How to Cite Complete Issue More Information About This Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Prosopis Juliflora - Prosopis Pallida Complex: a Monograph
DFID DFID Natural Resources Systems Programme The Prosopis juliflora - Prosopis pallida Complex: A Monograph NM Pasiecznik With contributions from P Felker, PJC Harris, LN Harsh, G Cruz JC Tewari, K Cadoret and LJ Maldonado HDRA - the organic organisation The Prosopis juliflora - Prosopis pallida Complex: A Monograph NM Pasiecznik With contributions from P Felker, PJC Harris, LN Harsh, G Cruz JC Tewari, K Cadoret and LJ Maldonado HDRA Coventry UK 2001 organic organisation i The Prosopis juliflora - Prosopis pallida Complex: A Monograph Correct citation Pasiecznik, N.M., Felker, P., Harris, P.J.C., Harsh, L.N., Cruz, G., Tewari, J.C., Cadoret, K. and Maldonado, L.J. (2001) The Prosopis juliflora - Prosopis pallida Complex: A Monograph. HDRA, Coventry, UK. pp.172. ISBN: 0 905343 30 1 Associated publications Cadoret, K., Pasiecznik, N.M. and Harris, P.J.C. (2000) The Genus Prosopis: A Reference Database (Version 1.0): CD ROM. HDRA, Coventry, UK. ISBN 0 905343 28 X. Tewari, J.C., Harris, P.J.C, Harsh, L.N., Cadoret, K. and Pasiecznik, N.M. (2000) Managing Prosopis juliflora (Vilayati babul): A Technical Manual. CAZRI, Jodhpur, India and HDRA, Coventry, UK. 96p. ISBN 0 905343 27 1. This publication is an output from a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID. (R7295) Forestry Research Programme. Copies of this, and associated publications are available free to people and organisations in countries eligible for UK aid, and at cost price to others. Copyright restrictions exist on the reproduction of all or part of the monograph. -
Reveals That Glyptodonts Evolved from Eocene Armadillos
Molecular Ecology (2016) 25, 3499–3508 doi: 10.1111/mec.13695 Ancient DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos KIEREN J. MITCHELL,* AGUSTIN SCANFERLA,† ESTEBAN SOIBELZON,‡ RICARDO BONINI,‡ JAVIER OCHOA§ and ALAN COOPER* *Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia, †CONICET-Instituto de Bio y Geociencias del NOA (IBIGEO), 9 de Julio No 14 (A4405BBB), Rosario de Lerma, Salta, Argentina, ‡Division Paleontologıa de Vertebrados, Facultad de Ciencias Naturales y Museo (UNLP), CONICET, Museo de La Plata, Paseo del Bosque, La Plata, Buenos Aires 1900, Argentina, §Museo Arqueologico e Historico Regional ‘Florentino Ameghino’, Int De Buono y San Pedro, Rıo Tercero, Cordoba X5850, Argentina Abstract Glyptodonts were giant (some of them up to ~2400 kg), heavily armoured relatives of living armadillos, which became extinct during the Late Pleistocene/early Holocene alongside much of the South American megafauna. Although glyptodonts were an important component of Cenozoic South American faunas, their early evolution and phylogenetic affinities within the order Cingulata (armoured New World placental mammals) remain controversial. In this study, we used hybridization enrichment and high-throughput sequencing to obtain a partial mitochondrial genome from Doedicurus sp., the largest (1.5 m tall, and 4 m long) and one of the last surviving glyptodonts. Our molecular phylogenetic analyses revealed that glyptodonts fall within the diver- sity of living armadillos. Reanalysis of morphological data using a molecular ‘back- bone constraint’ revealed several morphological characters that supported a close relationship between glyptodonts and the tiny extant fairy armadillos (Chlamyphori- nae). -
A Case Study on the Potential of the Multipurpose Prosopis Tree
23 Underutilised crops for famine and poverty alleviation: a case study on the potential of the multipurpose Prosopis tree N.M. Pasiecznik, S.K. Choge, A.B. Rosenfeld and P.J.C. Harris In its native Latin America, the Prosopis tree (also known as Mesquite) has multiple uses as a fuel wood, timber, charcoal, animal fodder and human food. It is also highly drought-resistant, growing under conditions where little else will survive. For this reason, it has been introduced as a pioneer species into the drylands of Africa and Asia over the last two centuries as a means of reclaiming desert lands. However, the knowledge of its uses was not transferred with it, and left in an unmanaged state it has developed into a highly invasive species, where it encroaches on farm land as an impenetrable, thorny thicket. Attempts to eradicate it are proving costly and largely unsuccessful. In 2006, the problem of Prosopis was hitting the headlines on an almost weekly basis in Kenya. Yet amidst calls for its eradication, a pioneering team from the Kenya Forestry Research Institute (KEFRI) and HDRA’s International Programme set out to demonstrate its positive uses. Through a pilot training and capacity building programme in two villages in Baringo District, people living with this tree learned for the first time how to manage and use it to their benefit, both for food security and income generation. Results showed that the pods, milled to flour, would provide a crucial, nutritious food supplement in these famine-prone desert margins. The pods were also used or sold as animal fodder, with the first international order coming from South Africa by the end of the year. -
