(Zaedyus Pichiy) in Mendoza Province, Argentina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Northern Naked-Tailed Armadillo in the Lacandona Rainforest, Mexico: New Records and Potential Threats Revista Mexicana De Biodiversidad, Vol
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; González-Di Pierro, Ana María; Lombera, Rafael; de la Peña-Cuéllar, Erika; Peña-Mondragón, Juan Luis; Hernández-Ordoñez, Omar; Muench, Carlos; Garmendia, Adriana; Stoner, Kathryn E. The northern naked-tailed armadillo in the Lacandona rainforest, Mexico: new records and potential threats Revista Mexicana de Biodiversidad, vol. 83, núm. 2, 2012, pp. 581-586 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42523421033 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 82: 581-586, 2011 Research note The northern naked-tailed armadillo in the Lacandona rainforest, Mexico: new records and potential threats Armadillo de cola desnuda en la selva lacandona, México: nuevos registros y amenazas potenciales Arturo González-Zamora1,2, Víctor Arroyo-Rodríguez2, Ana María González-Di Pierro2, Rafael Lombera4, Erika de la Peña-Cuéllar2, Juan Luis Peña-Mondragón2, Omar Hernández-Ordoñez2, Carlos Muench2, Adriana Garmendia2 and Kathryn E. Stoner2,3 1División de Posgrado, Instituto de Ecología A.C. Km. 2.5 Carretera antigua a Coatepec No.351. Congregación El Haya, 91070 Xalapa, Veracruz, México. 2Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, México. -
The Prosopis Juliflora - Prosopis Pallida Complex: a Monograph
DFID DFID Natural Resources Systems Programme The Prosopis juliflora - Prosopis pallida Complex: A Monograph NM Pasiecznik With contributions from P Felker, PJC Harris, LN Harsh, G Cruz JC Tewari, K Cadoret and LJ Maldonado HDRA - the organic organisation The Prosopis juliflora - Prosopis pallida Complex: A Monograph NM Pasiecznik With contributions from P Felker, PJC Harris, LN Harsh, G Cruz JC Tewari, K Cadoret and LJ Maldonado HDRA Coventry UK 2001 organic organisation i The Prosopis juliflora - Prosopis pallida Complex: A Monograph Correct citation Pasiecznik, N.M., Felker, P., Harris, P.J.C., Harsh, L.N., Cruz, G., Tewari, J.C., Cadoret, K. and Maldonado, L.J. (2001) The Prosopis juliflora - Prosopis pallida Complex: A Monograph. HDRA, Coventry, UK. pp.172. ISBN: 0 905343 30 1 Associated publications Cadoret, K., Pasiecznik, N.M. and Harris, P.J.C. (2000) The Genus Prosopis: A Reference Database (Version 1.0): CD ROM. HDRA, Coventry, UK. ISBN 0 905343 28 X. Tewari, J.C., Harris, P.J.C, Harsh, L.N., Cadoret, K. and Pasiecznik, N.M. (2000) Managing Prosopis juliflora (Vilayati babul): A Technical Manual. CAZRI, Jodhpur, India and HDRA, Coventry, UK. 96p. ISBN 0 905343 27 1. This publication is an output from a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID. (R7295) Forestry Research Programme. Copies of this, and associated publications are available free to people and organisations in countries eligible for UK aid, and at cost price to others. Copyright restrictions exist on the reproduction of all or part of the monograph. -
Dietary Specialization and Variation in Two Mammalian Myrmecophages (Variation in Mammalian Myrmecophagy)
Revista Chilena de Historia Natural 59: 201-208, 1986 Dietary specialization and variation in two mammalian myrmecophages (variation in mammalian myrmecophagy) Especializaci6n dietaria y variaci6n en dos mamiferos mirmec6fagos (variaci6n en la mirmecofagia de mamiferos) KENT H. REDFORD Center for Latin American Studies, Grinter Hall, University of Florida, Gainesville, Florida 32611, USA ABSTRACT This paper compares dietary variation in an opportunistic myrmecophage, Dasypus novemcinctus, and an obligate myrmecophage, Myrmecophaga tridactyla. The diet of the common long-nosed armadillo, D. novemcintus, consists of a broad range of invertebrate as well as vertebrates and plant material. In the United States, ants and termites are less important as a food source than they are in South America. The diet of the giant anteater. M. tridactyla, consists almost entirely of ants and termites. In some areas giant anteaters consume more ants whereas in others termites are a larger part of their diet. Much of the variation in the diet of these two myrmecophages can be explained by geographical and ecological variation in the abundance of prey. However, some variation may be due to individual differences as well. Key words: Dasypus novemcinctus, Myrmecophaga tridactyla, Tamandua, food habits. armadillo, giant anteater, ants, termites. RESUMEN En este trabajo se compara la variacion dietaria entre un mirmecofago oportunista, Dasypus novemcinctus, y uno obligado, Myrmecophaga tridactyla. La dieta del armadillo comun, D. novemcinctus, incluye un amplio rango de in- vertebrados así como vertebrados y materia vegetal. En los Estados Unidos, hormigas y termites son menos importantes como recurso alimenticio de los armadillos, de lo que son en Sudamérica. La dieta del hormiguero gigante, M tridactyla, está compuesta casi enteramente por hormigas y termites. -
