Life-History Traits and Temperature-Dependent

Total Page:16

File Type:pdf, Size:1020Kb

Life-History Traits and Temperature-Dependent Life-History Traits and Temperature-Dependent Performance of Tranosema rostrale (Hym.: Ichneumonidae), a Parasitoid of Low-Density Spruce Budworm (Lep.: Tortricidae) Populations by Martin Lukas Seehausen A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Faculty of Forestry University of Toronto © Copyright by M. Lukas Seehausen 2017 Life-History Traits and Temperature-Dependent Performance of Tranosema rostrale (Hym.: Ichneumonidae), a Parasitoid of Low-Density Spruce Budworm (Lep.: Tortricidae) Populations M. Lukas Seehausen Doctor of Philosophy Faculty of Forestry University of Toronto 2016 Abstract The eastern spruce budworm Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae) is one of the most important outbreaking defoliator in conifer forests of eastern North America. In low-density populations, the larval endoparasitoid Tranosema rostrale (Brischke) (Hymenoptera: Ichneumonidae) is known as an important mortality factor, but relatively little information is available about the factors influencing its ability to keep spruce budworm populations low. A series of studies were conducted to investigate T. rostrale’s: 1) reproductive biology and behaviour; 2) seasonal pattern of parasitism and host instar preference; 3) developmental, survival, and reproductive response to temperature; 4) ability to abrogate spruce budworm’s immune response at high temperatures; and 5) spatiotemporal biology in response to changing temperature. Three traits of the parasitoid’s reproductive biology contribute to its successful parasitism: its lack of a pre-mating and preoviposition period, the rapid maturity of its eggs soon after emergence despite being synovigenic, and its efficacy in host searching and oviposition behaviour. As T. rostrale does not prefer to attack any one particular host instar, its seasonal pattern of parasitism is likely influenced by its phenology or competition with the ectoparasitoid Elachertus cacoeciae (Howard) ii (Hymenoptera: Eulophidae). Overall performance by T. rostrale was severely reduced at high temperatures. The negative correlation between the parasitoid’s survival and rearing temperatures above 20°C was associated with a downregulation of T. rostrale’s polydnavirus gene transcription and an enhancement of the accumulation of host immunity gene transcripts. An individual-based simulation model incorporating the parasitoid’s response to temperature allowed insight into unknown facts about its seasonal biology, such as phenology, voltinism, and overwintering strategy. The findings improve our understanding of the influence of temperature on spruce budworm population dynamics via its parasitoids, and our ability to predict pest outbreaks, which is important to develop more effective pest management strategies under scenarios of changing climate. iii Acknowledgements I thank my supervisor Prof. Sandy M. Smith for accepting me into the PhD program in Forestry. Her open, friendly, and calm personality gave me the necessary environment to do a PhD and to write the present document. I appreciate her positive feedback and encouragement to pursue higher goals. A special thanks goes to her for her lessons in biological control and integrated pest management, that widened my horizon beyond the work of this dissertation. I wish to thank Dr. Jacques Régnière for his enormous support as supervisor, for inviting me to work in his lab at the Laurentian Forestry Centre in Québec, for letting me use his resources, and for financial support. I am especially grateful for his patient introduction into statistics and advanced modeling approaches and for correcting numerous first drafts of manuscripts. His everlasting help and encouragement pushed me to ever higher goals without losing sight of the ground. Many thanks to Dr. Véronique Martel for supervision and sharing her resources and knowledge with me. The frequent discussions with her had a marked influence on the experiments I did and the interpretation of my results. I thank her for organizing social events that brought the entomology research groups at the Laurentian Forestry Centre in Québec so close together, allowing for this huge amount of work to get done with so much fun. I also wish to acknowledge Prof. Marie-Josée Fortin, Prof. Marc W. Cadotte, Prof. D. Chris