenskej republiky, Slovakia) KYHERÖINEN Eeva-Maria (Finnish Museum of Natural History, Finland) HANMER Julia (Bat Conservation Trust, United Kingdom) LEIVITS Meelis (Environmental Agency of the Ministry of Environment, Estonia) MARNELl Ferdia (National Parks & Wildlife Service, Ireland) PETERMANN Ruth (Federal Agency for Nature Conservation, Germany) PETERSONS Gunărs (Latvia University of Agriculture, Latvia) PRESETNIK Primož (Centre for Cartography of Fauna and Flora, Slovenia) RAINHO Ana (Institute for the Nature and Forest Conservation, Portugal) REITER Guido (Foundation for the protection of our bats in Switzerland) RODRIGUES Luisa (Institute for the Nature and Forest Conservation, Portugal) RUSSO Danilo (University of Napoli Frederico II, Italy) SCHEMBRI
    [Show full text]
  • The Laurel Or Bay Forests of the Canary Islands
    California Avocado Society 1989 Yearbook 73:145-147 The Laurel or Bay Forests of the Canary Islands C.A. Schroeder Department of Biology, University of California, Los Angeles The Canary Islands, located about 800 miles southwest of the Strait of Gibraltar, are operated under the government of Spain. There are five islands which extend from 15 °W to 18 °W longitude and between 29° and 28° North latitude. The climate is Mediterranean. The two eastern islands, Fuerteventura and Lanzarote, are affected by the Sahara Desert of the mainland; hence they are relatively barren and very arid. The northeast trade winds bring moisture from the sea to the western islands of Hierro, Gomera, La Palma, Tenerife, and Gran Canaria. The southern ends of these islands are in rain shadows, hence are dry, while the northern parts support a more luxuriant vegetation. The Canary Islands were prominent in the explorations of Christopher Columbus, who stopped at Gomera to outfit and supply his fleet prior to sailing "off the map" to the New World in 1492. Return voyages by Columbus and other early explorers were via the Canary Islands, hence many plants from the New World were first established at these points in the Old World. It is suspected that possibly some of the oldest potato germplasm still exists in these islands. Man exploited the islands by growing sugar cane, and later Mesembryanthemum crystallinum for the extraction of soda, cochineal cactus, tomatoes, potatoes, and finally bananas. The banana industry is slowly giving way to floral crops such as strelitzia, carnations, chrysanthemums, and several new exotic fruits such as avocado, mango, papaya, and carambola.
    [Show full text]
  • 1 Recovery Plan for Laurel Wilt on Redbay and Other
    Recovery Plan for Laurel Wilt on Redbay and Other Forest Species Caused by Raffaelea lauricola and disseminated by Xyleborus glabratus Updated January 2015 (Replaces December 2009 Version) Table of Contents Executive Summary……………………………….………………………………………………..…………………………………………….. 2 Contributors and Reviewers…………………………………………………………………………..………………………………………. 4 I. Introduction………………………………………………………………………………………………………………………………………... 5 II. Disease Cycle and Symptom Development….……………………………………………………………………………….……. 9 III. Spread……………………………………………………………………………………………………………………………….……….…… 23 IV. Monitoring and Detection………………………………………………………………………………………………………………. 25 V. Response…………………………………………………………………………………………………………………………………………. 29 VI. Permits and Regulatory Issues…………………………………………………..……………………………………………………. 32 VII. Cultural, Economic and Ecological Impacts……………..…………………………………………………………………….. 33 VIII. Mitigation and Disease Management…………………………………………………………………………………………... 38 IX. Infrastructure and Experts……………………………………………………………………………………………………………... 45 X. Research, Extension, and Education Needs….……………………………………………………………………………….... 48 XI. References……………………………………………………………………………………………………………………………………... 50 XII. Web Resources…………………………………………………...……………………………………………………………………..…. 58 This recovery plan is one of several disease-specific documents produced as part of the National Plant Disease Recovery System (NPDRS) called for in Homeland Security Presidential Directive Number 9 (HSPD-9). The purpose of the NPDRS is to insure that the tools, infrastructure, communication
    [Show full text]
  • European Red List of Birds
    European Red List of Birds Compiled by BirdLife International Published by the European Commission. opinion whatsoever on the part of the European Commission or BirdLife International concerning the legal status of any country, Citation: Publications of the European Communities. Design and layout by: Imre Sebestyén jr. / UNITgraphics.com Printed by: Pannónia Nyomda Picture credits on cover page: Fratercula arctica to continue into the future. © Ondrej Pelánek All photographs used in this publication remain the property of the original copyright holder (see individual captions for details). Photographs should not be reproduced or used in other contexts without written permission from the copyright holder. Available from: to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed Published by the European Commission. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu). Cataloguing data can be found at the end of this publication. ISBN: 978-92-79-47450-7 DOI: 10.2779/975810 © European Union, 2015 Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Printed in Hungary. European Red List of Birds Consortium iii Table of contents Acknowledgements ...................................................................................................................................................1 Executive summary ...................................................................................................................................................5 1.