A Case Study on the Potential of the Multipurpose Prosopis Tree
23 Underutilised crops for famine and poverty alleviation: a case study on the potential of the multipurpose Prosopis tree N.M. Pasiecznik, S.K. Choge, A.B. Rosenfeld and P.J.C. Harris In its native Latin America, the Prosopis tree (also known as Mesquite) has multiple uses as a fuel wood, timber, charcoal, animal fodder and human food. It is also highly drought-resistant, growing under conditions where little else will survive. For this reason, it has been introduced as a pioneer species into the drylands of Africa and Asia over the last two centuries as a means of reclaiming desert lands. However, the knowledge of its uses was not transferred with it, and left in an unmanaged state it has developed into a highly invasive species, where it encroaches on farm land as an impenetrable, thorny thicket. Attempts to eradicate it are proving costly and largely unsuccessful. In 2006, the problem of Prosopis was hitting the headlines on an almost weekly basis in Kenya. Yet amidst calls for its eradication, a pioneering team from the Kenya Forestry Research Institute (KEFRI) and HDRA’s International Programme set out to demonstrate its positive uses. Through a pilot training and capacity building programme in two villages in Baringo District, people living with this tree learned for the first time how to manage and use it to their benefit, both for food security and income generation. Results showed that the pods, milled to flour, would provide a crucial, nutritious food supplement in these famine-prone desert margins. The pods were also used or sold as animal fodder, with the first international order coming from South Africa by the end of the year. -
Number of Living Species in Australia and the World
Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure. -
Range Extension of the Northern Naked-Tailed Armadillo (Cabassous Centralis) in Southern Mexico
Western North American Naturalist Volume 77 Number 3 Article 10 9-29-2017 Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico Rugieri Juárez-López Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Mariana Pérez-López Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Yaribeth Bravata-de la Cruz Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Alejandro Jesús-de la Cruz Universidad Juarez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Fernando M. Contreras-Moreno Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] See next page for additional authors Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Juárez-López, Rugieri; Pérez-López, Mariana; Bravata-de la Cruz, Yaribeth; Jesús-de la Cruz, Alejandro; Contreras-Moreno, Fernando M.; Thornton, Daniel; and Hidalgo-Mihart, Mircea G. (2017) "Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico," Western North American Naturalist: Vol. 77 : No. 3 , Article 10. Available at: https://scholarsarchive.byu.edu/wnan/vol77/iss3/10 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico Authors Rugieri Juárez-López, Mariana Pérez-López, Yaribeth Bravata-de la Cruz, Alejandro Jesús-de la Cruz, Fernando M. -
El Armadillo, Cabassous Centralis (Cingulata: Chlamyphoridae) En Agroecosistemas Con Café De Costa Rica
El armadillo, Cabassous centralis (Cingulata: Chlamyphoridae) en agroecosistemas con café de Costa Rica Ronald J. Sánchez-Brenes1 & Javier Monge2 1. Universidad Nacional Costa Rica, Sede Regional Chorotega, Centro Mesoamericano de Desarrollo Sostenible del Trópico Seco (CEMEDE-UNA), Nicoya, Costa Rica; [email protected], https://orcid.org/0000-0002-6979-1336 2. Universidad de Costa Rica, Facultad de Ciencias Agroalimentarias, Escuela de Agronomía, Centro de Investigación en Protección de Cultivos, Instituto de Investigaciones Agronómicas, San José, Costa Rica; [email protected], https://orcid.org/0000-0003-1530-5774 Recibido 09-VIII-2019 • Corregido 11-IX-2019 • Aceptado 30-IX-2019 DOI: https://doi.org/10.22458/urj.v11i3.2724 ABSTRACT: “The armadillo, Cabassous centralis (Cingulata: RESUMEN: Introducción: El armadillo Cabassous centralis se clasifica Chlamyphoridae) in a Costa Rican coffee agro-ecosystem”. Introduction: como una especie con Datos Insuficientes que se encuentra desde The rare Cabassous centralis armadillo is classified as a Data Deficient México hasta el norte de América del Sur. Objetivo: Ampliar la distri- species found from Mexico to northern South America). Objective: To bución ecológica de C. centralis. Métodos: Colocamos cuatro cámaras expand the ecological distribution of C. centralis. Methods: We placed trampa en sitios estratégicos como fuentes de alimentación, madrigue- four trap cameras in strategic sites such as food sites, burrows, bodies of ras, cuerpos de agua y transición al bosque secundario, en San Ramón, water and transition to the secondary forest, in San Ramón, Costa Rica. Costa Rica. Resultados: Obtuvimos un registro de C. centralis en la tran- Results: We obtained a record of C. -
(Dasypus) in North America Based on Ancient Mitochondrial DNA
bs_bs_banner A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA BETH SHAPIRO, RUSSELL W. GRAHAM AND BRANDON LETTS Shapiro, B. Graham, R. W. & Letts, B.: A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas. 10.1111/bor.12094. ISSN 0300-9483. The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine-banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene-age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed. Beth Shapiro ([email protected]), Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; Russell W. -
International Rivers and Lakes
International Rivers and Lakes A Newsletter issued by the Department of Technical Co-operation for Development s!^- United Nations, New York n£/TS) (°5) 'Jo. 10 Vis 6'AJ C Page Interstate water riqhts: a case adjudicated by the Supreme Court of Justice of Argentina 2 River basin resources: perspectives for their development and conservation 5 Council of Europe: recommendation concerning pollution of the Rhine River Draft charter on international co-operation and ground-water management 8 Co-operation in the field of transboundary waters 9 International Commission for the Hydrology ofthe Rhine Basin ... 10 Completion of the Man?r cali Dam 13 Book review 13 Call for news items and participation in information exchange . 15 88-29082 - 2 - Interstate water rights; a case adjudicated by the Supreme Court of Justice of Argentina In December 1987, the Supreme Court of Justice of Argentina reached a final judgement in the first case concerning interstate rivers to be brought before it (Province of La Pampa vs. Province of Mendoza). Argentina - a country where water domain is vested in the provinces - is governed by a federal government with specific powers of jurisdiction. Any conflicts between provinces concerning water rights must be adjudicated by the Supreme Court. The case of La Pampa vs. Mendoza established rules for the allocation of waters of interstate rivers. In doing this, the Court was following precedents of international law and jurisprudence, particularly as established in the United States. The controversy focused on the Atuel River, which the Court ruled was an interstate river. The province of La Pampa sued, claiming that its possessory rights on public interstate waters had been challenged by the province of Mendoza's autonomous development of such waters. -
Nine-Banded Armadillo (Dasypus Novemcinctus) Michael T
Nine-banded Armadillo (Dasypus novemcinctus) Michael T. Mengak Armadillos are present throughout much of Georgia and are considered an urban pest by many people. Armadillos are common in central and southern Georgia and can easily be found in most of Georgia’s 159 counties. They may be absent from the mountain counties but are found northward along the Interstate 75 corridor. They have poorly developed teeth and limited mobility. In fact, armadillos have small, peg-like teeth that are useful for grinding their food but of little value for capturing prey. No other mammal in Georgia has bony skin plates or a “shell”, which makes the armadillo easy to identify. Just like a turtle, the shell is called a carapace. Only one species of armadillo is found in Georgia and the southeastern U.S. However, 20 recognized species are found throughout Central and South America. These include the giant armadillo, which