New Large Leptictid Insectivore from the Late Paleogene of South Dakota, USA
New large leptictid insectivore from the Late Paleogene of South Dakota, USA TJ MEEHAN and LARRY D. MARTIN Meehan, T.J. and Martin, L.D. 2012. New large leptictid insectivore from the Late Paleogene of South Dakota, USA. Acta Palaeontologica Polonica 57 (3): 509–518. From a skull and mandible, we describe a new genus and species of a primitive insectivore (Mammalia: Insectivora: Leptictida: Leptictidae). Its large body size and higher−crowned teeth indicate a different feeding ecology from other leptictid insectivores. With evidence of some heavy, flat wear on the molariform teeth, its shift in diet was likely to greater herbivory. Unlike the narrow snout of Blacktops, this new leptictid retains a broad snout, suggesting that small verte− brates were still important dietary components. The specimen was collected from the floodplain deposits of the lower or middle White River Group of South Dakota, which represent the latest Eocene to earliest Oligocene (Chadronian and Orellan North American Land Mammal “Ages”). Key words: Mammalia, Leptictidae, Leptictis, Megaleptictis, Eocene, Oligocene, White River Group, South Dakota, North America. TJ Meehan [[email protected]], Research Associate, Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, USA; Larry D. Martin [[email protected]], Division of Vertebrate Paleontology, Natural History Museum and Biodiversity Re− search Center, University of Kansas, Lawrence, KS 66045, USA. Received 4 April 2011, accepted 25 July 2011, available online 17 August 2011. Introduction molariform teeth. A fossa in this region at least suggests in− creased snout mobility, but no definitive anatomical argument Leptictida is a primitive order of placental, insectivorous has been made to support a highly mobile cartilaginous snout mammals convergent to extant sengis or elephant “shrews” tip, as in sengis. -
(Dasypus) in North America Based on Ancient Mitochondrial DNA
bs_bs_banner A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA BETH SHAPIRO, RUSSELL W. GRAHAM AND BRANDON LETTS Shapiro, B. Graham, R. W. & Letts, B.: A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas. 10.1111/bor.12094. ISSN 0300-9483. The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine-banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene-age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed. Beth Shapiro ([email protected]), Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; Russell W. -
Small Mammal Population Dynamics and Range Shifts with Climate
RESOURCES, DATA RESOLUTION AND SMALL MAMMAL RANGE DYNAMICS Nerissa Haby B. Env. Sci. (Hons) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy April 2012 Ecology and Evolutionary Biology University of Adelaide, Australia Table of contents Table of contents i Abstract ii Acknowledgements iii Declaration iv How well do existing evaluations of climate change impacts on range Introduction 1 dynamics represent Australian small mammals? Improving performance and transferability of small-mammal species Chapter 1. 8 distribution models Chapter 2. Specialist resources are key to improving small mammal distribution models 22 Scale dependency of metapopulation models used to predict climate change Chapter 3. 35 impacts on small mammals Lessons from the arid zone: using climate variables to predict small mammal Chapter 4. 52 occurrence in hot, dry environments Ecosystem dynamics, evolution and dependency of higher trophic organisms Chapter 5. 69 on resource gradients Conclusion 79 References 89 Appendix 106 Publications associated with this thesis 153 i Abstract Extensive range shift and mass extinctions resulting from climate change are predicted to impact all biodiversity on the basis of species distribution models of wide-spread and data-rich taxa (i.e. vascular plants, terrestrial invertebrates, birds). Cases that both support and contradict these predictions have been observed in empirical and modelling investigations that continue to under-represent small mammal species (Introduction). Given small mammals are primary or higher order consumers and often dispersal limited, incorporating resource gradients that define the fundamental niche may be vital for generating accurate estimates of range shift. This idea was investigated through the influence of coarse to fine resolution, landscape- and quadrat-scale data on the range dynamics of four temperate- and five arid-zone small mammals. -
Chaetophractus Nationi)
Journal of Mammalogy, 96(4):673–689, 2015 DOI:10.1093/jmammal/gyv082 Systematics of hairy armadillos and the taxonomic status of the Andean hairy armadillo (Chaetophractus nationi) Agustín M. Abba, Guillermo H. Cassini, Guido Valverde, Marie-Ka Tilak, Sergio F. Vizcaíno, Mariella Superina, and Frédéric Delsuc* División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CONICET, Paseo del Bosque s/n, 1900, La Plata, Argentina (AMA) Downloaded from https://academic.oup.com/jmammal/article-abstract/96/4/673/846208 by guest on 04 September 2019 División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Ciudad Autónoma de Buenos Aires (C1405DJR), Argentina; Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján (6700) Pcia. de Buenos Aires, Argentina; CONICET, Argentina (GHC) Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia (GV) Universidad Mayor de San Andrés, Facultad de Ciencias Farmacéuticas y Bioquímicas, La Paz, Bolivia (GV) Institut des Sciences de l’Evolution, UMR5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France (M-KT, FD) División Paleontología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CONICET, Paseo del Bosque s/n, 1900, La Plata, Argentina (SFV) Laboratorio de Endocrinología de la Fauna Silvestre, IMBECU-CCT CONICET Mendoza, Casilla de Correos 855, Mendoza 5500, Argentina (MS) *Correspondent: [email protected] Hairy armadillos constitute an ecologically homogeneous and morphologically similar group with currently 5 species classified in the subfamily Euphractinae. Among them, the Andean hairy armadillo Chaetophractus nationi (Xenarthra, Cingulata, Dasypodidae) is a small, endangered armadillo that has long been suspected to represent a high-altitude variant of Chaetophractus vellerosus. -
Shotgun Mitogenomics Provides a Reference
Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans Gillian Gibb, Fabien Condamine, Melanie Kuch, Jacob Enk, Nadia Moraes-Barros, Mariella Superina, Hendrik Poinar, Frédéric Delsuc To cite this version: Gillian Gibb, Fabien Condamine, Melanie Kuch, Jacob Enk, Nadia Moraes-Barros, et al.. Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans. Molecular Biology and Evolution, Oxford University Press (OUP), 2016, 33 (3), pp.621 - 642. 10.1093/molbev/msv250. hal-01879331 HAL Id: hal-01879331 https://hal.archives-ouvertes.fr/hal-01879331 Submitted on 23 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans Gillian C. Gibb,1,2 Fabien L. Condamine,1,3,4 Melanie Kuch,5 Jacob Enk,5 Nadia Moraes-Barros,6,7 Mariella Superina,8 Hendrik N. Poinar,*,5 and Fred eric Delsuc*,1 -
Defoliation and Woody Plant (Shape Prosopis Glandulosa) Seedling
Plant Ecology 138: 127–135, 1998. 127 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Defoliation and woody plant (Prosopis glandulosa) seedling regeneration: potential vs realized herbivory tolerance Jake F. Weltzin1, Steven R. Archer & Rodney K. Heitschmidt2 Department of Rangeland Ecology and Management, Texas A & M University, College Station, TX 77843–2126, USA; 1Corresponding author: Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; 2USDA/ARS Ft. Keogh, Rt. 1, Box 2021, Miles City, MT 59301, USA Received 27 March 1997; accepted in revised form 27 April 1998 Key words: Browsing, Clipping, Competition, Honey mesquite, Survival, Texas, Top removal Abstract Herbivory by rodents, lagomorphs and insects may locally constrain woody plant seedling establishment and stand development. Recruitment may therefore depend either upon plant tolerance of herbivory, or low herbivore abundance, during seedling establishment. We tested potential herbivory tolerance by quantifying growth, biomass allocation, and survival of defoliated Prosopis glandulosa seedlings under optimal abiotic conditions in the absence of competition. Realized tolerance was assessed by clipping seedlings of known age grown in the field with and without herbaceous competition. At 18-d (D ‘young’) or 33-d (D ‘old’) of age, seedlings in the growth chamber were clipped just above the first (cotyledonary) node, above the fourth node, or were retained as non-clipped controls. Potential tolerance to defoliation was high and neither cohort showed evidence of meristematic limitations to regeneration. Clipping markedly reduced biomass production relative to controls, especially belowground, but survival of seedlings de- foliated 5 times was still ≥75%. Contrary to expectations, survival of seedlings defoliated above the cotyledonary node 10 times was greater (P<0:10) for ‘young’ (75%) than ‘old’ (38%) seedlings. -
The Conservation Game