Darling, and Dr. Taylor Scarr for accepting to be on my PhD committee and providing feedback on experimental design, interpretation of results, and writing throughout my studies. A special thanks goes to Dr. Michel Cusson, who so openly welcomed me to do part of my work in his lab and introduced me to the world of molecular biology. His door was always open for me to have very fruitful discussions about T. rostrale, PDVs, spruce budworm, and science in general. I will never forget his advice for good scientific practices and the art of writing a scientific article. A huge thank you to the students Pascale Bolduc, Sophie Ouellet, Michael Leblanc, Myriam Labrecque, Anne-Marie Dion, Shannie Parent, Maxence Bory, and Hedvig K. Nenzén, as well as the technicians Simon Trudeau, Maxime Moisan, and Paule Huron for helping me so diligently with my experiments, be it for long hours in the lab on weekdays or weekends, or outside in the forest during sunshine, rain or snow. Thanks to Maria Toledo-Garibaldi for doing Fig. 1.2, and to the volunteers Charles Heller, Nina Socolov, and Jennifer Baici for going through the numerous iv Malaise trap samples. Without you all, it would have been impossible to conduct the many experiments presented in this dissertation! Many people from the Laurentian Forestry Centre helped me during the summers and beyond with my experiments. In this context, I want to acknowledge Catherine Béliveau, Don Stewart, and Abdelmadjid Djoumad for helping me with the molecular experiments, Dr. Lucy Royer, Dr. Johanne Delisle, and Dr. Deepa Pureswaran for good discussions and help with experiments, and Ariane Bechard for taking care of all the little things that usually slip my mind. I also thank Rémi Saint-Amant for his help with BioSIM and the model described in Chapter 6, your programming skills are truly incredible! I am grateful to Pierre Therrien, Denis Simoneau, Guylaine Trudel, and Claudine Dussault of the Ministère des Forêts, Faune et Parcs Québec (MFFPQ) for insect rearing, for providing me with T. rostrale and spruce budworm larvae, as well as other in-kind support for my experiments. My colleague and friend Justin Gaudon deserves special acknowledgements here for all the fruitful discussions, for sharing my passion about parasitoids and statistics, and for always being there when help was needed. With you, I always remember that knowledge is powerful only when it is shared; thanks for that! Thank you Rhoda deJonge, Amany Mansour, Susan Frye, Pei-Yu Kuo, Janani Sivarajah, Nigel Gale, John Schurman, Lucas Roscoe, Graham Watt, Richard Dickinson, Dr. Nurul Islam, Eric Davies, Nicolas Tanguy, and Rana Roy for being good colleagues that helped me to grow professionally and as a person. I also thank Nigel Gale and Prof. Sean Thomas for introducing me into the world of plant ecology and biochar. Thanks to all members of the Faculty of Forestry staff for helping with the necessary paper work during my PhD program and to all members of the Forestry Graduate Students’ Association for their help and trust in me. Financial support was granted through SERG-International by the provincial governments of Ontario, Quebec, Newfoundland, Nova Scotia, Saskatchewan and the Société de protection des forêts contre les insectes et maladies (SOPFIM), as well as by the Atlantic Canada Opportunities Agency and Natural Resources Canada (Canadian Forest Service). Additional funding was provided through a Natural Sciences and Engineering Research Council Cananda (NSERC) Discovery Grant to SMS. Funding for myself was provided by the Ontario Trillium Scholarship through the University of Toronto, for which I’m eternally thankful because I could never had covered the high school fees and living expenses in Toronto without it. v My friends Dr. Alvaro Fuentealba, Maria Constanza Diaz, and Dr. Roberto Quezada deserve a mention here for always having an open door during my long summers in Quebec; thank you! I extend everlasting gratitude to my parents Hildegard and Udo Seehausen, who always provided me with the best possible education and supported me in all my decisions with such positive attitude and good advice. I am also thankful to my grandparents Irmgard Schnellbächer and Herta Seehausen, as well as to my sisters and brothers, who supported me on my way to this dissertation. The biggest thank-you goes to my lovely wife Dr. Julieta Caballero, my son