can weigh up to 130 pounds, and the pink fairy armadillo, which weighs less than 4 ounces. Taxonomy Order Cingulata – Armadillos Family Dasypodidae – Armadillo Nine-banded Armadillo – Dasypus novemcinctus The genus name Dasypus is thought to be derived from a Greek word for hare or rabbit. The armadillo is so named because the Aztec word for armadillo meant turtle-rabbit. The species name novemcinctus refers to the nine movable bands on the middle portion of their shell or carapace. Their common name, armadillo, is derived from a Spanish word meaning “little armored one.” Figure 1. Nine-banded Armadillo. Photo by author, 2014. Status Armadillos are considered both an exotic species and a pest. -
Natural Disaster, Crime, and Narratives of Disorder: the 1861 Mendoza Earthquake and Argentina╎s Ruptured Social and Polit
Midwest Social Sciences Journal Volume 22 Issue 1 Article 4 2019 Natural Disaster, Crime, and Narratives of Disorder: The 1861 Mendoza Earthquake and Argentina’s Ruptured Social and Political Faults Quinn P. Dauer Indiana University Southeast, [email protected] Follow this and additional works at: https://scholar.valpo.edu/mssj Part of the Anthropology Commons, Business Commons, Criminology Commons, Economics Commons, Environmental Studies Commons, Gender and Sexuality Commons, Geography Commons, History Commons, International and Area Studies Commons, Political Science Commons, Psychology Commons, and the Urban Studies and Planning Commons Recommended Citation Dauer, Quinn P. (2019) "Natural Disaster, Crime, and Narratives of Disorder: The 1861 Mendoza Earthquake and Argentina’s Ruptured Social and Political Faults," Midwest Social Sciences Journal: Vol. 22 : Iss. 1 , Article 4. Available at: https://scholar.valpo.edu/mssj/vol22/iss1/4 This Article is brought to you for free and open access by ValpoScholar. It has been accepted for inclusion in Midwest Social Sciences Journal by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Dauer: Natural Disaster, Crime, and Narratives of Disorder: The 1861 Men Research Natural Disaster, Crime, and Narratives of Disorder: The 1861 Mendoza Earthquake and Argentina’s Ruptured Social and Political Faults∗ QUINN P. DAUER Indiana University Southeast ABSTRACT Social scientists studying natural disasters have generally found an absence of panic, a decrease in crime, and survivors working together to find basic necessities in the days and weeks after a catastrophe. By contrast, political and military authorities implement measures such as martial law to prevent chaos and lawlessness threatening private property. -
Capture of a Functionally Active Methyl-Cpg Binding Domain by an Arthropod Retrotransposon Family
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Research Capture of a functionally active methyl-CpG binding domain by an arthropod retrotransposon family Alex de Mendoza,1,2 Jahnvi Pflueger,1,2 and Ryan Lister1,2 1Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia; 2Harry Perkins Institute of Medical Research, Perth, Western Australia, 6009, Australia The repressive capacity of cytosine DNA methylation is mediated by recruitment of silencing complexes by methyl-CpG binding domain (MBD) proteins. Despite MBD proteins being associated with silencing, we discovered that a family of arthropod Copia retrotransposons have incorporated a host-derived MBD. We functionally show how retrotransposon- encoded MBDs preferentially bind to CpG-dense methylated regions, which correspond to transposable element regions of the host genome, in the myriapod Strigamia maritima. Consistently, young MBD-encoding Copia retrotransposons (CopiaMBD) accumulate in regions with higher CpG densities than other LTR-retrotransposons also present in the genome. This would suggest that retrotransposons use MBDs to integrate into heterochromatic regions in Strigamia, avoiding poten- tially harmful insertions into host genes. In contrast, CopiaMBD insertions in the spider Stegodyphus dumicola genome dispro- portionately accumulate in methylated gene bodies compared with other spider LTR-retrotransposons. Given that transposons are not actively targeted by DNA methylation in the spider genome, this distribution bias would also support a role for MBDs in the integration process. Together, these data show that retrotransposons can co-opt host-derived epige- nome readers, potentially harnessing the host epigenome landscape to advantageously tune the retrotransposition process.