From Penguins to Pandas - the conservation game Armadillo Fact Files © RZSS 2014 Armadillos There are 21 species of armadillo. They are divided into 8 groups: dwarf fairy giant hairy long nosed naked tail three banded yellow banded All armadillos have an outer covering of strong bony plates and horny skin. Most of the species can bring their legs in under this covering to protect themselves but it is only the three banded armadillos that can roll up into a tight ball. Most are active at night (nocturnal) and have poor eyesight but very good hearing and sense of smell. They all have large claws on their front feet to dig for insects and for burrowing. There is little known about some species of armadillo. At the time of writing (May 2014), the Royal Zoological Society of Scotland (RZSS) are studying four species - giant, southern naked tail, nine banded and yellow banded. Edinburgh Zoo, owned by RZSS holds 2 species, the larger hairy and the southern three banded. These animals are not on show but are sometimes seen in our animal presentations, such as ‘Animal Antics’. Armadillo in different languages Portuguese: tatu Spanish: armadillo (it means ‘little armoured one’ in Spanish) French: tatou Mandarin Chinese: 犰狳 (qiu yu) 2 Dwarf armadillo 1 species dwarf or pichi (Zaedyus pichiy) Distribution Argentina and Chile Diet insects, spiders and plants Breeding gestation 60 days litter size 1 - 2 Size Length: 26 - 33cm Tail length 10 - 14cm Weight 1 - 1.5kg Interesting facts comes out in daytime unlike most other species, it hibernates over -
Diet, Ecology, and Dental Morphology in Terrestrial Mammals – Silvia Pineda-Munoz – November 2015
DIET, ECOLOGY, AND DENTAL MORPHOLOGY IN TERRESTRIAL MAMMALS Sílvia Pineda-Munoz, MSc Department of Biological Sciences Macquarie University Sydney, Australia Principal Supervisor: Dr. John Alroy Co-Supervisor(s): Dr Alistair R. Evans Dr Glenn A. Brock This thesis is submitted for the degree of Doctor of Philosophy April 2016 2 To my Little Bean; and her future siblings and cousins Al meu Fessolet; I als seus futurs germans i cosins i ii STATEMENT OF CANDIDATE I certify that the work in this thesis entitled “Diet, ecology and dental morphology in terrestrial mammals” has not previously been submitted for a degree nor has in been submitted as part or requirements for a degree to any other university or institution other than Macquarie University. I also certify that this thesis is an original piece of research and that has been written by me. Any collaboration, help or assistance has been appropriately acknowledged. No Ethics Committee approval was required. Sílvia Pineda-Munoz, MSc MQID: 42622409 iii iv Diet, ecology, and dental morphology in terrestrial mammals – Silvia Pineda-Munoz – November 2015 ABSTRACT Dietary inferences are a key foundation for paleoecological, ecomorphological and macroevolutionary studies because they inform us about the direct relationships between the components of an ecosystem. Thus, the first part of my thesis involved creating a statistically based diet classification based on a literature compilation of stomach content data for 139 terrestrial mammals. I observed that diet is far more complex than a traditional herbivore-omnivore-carnivore classification, which masks important feeding specializations. To solve this problem I proposed a new classification scheme that emphasizes the primary resource in a given diet (Chapter 3). -
Climate-Ready Tree List
Location Type 1 - Small Green Stormwater Infrastructure (GSI) Features Location Characteristics Follows “Right Tree in the Right Place” Low Points Collect Stormwater Runoff Soil Decompacted to a Depth ≥ 18” May Have Tree Trenches, Curb Cuts, or Scuppers Similar Restrictions to Location Type 5 Examples:Anthea Building, SSCAFCA, and South 2nd St. Tree Characteristics Recommended Trees Mature Tree Height: Site Specific Celtis reticulata Netleaf Hackberry Inundation Compatible up to 96 Hours. Cercis canadensis var. mexicana* Mexican Redbud* Cercis occidentalis* Western Redbud* Pollution Tolerant Cercis reniformis* Oklahoma Redbud* Cercis canadensis var. texensis* Texas Redbud* Crataegus ambigua* Russian Hawthorne* Forestiera neomexicana New Mexico Privet Fraxinus cuspidata* Fragrant Ash* Lagerstroemia indica* Crape Myrtle* Pistacia chinensis Chines Pistache Prosopis glandulosa* Honey Mesquite* Prosopis pubescens* Screwbean Mesquite* Salix gooddingii Gooding’s Willow Sapindus saponaria var. drummondii* Western Soapberry* * These species have further site specific needs found in Master List Photo Credit: Land andWater Summit ClimateReady Trees - Guidelines for Tree Species Selection in Albuquerque’s Metro Area 26 Location Type 2 - Large Green Stormwater Infrastructure (GSI) Features Location Characteristics Follows “Right Tree in the Right Place” Low Points Collect Stormwater Runoff Soil Decompacted to a Depth ≥ 18” May Have Basins, Swales, or Infiltration Trenches Examples: SSCAFCA landscaping, Pete Domenici Courthouse, and Smith Brasher Hall