Elias, and the little Sam for always being by my side, supporting me and letting me see every day for what it is all worth it. All my work is dedicated to them! vi Table of Contents Acknowledgements ........................................................................................................................ iv Table of Contents .......................................................................................................................... vii List of Tables ................................................................................................................................. ix List of Figures ..................................................................................................................................x Chapter 1 General Introduction ...................................................................................................1
Recommended publications
  • Arthropod Containment in Plant Research
    Arthropod Containment in Plant Research Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware What we do at USDA ARS BIIRU - • To develop biological control programs against invasive (non-native) agriculture and forest pests – Research involves both the plant-feeding insects and their natural enemies (predators & parasitoids) Invasive Emerald Ash Borer Larval Parasitoids of EAB (EAB) The Goal of Insect Containment at USDA ARS BIIRU-Quarantine Facility • Prevent “accidental introduction” of “unwanted” non-native insects from damaging our agriculture and forestry Outlines • Why do we need to contain insects in plant research? • How can we most effectively contain insects in plant research? • Quarantine containment facility and standard operation procedures Why Do We Need To Contain Insects in Plant Research • Non-native insects can become serious invasive pests in a newly introduced region because disassociation with co- evolved natural enemies • Non-native insects used in plant research should be contained prior to regulatory approval for environmental releases Non-native, plant-feeding insects can become devastating pests in agriculture and forestry Detected in Michigan in 2002 • 31 States in the U.S. • Killed millions of ash trees Emerald Ash Borer Native Range of EAB & Origin of EAB-Parasitoids Origin of EAB Biocontrol Agents (Year releases began in US) 1. Oobius agrili 2. Tetrastichus planipennisi 3. Spathius agrili 4. Spathius galinae Russia China 1 4 2 3 Prevent “accidental introduction” of weed biocontrol
    [Show full text]
  • Entomofauna Ansfelden/Austria; Download Unter
    ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 28: 377-388 ISSN 0250-4413 Ansfelden, 30. November 2007 Phytophagous Noctuidae (Lepidoptera) of the Western Black Sea Region and their ichneumonid parasitoids Z. OKYAR & M. YURTCAN Abstract Eleven agricultural and silviculturally important species of Noctuidae and their parasitoids were determined in 33 localities from the Western Black Sea region between 2001 and 2004. The ichneumonid biological control agents Enicospilus ramidulus, Barylypa amabilis and Itoplectis alternans were obtained by rearing the host larvae. K e y w o r d s : Lepidoptera, Noctuidae, Hymenoptera, Ichneumonidae, parasitoidism, Western Black Sea Region, Turkey Zusammenfassung 11 land- und forstwirtschaftlich bedeutende Noctuidae-Arten einschließlich ihrer Parasitoide aus 33 Standorten des Gebietes des westlichen Schwarzen Meeres wurden im Zeitraum 2001 bis 2004 studiert. Ichneumonidae der Arten Enicospilus ramidulus, Barylypa amabilis and Itoplectis alternans konnten durch Aufzucht der Wirtslarven festgestellt werden. 377 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Introduction The Noctuidae is the largest family of the Lepidoptera. Larvae of some species are par- ticularly harmful to agricultural and silvicultural regions worldwide. Consequently, for years intense efforts have been carried out to control them through chemical, biological, and cultural methods (LIBURD et al. 2000; HOBALLAH et al. 2004; TOPRAK & GÜRKAN 2005). In the field, noctuid control is often carried out by parasitoid wasps (CHO et al. 2006). Ichneumonids are one of the most prevalent parasitoid groups of noctuids but they also parasitize on other many Lepidoptera, Coleoptera, Hymenoptera, Diptera and Araneae (KASPARYAN 1981; FITTON et al. 1987, 1988; GAULD & BOLTON 1988; WAHL 1993; GEORGIEV & KOLAROV 1999).
    [Show full text]
  • Turkish Journal of Entomology)
    Türkiye Entomoloji Dergisi (Turkish Journal of Entomology) Cilt (Vol.) 42 Sayı (No.) 3 Eylül (September) 2018 İnceleme ve Değerlendirmede Bilimsel Olarak Katkıda Bulunanlar (Scientific Advisory Board) ADAMSKI, Zbigniew, Poland İLKER, Ercan, Bursa ATAKAN, Ekrem, Adana KAÇAR, Gülay, Bolu AY, Recep, Isparta KARACA, İsmail, Isparta BAŞPINAR, Hüseyin, Aydın KAZAK, Cengiz, Adana BAYARTOGTOKH, Badamdorj, Mongolia KIVAN, Müjgan, Tekirdağ BOLU, Halil, Diyarbakır KOÇAK, Erhan, Isparta BORDERA, Santiago, Spain KOVANCI, Orkun Barış, Bursa CANHİLAL, Ramazan, Kayseri KUMRAL, Nabi Alper, Bursa CİVELEK, Hasan Sungur, Muğla KÜTÜK, Murat, Gaziantep ÇALMAŞUR, Önder, Erzurum MENNAN, Sevilhan, Samsun ÇETİN ERDOĞAN, Özlem, Edirne MIKUSKA, Alma, Croatia ÇETİN, Hüseyin, Antalya MILONAS, Panagiotis, Greece ÇETİNTAŞ, Ramazan, Kahramanmaraş MUMCUOĞLU, Kostas, İsrail ÇIKMAN, Emine, Hatay NAVARRO, Shlomo, Israel ÇİFTÇİ, Derya, Ankara ÖZDEMİR, Senem, Ankara ÇOBANOĞLU, Sultan, Ankara SAĞLAM, Özgür, Tekirdağ DAĞLI, Fatih, Antalya ŞENAL, Derya, Bilecik DAUTBASIC, Mirza, Bosnia-Herzegovina TEZCAN, Serdar, İzmir DURMUŞOĞLU, Enver, İzmir TİRYAKİ, Osman, Kayseri DONG, Shuang-Ling, China TOLUK, Ayşe, Kayseri EMEKÇİ, Mevlüt, Ankara TOMANOVIC, Zeljko, Serbia ERLER, Fedai, Antalya TOPRAK, Umut, Ankara FERİZLİ, Ahmet Güray, Ankara TREMATERRA, Pasquale, Italy GREGO, Nicola, Italy YOLDAŞ, Zeynep, İzmir GÜNCAN, Ali, Ordu YORULMAZ SALMAN, Sibel, Isparta GÜZ, Nurper, Ankara YURTCAN, Murat, Edirne HASSAN, Erol, Australia YURTSEVER, Selçuk, Edirne İçindekiler (Contents) Orijinal araştırmalar
    [Show full text]
  • 25Th U.S. Department of Agriculture Interagency Research Forum On
    US Department of Agriculture Forest FHTET- 2014-01 Service December 2014 On the cover Vincent D’Amico for providing the cover artwork, “…and uphill both ways” CAUTION: PESTICIDES Pesticide Precautionary Statement This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Product Disclaimer Reference herein to any specific commercial products, processes, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recom- mendation, or favoring by the United States government. The views and opinions of wuthors expressed herein do not necessarily reflect those of the United States government, and shall not be used for advertising or product endorsement purposes. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C.
    [Show full text]
  • Ichneumonid Wasps (Hymenoptera, Ichneumonidae) in the to Scale Caterpillar (Lepidoptera) [1]
    Central JSM Anatomy & Physiology Bringing Excellence in Open Access Research Article *Corresponding author Bui Tuan Viet, Institute of Ecology an Biological Resources, Vietnam Acedemy of Science and Ichneumonid Wasps Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, Email: (Hymenoptera, Ichneumonidae) Submitted: 11 November 2016 Accepted: 21 February 2017 Published: 23 February 2017 Parasitizee a Pupae of the Rice Copyright © 2017 Viet Insect Pests (Lepidoptera) in OPEN ACCESS Keywords the Hanoi Area • Hymenoptera • Ichneumonidae Bui Tuan Viet* • Lepidoptera Vietnam Academy of Science and Technology, Vietnam Abstract During the years 1980-1989,The surveys of pupa of the rice insect pests (Lepidoptera) in the rice field crops from the Hanoi area identified showed that 12 species of the rice insect pests, which were separated into three different groups: I- Group (Stem bore) including Scirpophaga incertulas, Chilo suppressalis, Sesamia inferens; II-Group (Leaf-folder) including Parnara guttata, Parnara mathias, Cnaphalocrocis medinalis, Brachmia sp, Naranga aenescens; III-Group (Bite ears) including Mythimna separata, Mythimna loryei, Mythimna venalba, Spodoptera litura . From these organisms, which 15 of parasitoid species were found, those species belonging to 5 families in of the order Hymenoptera (Ichneumonidae, Chalcididae, Eulophidae, Elasmidae, Pteromalidae). Nine of these, in which there were 9 of were ichneumonid wasp species: Xanthopimpla flavolineata, Goryphus basilaris, Xanthopimpla punctata, Itoplectis naranyae, Coccygomimus nipponicus, Coccygomimus aethiops, Phaeogenes sp., Atanyjoppa akonis, Triptognatus sp. We discuss the general biology, habitat preferences, and host association of the knowledge of three of these parasitoids, (Xanthopimpla flavolineata, Phaeogenes sp., and Goryphus basilaris). Including general biology, habitat preferences and host association were indicated and discussed.
    [Show full text]
  • Parasitoid Abundance of Archips Rosana (Linnaeus, 1758) (Lepidoptera: Tortricidae) in Organic Cherry Orchards
    NORTH-WESTERN JOURNAL OF ZOOLOGY 10 (1): 42-47 ©NwjZ, Oradea, Romania, 2014 Article No.: 131208 http://biozoojournals.ro/nwjz/index.html Parasitoid abundance of Archips rosana (Linnaeus, 1758) (Lepidoptera: Tortricidae) in organic cherry orchards Mitat AYDOĞDU Trakya University, Faculty of Sciences, Department of Biology, 22030 Edirne, Turkey. E-mail: [email protected], Tel.: +90 284 2352825-1195, Fax: +90 284 2354010 Received: 24. October 2012 / Accepted: 07. April 2013 / Available online: 13. December 2013 / Printed: June 2014 Abstract. Archips rosana (Linnaeus, 1758) (Lepidoptera: Tortricidae), a highly polyphagous pest species, has potential economic importance on fruit crops. The present study aimed to gather data on species composition of parasitoids of Archips rosana. It was carried out in the years 2010-2011 in organic cherry orchards in the province of Edirne (Turkey). Twenty-two parasitic hymenopteran species belonging to three families (Ichneumonidae, Braconidae and Chalcididae) and one dipteran species (Tachinidae) were determined. Braconidae was found to be the most frequently represented family with 13 species, followed by Ichneumonidae 8, Chalcididae and Tachinidae with one species, respectively. Parasitoids from the superfamily Ichneumonoidea (Braconidae and Ichneumonidae) turned out to be the most effective, and the dominating species was endoparasitoid Itoplectis maculator (Fabricius, 1775). Archips rosana was found for the first time to serve as a host for Pimpla spuria Gravenhorst, 1829; Scambus buolianae (Hartig, 1838); Bracon (Habrobracon) hebetor Say, 1836; Bracon (Bracon) intercessor Nees, 1834; Meteorus versicolor (Wesmael, 1835) and Meteorus rufus (DeGeer, 1778). This information should be helpful in the development of biological control programs to manage A. rosana in cherry orchards.
    [Show full text]
  • