Temperature Influences the Activity Patterns of Armadillo Species in a Large Neotropical Wetland

Total Page:16

File Type:pdf, Size:1020Kb

Temperature Influences the Activity Patterns of Armadillo Species in a Large Neotropical Wetland Mamm Res DOI 10.1007/s13364-015-0232-2 ORIGINAL PAPER Temperature influences the activity patterns of armadillo species in a large neotropical wetland Thiago Bernardes Maccarini1 & Nina Attias1 & Ísis Meri Medri2 & Jader Marinho-Filho3 & Guilherme Mourão4 Received: 30 October 2014 /Accepted: 14 June 2015 # Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2015 Abstract In this study, we characterized the activity patterns short period in the middle of the morning and/or afternoon. and estimated the activity overlap between two armadillo spe- The proportion of activity overlap was 0.28 between the spe- cies (Dasypus novemcinctus and Euphractus sexcinctus)in cies, occurring primarily at the beginning of the night. At the Pantanal wetlands of Brazil. We report the effect of daily lower temperatures, yellow armadillos tended to leave their mean ambient temperature on activity onset and duration of burrows earlier and were active for longer periods. This is these armadillos. We captured seven yellow armadillos and probably an adaptation to their physiological constraints and three nine-banded armadillos and fitted them with very high limited thermoregulatory capabilities. Xenarthrans could be frequency radios and temperature loggers. By monitoring the used as models to obtain valuable information about how temperature of the environment (air temperatures and burrow physiology affects mammal behavior. temperatures), we inferred when the armadillo was active (above ground) or inactive (inside the burrow). Yellow arma- Keywords Thermoregulation . Euphractus sexcinctus . dillos were active mainly during the daytime and in the begin- Dasypus novemcinctus . Burrow . Niche partitioning . ning of the night, while nine-banded armadillos were active Physiological constraints mainly during the night. However, nine-banded armadillos presented a bimodal activity pattern, becoming active for a Introduction Communicated by: Karol Zub The circadian activity period adopted by an animal is one of Electronic supplementary material The online version of this article the most effective and generalized ways to minimize the in- (doi:10.1007/s13364-015-0232-2) contains supplementary material, fluence of unfavorable biotic and abiotic factors (Layne and which is available to authorized users. Glover 1985). Circadian activity cycles allow an animal to anticipate environmental changes and choose the appropriate * Nina Attias [email protected] moment for a specific response or activity (Aronson et al. 1993). Most armadillos (Mammalia: Cingulata) have a strategy for 1 Ecology and Conservation Graduate Program, Centro de Ciências avoiding unfavorable factors: they build or use burrows. Biológicas e da Saúde - Cidade Universitária, Federal University of Mato Grosso do Sul, s/n - Caixa Postal 549, Campo Grande, MS, Burrows can be used not only to escape from predators or Brazil for sleeping (McDonough and Loughry 2003; Desbiez and 2 Ecology Graduate Program, Centro de Ciências Biológicas e da Kluyber 2013) but also for thermoregulation (González et al. Saúde - Cidade Universitária, University of Brasilia, s/n - Caixa 2001). Burrows work as temperature buffers (González et al. Postal 549, Campo Grande, MS, Brazil 2001); armadillos can exit them once air temperatures are 3 Zoology Department, University of Brasilia, Campus Universitário favorable and return to them to maximize their energy Darcy Ribeiro, Brasília, DF, Brazil budgets. 4 Embrapa Pantanal, Brazilian Agricultural Research Corporation, Rua Mammalian circadian rhythms are responsive to environ- 21 de Setembro 1880, Corumbá, MS, Brazil mental factors, especially light cycles (Aronson et al. 1993). Mamm Res However, armadillos are imperfect homeotherms and have McDonough 2013). Hence, the available ecological informa- limited thermoregulatory capabilities, low body temperatures, tion might not reflect patterns that can change from place to and low basal rates of metabolism (McNab 1985). These char- place, such as behavior. acteristics are probably associated with their burrowing activ- Therefore, the purpose of this study was to characterize the ity and feeding habits (McNab 1979, 1980). As a result of this activity patterns of these two species of armadillo in the unique characteristic among mammals, air temperature Brazilian Pantanal, estimate their activity overlap, and deter- strongly affects the activity patterns of armadillos and other mine the influence of air temperature on their activity patterns. xenarthrans (Layne and Glover 1985; Chiarello 1998;Mourão and Medri 2007). The influence of temperature on the activity patterns of these animals can be determined from their activity Methods duration and timing (activity onset). Temporal niche partitioning is a mechanism that related Study area species adopt to avoid competition: different circadian activity patterns might result in differentiation of the use of resources The Pantanal is a large wetland region covering approximately or levels of predation susceptibility. It can facilitate coexis- 210,000 km2 of seasonal floodplain of Rio Paraguay and in- tence through avoidance of direct confrontation (interference cludes areas of Brazil, Bolivia, and Paraguay (Mittermeier competition) or through the reduction of overlap in resource et al. 2003). The Brazilian portion of Pantanal is located in demand (resource competition; Kronfeld-Schor and Dayan the western part of the country, near the geographic center of 2003). Partitioning of the temporal dimension of the niche South America, at about 100 m in elevation. We conducted between two species implies a smaller niche overlap than ex- our study at the Nhumirim Ranch (18°59′ S, 56°39′ W), an pected by chance. In this phenomenon, the less competitive experimental station of approximately 43 km2 located in the species, or subordinates, usually modify their activity to sub- Nhecolândia subregion in the state of Mato Grosso do Sul, optimal periods of the circadian cycle, reducing competition Brazil. The Nhecolândia subregion is characterized by a land- with the dominant species (Gutman and Dayan 2005). scape mosaic of savannas, scrub savannas, forests, and per- However, when competition is not the most important factor, manent and temporary ponds (Alho et al. 1987). the activity periods of similar species can tolerate an overlap The climate of the region is tropical semi-humid, and the higher than that expected by chance. This pattern might indi- average annual temperature is 25.5 °C (Calheiros and Fonseca cate that the activity periods of both species are influenced by 1996). Summers are hot and rainy, averaging 1100 mm rain- similar responses to external factors (e.g., external temperature fall and maximum air temperatures exceeding 40 °C. Winters or potential predators). Another hypothesis is that phylogenet- are warm and dry, averaging less than 300 mm rainfall and air ic constraints of the activity period make closely related spe- temperatures of 20 °C, though occasional cold fronts from the cies present similar activity patterns, limiting the opportunities south can cause air temperatures as low as 0 °C (Soriano et al. for temporal niche partitioning among closely related compet- 1997). itors (Roll et al. 2006). Even though there is no evidence to confirm this fact, this could be the case for armadillos given Data collection that their physiology makes them very sensitive to tempera- ture variations. During September 2007 and February–May 2010, we The yellow armadillo, Euphractus sexcinctus (Linnaeus searched for armadillos by foot or in an all-terrain vehicle, 1758), and the nine-banded armadillo, Dasypus novemcinctus catching eight armadillos by hand and two in live traps from (Linnaeus 1758), are sympatric burrowing armadillos that simultaneous studies focused on medium-sized carnivores in have overlapping dietary habits (Anacleto 2007) and may oc- the area. Of these, seven were yellow armadillos cupy the same habitat type in the Brazilian Pantanal. The (E. sexcinctus) and three were nine-banded armadillos former is a diurnal and conspicuous species, widely distribut- (D. novemcinctus). We placed them in a safe and ventilated ed throughout Brazil (except Amazonia) and South America, box and then transported them to the ranch laboratory. They and is very common in the Pantanal (Eisenberg and Redford were anesthetized there using an intramuscular dose of 1999). Despite these characteristics, its ecology is poorly 4 mg/kg Zoletil® (1:1 tiletamine hydrochloride and known, and studies on its activity patterns are rare (Bonato zolazepam hydrochloride; Virbac S.A., Cedex, France). et al. 2008). The latter is a predominantly nocturnal species They were weighed, measured, and marked with numbered (Emmons and Feer 1997; Eisenberg and Redford 1999)thatis ear tags (model 1005-4; National Band & Tag Co., Newport, found from Argentina to the USA, which is considered as the KY, USA). largest geographic range among armadillos (Wetzel 1985). With the animals under anesthesia, we attached a package Even though this is the most studied species, much of the (≈35 g) containing a StowAway Tidbit temperature data log- research has been done in the USA (Loughry and ger (Onset Computer Corporation, Bourne, MA, USA; Mamm Res accuracy, ± 0.4 °C at 20 °C) combined with a very high fre- whether our method was reliable at inferring when the arma- quency radio transmitter (frequency range 164–166 MHz; dillos were inside or outside the burrows, we also performed model R2030; Advanced Telemetry Systems,
Recommended publications
  • (Dasypus) in North America Based on Ancient Mitochondrial DNA
    bs_bs_banner A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA BETH SHAPIRO, RUSSELL W. GRAHAM AND BRANDON LETTS Shapiro, B. Graham, R. W. & Letts, B.: A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas. 10.1111/bor.12094. ISSN 0300-9483. The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine-banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene-age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed. Beth Shapiro ([email protected]), Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; Russell W.
    [Show full text]
  • The Conservation Game
    From Penguins to Pandas - the conservation game Armadillo Fact Files © RZSS 2014 Armadillos There are 21 species of armadillo. They are divided into 8 groups: dwarf fairy giant hairy long nosed naked tail three banded yellow banded All armadillos have an outer covering of strong bony plates and horny skin. Most of the species can bring their legs in under this covering to protect themselves but it is only the three banded armadillos that can roll up into a tight ball. Most are active at night (nocturnal) and have poor eyesight but very good hearing and sense of smell. They all have large claws on their front feet to dig for insects and for burrowing. There is little known about some species of armadillo. At the time of writing (May 2014), the Royal Zoological Society of Scotland (RZSS) are studying four species - giant, southern naked tail, nine banded and yellow banded. Edinburgh Zoo, owned by RZSS holds 2 species, the larger hairy and the southern three banded. These animals are not on show but are sometimes seen in our animal presentations, such as ‘Animal Antics’. Armadillo in different languages Portuguese: tatu Spanish: armadillo (it means ‘little armoured one’ in Spanish) French: tatou Mandarin Chinese: 犰狳 (qiu yu) 2 Dwarf armadillo 1 species dwarf or pichi (Zaedyus pichiy) Distribution Argentina and Chile Diet insects, spiders and plants Breeding gestation 60 days litter size 1 - 2 Size Length: 26 - 33cm Tail length 10 - 14cm Weight 1 - 1.5kg Interesting facts comes out in daytime unlike most other species, it hibernates over
    [Show full text]
  • Chaetophractus Vellerosus (Cingulata: Dasypodidae)
    MAMMALIAN SPECIES 48(937):73–82 Chaetophractus vellerosus (Cingulata: Dasypodidae) ALFREDO A. CARLINI, ESTEBAN SOIBELZON, AND DAMIÁN GLAZ www.mammalogy.org División Paleontología de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CONICET, Paseo del Bosque s/n, 1900 La Plata, Argentina; [email protected] (AAC); [email protected]. ar (ES) Downloaded from https://academic.oup.com/mspecies/article-abstract/48/937/73/2613754 by guest on 04 September 2019 Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 122 y 60, 1900 La Plata, Argentina; dglaz@ciudad. com.ar (DG) Abstract: Chaetophractus vellerosus (Gray, 1865) is commonly called Piche llorón or screaming hairy armadillo. Chaetophractus has 3 living species: C. nationi, C. vellerosus, and C. villosus of Neotropical distribution in the Bolivian, Paraguayan, and Argentinean Chaco and the southeastern portion of Buenos Aires Province. C. vellerosus prefers xeric areas, in high and low latitudes, with sandy soils, but is able to exist in areas that receive more than twice the annual rainfall found in the main part of its distribution. It is com- mon in rangeland pasture and agricultural areas. C. vellerosus is currently listed as “Least Concern” by the International Union for Conservation of Nature and Natural Resources and is hunted for its meat and persecuted as an agricultural pest; however, the supposed damage to agricultural-farming lands could be less than the beneficial effects of its predation on certain species of damaging insects. Key words: Argentina, armadillo, Bolivia, dasypodid, Paraguay, South America, Xenarthra Synonymy completed 1 January 2014 DOI: 10.1093/mspecies/sew008 Version of Record, first published online September 19, 2016, with fixed content and layout in compliance with Art.
    [Show full text]
  • Pulmonary Adiaspiromycosis in Armadillos Killed by Motor Vehicle Collisions in Brazil Pedro Enrique Navas‑Suárez1*, Carlos Sacristán1, Josue Díaz‑Delgado1,2, Débora R
    www.nature.com/scientificreports OPEN Pulmonary adiaspiromycosis in armadillos killed by motor vehicle collisions in Brazil Pedro Enrique Navas‑Suárez1*, Carlos Sacristán1, Josue Díaz‑Delgado1,2, Débora R. Yogui3,4, Mario Henrique Alves3,5, Danny Fuentes‑Castillo1, Catalina Ospina‑Pinto1, Roberta Ramblas Zamana1, Arnaud Leonard Jean Desbiez3,6 & Jose Luiz Catão‑Dias1 Knowledge of infectious diseases in wildlife provides important information for preventing potential outbreaks of zoonotic diseases. Adiaspiromycosis is a neglected human disease caused by dimorphic Onygenales fungi. The disease is produced by the infammatory response against growing adiaspores, leading to granulomatous pneumonia. In humans, adiaspiromycosis is relevant in immunosuppressed patients. In animals, it is associated with pneumonia in fossorial species. Given the potential role of armadillos in the epidemiology of adiaspiromycosis, in this study, we sought to investigate the occurrence and pathological features of adiaspiromycosis in roadkilled armadillos. In total, 54 armadillo carcasses were suitable for postmortem pathologic examinations between February 2017 and 2020. Adiaspores, associated with granulomatous lesions, were observed in ten six‑banded (Euphractus sexcinctus) and two southern naked‑tailed armadillos (Cabassous unicinctus). A previously uncharacterized Onygenales species was molecularly identifed in two E. sexcinctus. In summary, herein we report 12 cases of pulmonary adiaspiromycosis (PA) in two species of free‑ living armadillos in Brazil. Both, the morphology of the fungus, as well as the histopathological fndings (granulomatous infammatory response to adiaspores) are consistent with PA; however, as the molecular identifcation difers from the reported species, the potential impact of this fungus for human PA is unknown, and we cannot rule out its impact on public health.
    [Show full text]
  • Finite Element Analysis of the Cingulata Jaw: an Ecomorphological Approach to Armadillo’S Diets
    RESEARCH ARTICLE Finite Element Analysis of the Cingulata Jaw: An Ecomorphological Approach to Armadillo’s Diets Sílvia Serrano-Fochs1, Soledad De Esteban-Trivigno1,4*, Jordi Marcé-Nogué1,2, Josep Fortuny1,2, Richard A. Fariña3 1 Institut Català de Paleontologia M. Crusafont, Cerdanyola del Valles, Catalonia, Spain, 2 Universitat Politècnica de Catalunya, Terrassa, Catalonia, Spain, 3 Paleontología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay, 4 Transmitting Science, Piera, Spain * [email protected] Abstract Finite element analyses (FEA) were applied to assess the lower jaw biomechanics of cingu- late xenarthrans: 14 species of armadillos as well as one Pleistocene pampathere (11 ex- tant taxa and the extinct forms Vassallia, Eutatus and Macroeuphractus). The principal goal of this work is to comparatively assess the biomechanical capabilities of the mandible OPEN ACCESS based on FEA and to relate the obtained stress patterns with diet preferences and variabili- Citation: Serrano-Fochs S, De Esteban-Trivigno S, ty, in extant and extinct species through an ecomorphology approach. The results of FEA Marcé-Nogué J, Fortuny J, Fariña RA (2015) Finite showed that omnivorous species have stronger mandibles than insectivorous species. Element Analysis of the Cingulata Jaw: An Ecomorphological Approach to Armadillo’s Diets. Moreover, this latter group of species showed high variability, including some similar bio- PLoS ONE 10(4): e0120653. doi:10.1371/journal. mechanical features of the insectivorous Tolypeutes matacus and Chlamyphorus truncatus pone.0120653 to those of omnivorous species, in agreement with reported diets that include items other Received: May 4, 2014 than insects. It remains unclear the reasons behind the stronger than expected lower jaw of Accepted: February 3, 2015 Dasypus kappleri.
    [Show full text]
  • (Zaedyus Pichiy) in Mendoza Province, Argentina
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 12-15-2007 Natural history of the pichi (Zaedyus pichiy) in Mendoza Province, Argentina Mariella Superina University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Superina, Mariella, "Natural history of the pichi (Zaedyus pichiy) in Mendoza Province, Argentina" (2007). University of New Orleans Theses and Dissertations. 604. https://scholarworks.uno.edu/td/604 This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Natural history of the pichi (Zaedyus pichiy) in Mendoza Province, Argentina A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Conservation Biology by Mariella Superina Med. vet., Universität Zürich, 1998 Dr. med. vet., Universität Zürich, 2000 December, 2007 Copyright 2007, Mariella Superina ii ACKNOWLEDGEMENTS This work would not have been possible without the support and assistance of many friends, colleagues, family members, and locals from Mendoza Province.
    [Show full text]
  • Health Evaluation of Free-Ranging and Captive Pichis (Zaedyus Pichiy; Mammalia, Dasypodidae), in Mendoza Province, Argentina
    Journal of Wildlife Diseases, 45(1), 2009, pp. 174–183 # Wildlife Disease Association 2009 View metadata, citation and similar papers at core.ac.uk brought to you by CORE HEALTH EVALUATION OF FREE-RANGING AND CAPTIVEprovided PICHIS by CONICET Digital (ZAEDYUS PICHIY; MAMMALIA, DASYPODIDAE), IN MENDOZA PROVINCE, ARGENTINA Mariella Superina,1,4,5 Michael M. Garner,2 and Roberto F. Aguilar3 1 Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148-0001, USA 2 Northwest ZooPath, 654 W. Main, Monroe, Washington 98272, USA 3 Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11-222 Palmerston, New Zealand 4 Current address: Laboratorio de Reproduccio´n y Lactancia, Instituto de Medicina y Biologı´a Experimental del Cuyo, CCT Mendoza-CONICET, Casilla de Correos 855, 5500 Mendoza, Argentina 5 Corresponding author (email: [email protected]) ABSTRACT: The health of free-ranging and captive pichis (Zaedyus pichiy) was assessed in Mendoza Province, Argentina, between November 2001 and December 2006. Postmortem examinations of 150 confiscated and vehicle-killed pichis and clinical examinations of 139 wild-caught individuals suggest that the wild populations are currently in good health. Lesions and scars were observed in a large proportion of wild-caught pichis. The most common lesions were associated with parasitism or parasite larva migration. Sarcocystis cysts were relatively common in the skeletal muscle, and Besnoitia cysts were observed in the lungs of 24 evaluated animals. Elevated ambient humidity levels often caused moist dermatitis with epidermal detachment in captive pichis. This report constitutes the first health evaluation of free-ranging and captive Z.
    [Show full text]
  • Etograma Para Tres Especies De Armadillos (Dasypus Sabanicola, D. Novemcinctus Y Cabassous Unicinctus) Mantenidas En Cautiverio
    Electronic version: ISSN 1852-9208 Print version: ISSN 1413-4411 DOI: 10.2305/IUCN.CH.2018.EDENTATA-19-1.en The Newsletter of the IUCN/SSC Anteater, Sloth and Armadillo Specialist Group December 2018 • Number 19 Edentata The Newsletter of the IUCN/SSC Anteater, Sloth and Armadillo Specialist Group ISSN 1413-4411 (print version) ISSN 1852-9208 (electronic version) http://www.xenarthrans.org Editors: Mariella Superina, IMBECU, CCT CONICET Mendoza, Mendoza, Argentina. Nadia de Moraes-Barros, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Porto, CIBIO–InBIO, Porto, Portugal. Agustín M. Abba, Centro de Estudios Parasitológicos y de Vectores, CCT CONICET La Plata – UNLP, La Plata, Argen- tina. Associate editors: W. Jim Loughry, Valdosta State University, Valdosta, GA, USA. Roberto F. Aguilar, Adjunct Senior Lecturer Wildbase – Massey University, New Zealand. IUCN/SSC Anteater, Sloth and Armadillo Specialist Group Chair Mariella Superina IUCN/SSC Anteater, Sloth and Armadillo Specialist Group Deputy Chair Nadia de Moraes-Barros Layout Gabriela F. Ruellan, Designer in Visual Communication, UNLP The editors wish to thank all reviewers for their collaboration. Front Cover Photo Silky anteater (Cyclopes didactylus). Photo: Karina Theodoro Molina, Instituto Tamanduá Please direct all submissions and other editorial correspondence to Mariella Superina, IMBECU – CCT CONI- CET Mendoza, Casilla de Correos 855, Mendoza (5500), Argentina. Tel. +54-261-5244160, Fax +54-261-5244001, E- mail: <[email protected]>. IUCN/SSC
    [Show full text]
  • CHACO FAIRY ARMADILLO Calyptophractus Retusus (Burmeister, 1863)
    Smith P - Calyptophractus retusus - FAUNA Paraguay Handbook of the Mammals of Paraguay Number 20 2008 CHACO FAIRY ARMADILLO Calyptophractus retusus (Burmeister, 1863) FIGURE 1 - (FPMAM67PH) Adult, PN Tte Enciso, Departamento Boquerón (Enrique Bragayrac undated). TAXONOMY: Class Mammalia; Subclass Theria; Infraclass Eutheria; Order Cingulata; Family Dasypodidae ; Subfamily Chlamyphorinae (Myers et al 2006, Möller-Krull et al 2007). Gardner (2007) included the Chlamyphorinae as a tribe Chlamphorini of the subfamily Euphractinae. The genus Calyptophractus was defined by Fitzinger (1871) and contains a single species. Calyptophractus is derived from the Greek meaning "concealed bands". This species has been previously placed in the monotypic genus Burmeisteria, Gray 1865 but this name is unavailable as it is preoccupied by a trilobite (Salter (1865). Alternatively it has been placed in the genus Chlamyphorus, Burmeister (1863), jointly with the other member of the subfamily, the Pink Fairy Armadillo C.truncatus. Morphologically Calyptophractus is quite different to Chlamyphorus not least for the fact that the carapace is firmly attached to the body in Calyptophractus whilst it is almost separated from the body in Chlamyphorus. The Edentate Specialist Group (2004) advocates the use of Calyptophractus over Burmeisteria as the generic name for this species following Smith P 2008 - CHACO FAIRY ARMADILLO Calyptophractus retusus - Mammals of Paraguay Nº 20 Page 1 Smith P - Calyptophractus retusus - FAUNA Paraguay Handbook of the Mammals of Paraguay Number 20 2008 Wetzel (1985) and this was also followed by Gardner (2007). The species is monotypic. Synonyms adapted from Gardner (2007): Chlamyphorus retusus Burmeister 1863:167. Type locality "Santa Cruz de la Sierra" Santa Cruz, Bolivia.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Gallo, Jorge A.; Fasola, Laura; Abba, Agustín M. ARMADILLOS AS NATURAL PESTS CONTROL? FOOD HABITS OF FIVE ARMADILLO SPECIES IN ARGENTINA Mastozoología Neotropical, vol. 26, no. 1, 2019, -June, pp. 117-127 Sociedad Argentina para el Estudio de los Mamíferos Argentina Available in: https://www.redalyc.org/articulo.oa?id=45762554008 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Mastozoología Neotropical, 26(1):117-127, Mendoza, 2019 Copyright ©SAREM, 2019 Versión on-line ISSN 1666-0536 http://www.sarem.org.ar https://doi.org/10.31687/saremMN.19.26.1.0.03 http://www.sbmz.com.br Artículo ARMADILLOS AS NATURAL PESTS CONTROL? FOOD HABITS OF FIVE ARMADILLO SPECIES IN ARGENTINA Jorge A. Gallo1, 2, Laura Fasola1 and Agustín M. Abba3 1 Dirección Regional Patagonia Norte, Administración de Parques Nacionales (APN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), S. C. de Bariloche, Argentina [Correspondence: Jorge A. Gallo <[email protected]>]. 2 Programa de Estudios Aplicados a la Conservación, Parque Nacional Nahuel Huapi (CENAC-PNNH-CONICET), S. C. de Bariloche, Argentina. 3 Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Facultad de Ciencias Naturales y Museo (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina. ABSTRACT. Armadillos are among the most common mammals in agroecosystems in Argentina.
    [Show full text]
  • Armadillo Bibliography 2016-2019
    BIBLIOGRAPHY ON ARMADILLOS (CINGULATA) Last update: September 11, 2019 Mariella Superina, Dr. med. vet., Ph.D. Laboratorio de Medicina y Endocrinología de la Fauna Silvestre IMBECU, CCT CONICET Mendoza Casilla de Correos 855 5500 Mendoza, Argentina [email protected] References 2016–2019 ABBA, A. M., V. V. BENITEZ, AND S. R. DOYLE. 2017. Population ecology of Chaetophractus vellerosus: the first report for an armadillo in South America. Zoologia 34:e20785. ABBA, A. M., G. H. CASSINI, J. I. TÚNEZ, AND S. F. VIZCAÍNO. 2018. THe enigma of the Yepes’ armadillo: Dasypus mazzai, D. novemcinctus or D. yepesi? Revista del Museo Argentino de Ciencias Naturales Nueva Serie 20:83-90. ABBA, A. M., J. A. GALLO, AND E. ZUFIAURRE. 2019. Uso de basurales por parte del peludo (Chaetophractus villosus). Notas sobre Mamíferos Sudamericanos:2-5. ABBA, A. M., S. D. RÍOS, AND P. SMITH. 2017. Xenarthra: armadillos y osos Hormigueros. Pp. 41- 47 In Libro Rojo de mamíferos del Paraguay (Asociación Paraguaya de Mastozoología and Secretaría del Ambiente, eds.). Asociación Paraguaya de Mastozoología y Secretaría del Ambiente, Asunción. ABBA, A. M., AND M. SUPERINA. 2016. Dasypus hybridus (Cingulata: Dasypodidae). Mammalian Species 48:10-20. ABBA, A. M., E. ZUFIAURRE, D. N. BILENCA, AND S. F. VIZCAÍNO. 2019. Los armadillos de la provincia de Buenos Aires. Ciencia Hoy 28:54-59. ABBA, A. M., E. ZUFIAURRE, M. CODESIDO, AND D. BILENCA. 2016. Habitat use by armadillos in agroecosystems of central Argentina: does plot identity matter? Journal of Mammalogy 97:1265-1271. ACTIS, E. A., S. MOSCONI, G. A. JAHN, AND M. SUPERINA.
    [Show full text]
  • New Information on Population Declines in Pink Fairy Armadillos
    Hay, M. A., Bellem, A. C., Brown, J. L. and Good- Taylor, B. K. 1978. The anatomy of the forelimb of rowe, K. L. 1994. Reproductive patterns in the anteater (Tamandua) and its functional impli- tamandua (Tamandua tetradactyla). J. Zoo Wildl. cations. J. Morphol. 157: 347–367. Med. 25: 248–258. Taylor, B. K. 1985. Functional anatomy of the forelimb Lubin, Y. D., Montgomery, G. G. and Young, O. P. in vermilinguas (anteaters). In: The Evolution and 1977. Food resources of anteaters (Edentata: Myr- Ecology of Armadillos, Sloths, and Vermilinguas, G. mecophagidae) I. A year’s census of arboreal nests G. Montgomery (ed.), pp.163–171. Smithsonian of ants and termites on Barro Colorado Island, Institution Press, Washington, DC. Panama Canal Zone. Biotropica 9: 26–34. Wetzel, R. M. 1975. The species of Tamandua Gray Lubin, Y. D. 1983. Tamandua mexicana. In: Costa (Edentata, Myrmecophagidae). Proc. Biol. Soc. Rican Natural History, D. H. Janzen (ed.), Wash. 88: 95–112. pp.494–496. The University of Chicago Press, Wetzel, R. M. 1982. Systematics, distribution, ecol- Chicago. ogy, and conservation of South American Eden- Macdonald, D. 1995. The Encyclopedia of Mammals. tates. In: Mammalian Biology in South America, Facts on File, Inc., New York. M. A. Mares and H. H. Genoways (eds.), Meritt, D. A. 1976. The lesser anteater (Tamandua pp.345–375. Special Publication Series of the tetradactyla) in captivity. Int. Zoo Ybk. 15: 41– Pymatuning Laboratory of Ecology, University 45. of Pittsburgh, Pittsburgh. Moeller, W. 1990. Modern Xenarthans. In: Grzimek’s Wetzel, R. M. 1985. The identification and distribu- Encyclopedia of Mammals, S.
    [Show full text]