    [Show full text]
  • Phylogeny and Historical Biogeography of Lauraceae
    PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group
    [Show full text]
  • 3. Canary Islands and the Laurel Forest 13
    The Laurel Forest An Example for Biodiversity Hotspots threatened by Human Impact and Global Change Dissertation 2014 Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto–Carola–University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Dipl. biol. Anja Betzin born in Kassel, Hessen, Germany Oral examination date: 2 The Laurel Forest An Example for Biodiversity Hotspots threatened by Human Impact and Global Change Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar 3 Eidesstattliche Erklärung Hiermit erkläre ich, dass ich die vorgelegte Dissertation selbst verfasst und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Außerdem erkläre ich hiermit, dass ich an keiner anderen Stelle ein Prüfungsverfahren beantragt bzw. die Dissertation in dieser oder anderer Form bereits anderweitig als Prü- fungsarbeit verwendet oder einer anderen Fakultät als Dissertation vorgelegt habe. Heidelberg, den 23.01.2014 .............................................. Anja Betzin 4 Contents I. Summary 9 1. Abstract 10 2. Zusammenfassung 11 II. Introduction 12 3. Canary Islands and the Laurel Forest 13 4. Aims of this Study 20 5. Model Species: Laurus novocanariensis and Ixanthus viscosus 21 5.1. Laurus ...................................... 21 5.2. Ixanthus ..................................... 23 III. Material and Methods 24 6. Sampling 25 7. Laboratory Procedure 27 7.1. DNA Extraction . 27 7.2. AFLP Procedure . 27 7.3. Scoring . 29 7.4. High Resolution Melting . 30 8. Data Analysis 32 8.1. AFLP and HRM Data Analysis . 32 8.2. Hotspots — Diversity in Geographic Space . 34 8.3. Ecology — Ecological and Bioclimatic Analysis .
    [Show full text]
  • What Trees to Plant?
    What Trees to Plant? Selecting Tree Species for Climate-resilient Forest Restoration and Management in the Chitwan-Annapurna Landscape, Nepal Hariyo Ban Program © WWF 2016 All rights reserved Any reproduction of this publication in full or in part must mention the title and credit WWF. Published by WWF Nepal PO Box: 7660 Baluwatar, Kathmandu, Nepal T: +977 1 4434820, F: +977 1 4438458 [email protected], www.wwfnepal.org/hariyobanprogram Authors Summary and recommendations: Eric Wikramanayake, Deepa Shree Rawal and Judy Oglethorpe Modeling study: Eric Wikramanayake, Gokarna Thapa and Keshav Khanal Germination and establishment study: Deepa Shree Rawal, Insight Engineering Consult P. Ltd. Editing Judy Oglethorpe Cover photo © WWF Nepal, Hariyo Ban Program/Eric Wikramanayake Citation Please cite this report as: WWF Nepal. 2016. What Trees to Plant? Selecting Tree Species for Climate-resilient Forest Restoration and Management in the Chitwan-Annapurna Landscape, Nepal. WWF Nepal, Hariyo Ban Program, Kathmandu, Nepal. Disclaimer This report is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of WWF and do not necessarily reflect the views of USAID or the United States Government. Contents Acronyms and Abbreviations ........................................................................................................................ ii Preface ........................................................................................................................................................
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Monitoring and Indicators of Forest Biodiversity in Europe – from Ideas to Operationality
    Monitoring and Indicators of Forest Biodiversity in Europe – From Ideas to Operationality Marco Marchetti (ed.) EFI Proceedings No. 51, 2004 European Forest Institute IUFRO Unit 8.07.01 European Environment Agency IUFRO Unit 4.02.05 IUFRO Unit 4.02.06 Joint Research Centre Ministero della Politiche Accademia Italiana di University of Florence (JRC) Agricole e Forestali – Scienze Forestali Corpo Forestale dello Stato EFI Proceedings No. 51, 2004 Monitoring and Indicators of Forest Biodiversity in Europe – From Ideas to Operationality Marco Marchetti (ed.) Publisher: European Forest Institute Series Editors: Risto Päivinen, Editor-in-Chief Minna Korhonen, Technical Editor Brita Pajari, Conference Manager Editorial Office: European Forest Institute Phone: +358 13 252 020 Torikatu 34 Fax. +358 13 124 393 FIN-80100 Joensuu, Finland Email: [email protected] WWW: http://www.efi.fi/ Cover illustration: Vallombrosa, Augustus J C Hare, 1900 Layout: Kuvaste Oy Printing: Gummerus Printing Saarijärvi, Finland 2005 Disclaimer: The papers in this book comprise the proceedings of the event mentioned on the back cover. They reflect the authors' opinions and do not necessarily correspond to those of the European Forest Institute. © European Forest Institute 2005 ISSN 1237-8801 (printed) ISBN 952-5453-04-9 (printed) ISSN 14587-0610 (online) ISBN 952-5453-05-7 (online) Contents Pinborg, U. Preface – Ideas on Emerging User Needs to Assess Forest Biodiversity ......... 7 Marchetti, M. Introduction ...................................................................................................... 9 Session 1: Emerging User Needs and Pressures on Forest Biodiversity De Heer et al. Biodiversity Trends and Threats in Europe – Can We Apply a Generic Biodiversity Indicator to Forests? ................................................................... 15 Linser, S. The MCPFE’s Work on Biodiversity .............................................................
    [Show full text]