Diet, Ecology, and Dental Morphology in Terrestrial Mammals – Silvia Pineda-Munoz – November 2015

Total Page:16

File Type:pdf, Size:1020Kb

Diet, Ecology, and Dental Morphology in Terrestrial Mammals – Silvia Pineda-Munoz – November 2015 DIET, ECOLOGY, AND DENTAL MORPHOLOGY IN TERRESTRIAL MAMMALS Sílvia Pineda-Munoz, MSc Department of Biological Sciences Macquarie University Sydney, Australia Principal Supervisor: Dr. John Alroy Co-Supervisor(s): Dr Alistair R. Evans Dr Glenn A. Brock This thesis is submitted for the degree of Doctor of Philosophy April 2016 2 To my Little Bean; and her future siblings and cousins Al meu Fessolet; I als seus futurs germans i cosins i ii STATEMENT OF CANDIDATE I certify that the work in this thesis entitled “Diet, ecology and dental morphology in terrestrial mammals” has not previously been submitted for a degree nor has in been submitted as part or requirements for a degree to any other university or institution other than Macquarie University. I also certify that this thesis is an original piece of research and that has been written by me. Any collaboration, help or assistance has been appropriately acknowledged. No Ethics Committee approval was required. Sílvia Pineda-Munoz, MSc MQID: 42622409 iii iv Diet, ecology, and dental morphology in terrestrial mammals – Silvia Pineda-Munoz – November 2015 ABSTRACT Dietary inferences are a key foundation for paleoecological, ecomorphological and macroevolutionary studies because they inform us about the direct relationships between the components of an ecosystem. Thus, the first part of my thesis involved creating a statistically based diet classification based on a literature compilation of stomach content data for 139 terrestrial mammals. I observed that diet is far more complex than a traditional herbivore-omnivore-carnivore classification, which masks important feeding specializations. To solve this problem I proposed a new classification scheme that emphasizes the primary resource in a given diet (Chapter 3). This new classification was then contrasted with body mass (Chapter 4). I observed that there is a specific optimum body mass range for every dietary specialization, with the medium size range mostly composed of frugivorous species that inhabit tropical and subtropical rainforests. Thus, the near absence of medium-sized mammals in open environments can be linked to the decreasing density of fruit trees needed to support a pure frugivorous diet all year round. I then evaluated previous dietary proxies and observed that a relevant time scale needs to be determined before choosing a dietary proxy (Chapter 5). The main goal of my PhD research was to design quantitative and phylogeny-free method to infer the typical diet of each species. I therefore designed Multi-Proxy Dental Morphology Analysis (MPDMA) (Chapter 6). I three dimensionally scanned the dentitions of 138 extant mammals (28 marsupials and 110 placentals) and qualitatively classified their diets. Multiple variables were estimated from the 3D scans (i.e., orientation patch count, slope diversity, and relief index) and multivariate statistical analyses were used to test for discrimination power across dietary specializations (Chapter 7). MPDMA demonstrates significant morphological differences across diets (P < 0.05) and correctly discriminates diet for up to 82% of the specimens in the v dataset. Most remarkably, marsupials and placentals with the same dietary specializations overlap strongly in ecomorphospace, which suggests convergent phenotypic evolution across both clades. vi ACKNOWLEDGEMENTS I would like to thank the Higher Degree Research team at Macquarie University and the Office of Fellowships at the Smithsonian Institution for financial support. Additionally, I would like to thank all of the Paleobiology Database Workshop in Analytical Methods instructors for bringing me the opportunity to learn so much in such a short time. This thesis would have never materialized without the support I received from colleagues and friends from all around the world. Thank you to Kayla Friedman and Malcolm Morgan of the Centre for Sustainable Development, University of Cambridge, UK for producing the Microsoft Word thesis template used to produce this document. To my advisors: I would first like to thank John Alroy for believing in me when I first wrote you more than 4 years ago. For being available to chat any time I knocked your door. For teaching me how to approach science and for your invaluable advice during the whole journey of my Ph.D. For all the constructive comments on my manuscripts and for challenging me to keep improving my English skills. For saying “you go and figure it out” when I asked you how to write in R. For helping me when I first arrived in Australia. I have told you this so many times, but you will always be my advisor. I am also incredibly grateful to my co-advisor Alistair Evans. For opening the door to your lab when I first asked for your help, and teaching me how to think out of the box. vii For being patient with my curiosity and brainstorming and making me feel like home every time I visited Melbourne. For the long conversations about science and life. John and Alistair: I can’t think of a better duo of advisors, and I will always remember the time you both gave me advice about my Romer Session presentation at SVP in 2015. Siting next to each other, commenting on every single slide. That was the best criticism I have ever received. Thanks Glenn Brock. Although my research was so different from yours, you were always there for support and advice. I will always think of our lab as another home to me. My thesis was greatly improved by the opportunity Kay Behrensmeyer and Kate Lyons created for me by awarding me a pre-doc Research Fellowship at the National Museum of Natural History Smithsonian Institution. Thank you Kay for introducing me to so many researchers and believing in my work. For including me to your family plans for all the holidays – I can’t wait to run another race together! Thank you Kate for the long conversations and for making me see the importance of my work. But mainly, for trusting me and offering me such a rewarding post-doctoral position with the ETE program. During my Ph.D. program I was incredibly lucky to work in three amazing labs: The Paleobiology lab in Macquarie University. Thanks Graeme, Sarah, Bryony, Luke, Marissa, Sarah, Patrick, David, James, Julieta, Nick, Christian, Gabrielle and Matt. For the lab meetings and the paper reading clubs. You inspired me to keep learning about new topics every day. Special thanks to the Genes to Geosciences team. The Evans lab at Monash University. Thanks Matt, David, Travis, Angi, Lap, Alana and Kathleen. It was wonderful to hang out and discuss science. viii The National Museum of Natural History Smithsonian Institution. Thanks Matt, Andrew, Aniko, Advait, Amelia, Carlos, Andrew, Danielle, Laura, Arden, Scott, Rich, René, Thomas, and everybody who helped me during my stay at a wonderful institution. To my master's thesis advisor Isaac Casanovas-Vilar. I will soon lose my Padawan status, Mestre. And Mikael Fortelius, the first person in palaeontology to give me an opportunity. To my lab mates at the Institut Català de Paleontologia Miquel Crusafont. Special thanks to Daniel de Miguel, who taught me how to mould and cast. To my dear Maria: I miss our coffee breaks. Fortu, you’ve inspired me so much with your missal. Albert, your support has been crucial in so many ways. David, Marta, Miriam, Gretel, Salvador, Alba, Novella. To my friends at the University of Helsinki: Juha, Allu, Ellodie and Pierre. To my family: Thank you Mama. For encouraging me to give my best every day, and being there to share my laughs and wipe my tears. For our late night conversations and for picking up the phone at 3 a.m. pretending you were awake. For keeping me in touch with my most human side, for keeping my secrets and being my best friend in so many ways. Thank you Ferran (my dad). You used to tell me: “Aim for the sun, and you’ll reach the moon”. One of the last times I saw you, you told me: “I told you to aim for the sun so you could reach the moon; but you’ve gone beyond the sun already”. You made me so happy. But also thank you for the hikes in the mountains, for teaching me how to love nature. Thank you Tata-capu (my sister). For being there to cheer me up when I needed it the most, for being proud of me despite our having such different lives. But also, for giving me what I love the most in this world, my little bean, my niece Èlia, to whom I dedicate this thesis. ix Thank you to my grandmas and grandpas, uncles and aunties, and cousins. You are always there to support me although you sometimes struggle to understand my life as a scientist. I miss you tito Jose. To all my friends: Who have always been there to cheer me up and share the good and bad times. Thank you Zoraida, for being there to read my messages from Catalunya, the Czech Republic or Galicia. Julieta, for becoming my “sister” overseas and for our adventures together that have just started. Laura, for you becoming someone so important in my life in Australia. Peri, for so many important days together, for being my first climbing partner. Aniko, for your incredible friendship. Leo, for belaying me on the wall and in my personal life. Yuri, for mutual inspiration. Nick, the best lab-mate I can think of. Graeme, for dealing so well with all my quirkiness. Pere and Anna, you were so much like a little piece of home overseas. Thanks to my advisors’ families: Heather, Adi and Linus; Gudrun, Luke, David and Zoe; Bill, Sarah and Kristina; Kieran and Pete. For making me feel like home every time I visited.
Recommended publications
  • New Large Leptictid Insectivore from the Late Paleogene of South Dakota, USA
    New large leptictid insectivore from the Late Paleogene of South Dakota, USA TJ MEEHAN and LARRY D. MARTIN Meehan, T.J. and Martin, L.D. 2012. New large leptictid insectivore from the Late Paleogene of South Dakota, USA. Acta Palaeontologica Polonica 57 (3): 509–518. From a skull and mandible, we describe a new genus and species of a primitive insectivore (Mammalia: Insectivora: Leptictida: Leptictidae). Its large body size and higher−crowned teeth indicate a different feeding ecology from other leptictid insectivores. With evidence of some heavy, flat wear on the molariform teeth, its shift in diet was likely to greater herbivory. Unlike the narrow snout of Blacktops, this new leptictid retains a broad snout, suggesting that small verte− brates were still important dietary components. The specimen was collected from the floodplain deposits of the lower or middle White River Group of South Dakota, which represent the latest Eocene to earliest Oligocene (Chadronian and Orellan North American Land Mammal “Ages”). Key words: Mammalia, Leptictidae, Leptictis, Megaleptictis, Eocene, Oligocene, White River Group, South Dakota, North America. TJ Meehan [[email protected]], Research Associate, Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, USA; Larry D. Martin [[email protected]], Division of Vertebrate Paleontology, Natural History Museum and Biodiversity Re− search Center, University of Kansas, Lawrence, KS 66045, USA. Received 4 April 2011, accepted 25 July 2011, available online 17 August 2011. Introduction molariform teeth. A fossa in this region at least suggests in− creased snout mobility, but no definitive anatomical argument Leptictida is a primitive order of placental, insectivorous has been made to support a highly mobile cartilaginous snout mammals convergent to extant sengis or elephant “shrews” tip, as in sengis.
    [Show full text]
  • Small Mammal Population Dynamics and Range Shifts with Climate
    RESOURCES, DATA RESOLUTION AND SMALL MAMMAL RANGE DYNAMICS Nerissa Haby B. Env. Sci. (Hons) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy April 2012 Ecology and Evolutionary Biology University of Adelaide, Australia Table of contents Table of contents i Abstract ii Acknowledgements iii Declaration iv How well do existing evaluations of climate change impacts on range Introduction 1 dynamics represent Australian small mammals? Improving performance and transferability of small-mammal species Chapter 1. 8 distribution models Chapter 2. Specialist resources are key to improving small mammal distribution models 22 Scale dependency of metapopulation models used to predict climate change Chapter 3. 35 impacts on small mammals Lessons from the arid zone: using climate variables to predict small mammal Chapter 4. 52 occurrence in hot, dry environments Ecosystem dynamics, evolution and dependency of higher trophic organisms Chapter 5. 69 on resource gradients Conclusion 79 References 89 Appendix 106 Publications associated with this thesis 153 i Abstract Extensive range shift and mass extinctions resulting from climate change are predicted to impact all biodiversity on the basis of species distribution models of wide-spread and data-rich taxa (i.e. vascular plants, terrestrial invertebrates, birds). Cases that both support and contradict these predictions have been observed in empirical and modelling investigations that continue to under-represent small mammal species (Introduction). Given small mammals are primary or higher order consumers and often dispersal limited, incorporating resource gradients that define the fundamental niche may be vital for generating accurate estimates of range shift. This idea was investigated through the influence of coarse to fine resolution, landscape- and quadrat-scale data on the range dynamics of four temperate- and five arid-zone small mammals.
    [Show full text]
  • All About Food Webs
    fact sheet All about food webs We all need energy to live, so do other animals! An animal’s energy is derived from the food it eats. Different animals eat different things as their energy source: carnivores herbivores omnivores only eat animals (meat) only eat plants eat animals and plants Plants produce their own food, using energy from the sun, by a process called water + carbon dioxide + sunlight photosynthesis. Because they make their own food plants food + oxygen are called ‘producers’. Animals are called ‘consumers’, because they get their energy by consuming other things. What do you think these eat? • insectivore • nectarivore • frugivore ast0890 | Feeding relationships 3: All about food webs (fact sheet) developed for the Department of Education WA © The University of Western Australia 2012 for conditions of use see spice.wa.edu.au/usage version 1.1 revised November 2015 page 1 Licensed for NEALS A food chain shows what consumes what in an environment, that is, species that are linked to each other by what they eat. It also illustrates the direction in which energy passes from one species to the next. acacia cicada green tree frog freshwater crocodile Acacia plants are producers. The arrow shows at the beginning of the food chain, cicadas eat acacia, so cicadas are called ‘first order’ consumers. Next in the food chain, green tree frogs eat cicadas, so green tree frogs are ‘second order’ consumers. Then, freshwater crocodiles eat frogs, so freshwater crocodiles are ‘third order’ consumers. Each animal is named a different order of consumer, based on its position in a particular food chain.
    [Show full text]
  • Mammal Species Richness at a Catena and Nearby Waterholes During a Drought, Kruger National Park, South Africa
    diversity Article Mammal Species Richness at a Catena and Nearby Waterholes during a Drought, Kruger National Park, South Africa Beanélri B. Janecke Animal, Wildlife & Grassland Sciences, University of the Free State, 205 Nelson Mandela Road, Park West, Bloemfontein 9301, South Africa; [email protected]; Tel.: +27-51-401-9030 Abstract: Catenas are undulating hillslopes on a granite geology characterised by different soil types that create an environmental gradient from crest to bottom. The main aim was to determine mammal species (>mongoose) present on one catenal slope and its waterholes and group them by feeding guild and body size. Species richness was highest at waterholes (21 species), followed by midslope (19) and sodic patch (16) on the catena. Small differences observed in species presence between zones and waterholes and between survey periods were not significant (p = 0.5267 and p = 0.9139). In total, 33 species were observed with camera traps: 18 herbivore species, 10 carnivores, two insectivores and three omnivores. Eight small mammal species, two dwarf antelopes, 11 medium, six large and six mega-sized mammals were observed. Some species might not have been recorded because of drought, seasonal movement or because they travelled outside the view of cameras. Mammal presence is determined by food availability and accessibility, space, competition, distance to water, habitat preferences, predators, body size, social behaviour, bound to territories, etc. The variety in body size and feeding guilds possibly indicates a functioning catenal ecosystem. This knowledge can be beneficial in monitoring and conservation of species in the park. Keywords: catena ecosystem; ephemeral mud wallows; habitat use; mammal variety; Skukuza area; Citation: Janecke, B.B.
    [Show full text]
  • Condition of Dry Ephemeral and Intermittent Streams
    Assessing the biological CWR condition of dry SC P ephemeral and Es 9 intermittent streams tablished 196 Raphael D. Mazor John Olson Matthew Robison Andrew Caudillo Jeff Brown SCCWRP Technical Report #1089 Assessing the biological condition of dry ephemeral and intermittent streams Raphael D. Mazor1, John Olson2, Matthew Robison2, Andrew Caudillo2, and Jeff Brown1 1Southern California Coastal Water Research Project, Costa Mesa, CA 2California State University at Monterey Bay, Seaside, CA September 2019 Technical Report 1089 This report was prepared for the San Diego Regional Water Quality Control Board. i EXECUTIVE SUMMARY Intermittent and ephemeral streams comprise a large portion of stream-miles in the San Diego region, yet tools to assess stream health have so far only been available for perennial and long- term intermittent streams, meaning that watershed assessments are incomplete — in some watersheds, substantially so. Managers therefore have only a limited ability to assess the effectiveness of their programs. Consequently, nonperennial streams, especially ephemeral streams, are often excluded from regulatory and management programs. To address this gap, researchers at the Southern California Coastal Water Research Project (SCCWRP) and California State University at Monterey Bay (CSUMB) have developed new assessment tools to assess the ecological condition of intermittent and ephemeral streams when they are dry. Although these tools require additional refinement with larger data sets than are currently available, they demonstrate the feasibility of quantitative ecological assessments that transcend hydrologic gradients. Biological indicators can quantify responses to stress in dry streams SCCWRP and CSUMB developed new bioassessment indices for dry streams that follow the successful approaches used in perennial and intermittent streams, such as the California Stream Condition Index (CSCI).
    [Show full text]
  • Applied Soil Ecology 58 (2012) 66–77
    Applied Soil Ecology 58 (2012) 66–77 Contents lists available at SciVerse ScienceDirect Applied Soil Ecology journa l homepage: www.elsevier.com/locate/apsoil Nematodes as an indicator of plant–soil interactions associated with desertification a,∗ b c c Jeremy R. Klass , Debra P.C. Peters , Jacqueline M. Trojan , Stephen H. Thomas a New Mexico State University, Plant and Environmental Science, Las Cruces, NM 88003-8003, USA b USDA-ARS Jornada Experimental Range and Jornada Basin LTER, Las Cruces, NM 88003-8003, USA c New Mexico State University, Entomology, Plant Pathology, and Weed Science, Las Cruces, NM 88003-8003, USA a r t i c l e i n f o a b s t r a c t Article history: Conversion of perennial grasslands to shrublands is a desertification process that is important globally. Received 5 October 2011 Changes in aboveground ecosystem properties with this conversion have been well-documented, but Received in revised form 14 February 2012 little is known about how belowground communities are affected, yet these communities may be impor- Accepted 8 March 2012 tant drivers of desertification as well as constraints on the reversal of this state change. We examined nematode community structure and feeding as a proxy for soil biotic change across a desertification Keywords: gradient in southern NM, USA. We had two objectives: (1) to compare nematode trophic structure and Semi-arid grasslands species diversity within vegetation states representing different stages of desertification, and (2) to com- Nematode communities pare nematode community structure between bare and vegetated patches that may be connected via a Nematode diversity Connectivity matrix of endophytic fungi and soil biotic crusts.
    [Show full text]
  • Title: the Detritus-Based Microbial-Invertebrate Food Web
    1 Title: 2 3 The detritus-based microbial-invertebrate food web contributes disproportionately 4 to carbon and nitrogen cycling in the Arctic 5 6 7 8 Authors: 9 Amanda M. Koltz1*, Ashley Asmus2, Laura Gough3, Yamina Pressler4 and John C. 10 Moore4,5 11 1. Department of Biology, Washington University in St. Louis, Box 1137, St. 12 Louis, MO 63130 13 2. Department of Biology, University of Texas at Arlington, Arlington, TX 14 76109 15 3. Department of Biological Sciences, Towson University, Towson, MD 16 21252 17 4. Natural Resource Ecology Laboratory, Colorado State University, Ft. 18 Collins, CO 80523 USA 19 5. Department of Ecosystem Science and Sustainability, Colorado State 20 University, Ft. Collins, CO 80523 USA 21 *Correspondence: Amanda M. Koltz, tel. 314-935-8794, fax 314-935-4432, 22 e-mail: [email protected] 23 24 25 26 Type of article: 27 Submission to Polar Biology Special Issue on “Ecology of Tundra Arthropods” 28 29 30 Keywords: 31 Food web structure, energetic food web model, nutrient cycling, C mineralization, 32 N mineralization, invertebrate, Arctic, tundra 33 1 34 Abstract 35 36 The Arctic is the world's largest reservoir of soil organic carbon and 37 understanding biogeochemical cycling in this region is critical due to the potential 38 feedbacks on climate. However, our knowledge of carbon (C) and nitrogen (N) 39 cycling in the Arctic is incomplete, as studies have focused on plants, detritus, 40 and microbes but largely ignored their consumers. Here we construct a 41 comprehensive Arctic food web based on functional groups of microbes (e.g., 42 bacteria and fungi), protozoa, and invertebrates (community hereafter referred to 43 as the invertebrate food web) residing in the soil, on the soil surface and within 44 the plant canopy from an area of moist acidic tundra in northern Alaska.
    [Show full text]
  • The Value of Animal Behaviour As a Bio-Indicator of Restoration Quality
    Edith Cowan University Research Online Theses: Doctorates and Masters Theses 2018 The value of animal behaviour as a bio-indicator of restoration quality Floyd Holmes Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses Part of the Ecology and Evolutionary Biology Commons, and the Environmental Sciences Commons Recommended Citation Holmes, F. (2018). The value of animal behaviour as a bio-indicator of restoration quality. https://ro.ecu.edu.au/theses/2106 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses/2106 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]
  • In Light of Energy: Influences of Light Pollution on Linked Stream-Riparian Invertebrate Communities
    In Light of Energy: Influences of Light Pollution on Linked Stream-Riparian Invertebrate Communities THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Lars Alan Meyer Graduate Program in Environment and Natural Resources The Ohio State University 2012 Committee: Professor Mažeika S.P. Sullivan, Advisor Professor Mary M. Gardiner Professor Paul G. Rodewald Copyrighted by Lars Alan Meyer 2012 Abstract The world’s human population is expected to expand to nine billion by the year 2050, with 70% projected to be living in cities. As urban populations grow, cities are producing an ever-increasing intensity of ecological light pollution (ELP). At the individual and population levels, artificial night lighting has been shown to influence predator-prey relationships, migration patterns, and reproductive success of many aquatic and terrestrial species. With few exceptions, the effects of ELP on communities and ecosystems remain unexplored. My research investigated the potential influences of ELP on stream-riparian invertebrate communities and trophic dynamics, as well as the reciprocal aquatic-terrestrial exchanges that are critical to ecosystem function. From June 2010 to June 2011, I conducted bimonthly surveys of aquatic emergent insects, terrestrial arthropods, and riparian spiders of the family Tetragnathidae at nine Columbus, OH stream reaches of differing ambient ELP levels (low: 0 - 0.5 lux; moderate: 0.5 - 2 lux; high 2 - 4 lux). In August 2011, I experimentally increased light levels at the low and moderate treatment reaches to ~12 lux. I quantified invertebrate biomass, family richness, density (individuals m-2) of aquatic and terrestrial invertebrates, and measured reciprocal stream-terrestrial invertebrate fluxes.
    [Show full text]
  • Mammalian Insectivores Exert Topdown Effects on Azteca Ants
    BIOTROPICA 0(0): 1–6 2014 10.1111/btp.12128 Mammalian Insectivores Exert Top-Down Effects on Azteca Ants Ben T. Hirsch1,2,6, Daniel Martinez2, Erin L. Kurten3, Danielle D. Brown4, and Walter P. Carson5 1 Wildlife Ecology & Conservation, University of Florida, PO Box 110430, 110 Newins-Ziegler Hall, Gainesville, FL, 32611-0430, U.S.A. 2 Smithsonian Tropical Research Institute, Unit 9100, Box 0948, DPO AA, 34002-9898, Panama 3 Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, U.S.A. 4 Department of Biology, Western Kentucky University, Bowling Green, KY, 42101, U.S.A. 5 Department of Biological Sciences, University of Pittsburgh, 154A Crawford Hall, 4249 Fifth Avenue, Pittsburgh, PA, 15260, U.S.A. ABSTRACT Insectivorous mammals are hypothesized to reduce the abundance of their insect prey. Using a 14-yr mammal exclusion experiment, we demonstrate for the first time that a widespread and abundant Neotropical mammalian insectivore (Tamandua: Tamandua mexicana) reduced Azteca ant abundance. Azteca ant nests inside mammal exclosures were significantly larger than nests in control plots, where tamanduas were more abundant. These top-down effects were caused not only by direct consumption, but also through non-trophic direct effects, specifically nest damage. In contrast, tamanduas appeared to exert no significant top-down effect on termite prey, which have strong chemical defenses. Our results are consistent with theory that strong defenses against predation can mitigate the top-down effects of predators on some prey species. We argue that predicting the degree of top-down effects caused by predators requires both a quantitative knowledge of prey choice and an understanding of the anti-predator defenses of prey.
    [Show full text]
  • Database Code: SA001
    Database Code: SA001 Title:Invertebrates of the Andrews Experimental Forest: An annotated list of insects and other arthropods, 1971 to 2002 Abstract: This publication is not a pro forma species list; rather, it has been generated as the result of diverse ecological studies centered on and around the Andrews Forest beginning in 1971. No attempt has been made to exhaustively collect the area with methodologies appropriate to each invertebrate group. This list provides some insight into the enormous invertebrate diversity present in the coniferous forests of the Pacific Northwest. It provides reference material for investigators who might be engaged in ecological investigations. We hope that these data, set in an ecological context, will stimulate collaboration and facilitate the design of future research. Keywords:Arthropods;Forest ecosystems;Insects;Invertebrates;Long-Term Ecological Research (LTER);Old-growth forests;Populations;Trophic structure;Populations;populations;Long-Term Ecological Research (LTER);trophic structure;forest ecosystems;old growth forests;invertebrates;arthropods;insects; Date data commenced:1971-06-01 Date data terminated:2002-03-11 Principal Investigator:Jeffrey C. Miller List of Entities: 1. List of Insects and other Arthropods from Parson's et al. 1. List of Insects and other Arthropods from Parson's et al. Attribute List: STCODE N N char(5) freetext FORMAT N N numeric(1,0) range 1.0000 1.0000 number CLASS Y N varchar(30) freetext TAX_ORDER Y N varchar(25) freetext FAMILY Y N varchar(35) freetext SCI_NAME Y N
    [Show full text]
  • Invertebrate Assemblages on Biscogniauxia Sporocarps on Oak Dead Wood: an Observation Aided by Squirrels
    Article Invertebrate Assemblages on Biscogniauxia Sporocarps on Oak Dead Wood: An Observation Aided by Squirrels Yu Fukasawa Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko, Osaki, Miyagi 989-6711, Japan; [email protected]; Tel.: +81-229-847-397; Fax: +81-229-846-490 Abstract: Dead wood is an important habitat for both fungi and insects, two enormously diverse groups that contribute to forest biodiversity. Unlike the myriad of studies on fungus–insect rela- tionships, insect communities on ascomycete sporocarps are less explored, particularly for those in hidden habitats such as underneath bark. Here, I present my observations of insect community dynamics on Biscogniauxia spp. on oak dead wood from the early anamorphic stage to matured teleomorph stage, aided by the debarking behaviour of squirrels probably targeting on these fungi. In total, 38 insect taxa were observed on Biscogniauxia spp. from March to November. The com- munity composition was significantly correlated with the presence/absence of Biscogniauxia spp. Additionally, Librodor (Glischrochilus) ipsoides, Laemophloeus submonilis, and Neuroctenus castaneus were frequently recorded and closely associated with Biscogniauxia spp. along its change from anamorph to teleomorph. L. submonilis was positively associated with both the anamorph and teleomorph stages. L. ipsoides and N. castaneus were positively associated with only the teleomorph but not with the anamorph stage. N. castaneus reproduced and was found on Biscogniauxia spp. from June to November. These results suggest that sporocarps of Biscogniauxia spp. are important to these insect taxa, depending on their developmental stage. Citation: Fukasawa, Y. Invertebrate Keywords: fungivory; insect–fungus association; Sciurus lis; Quercus serrata; xylariaceous ascomycetes Assemblages on Biscogniauxia Sporocarps on Oak Dead Wood: An Observation Aided by Squirrels.
    [Show full text]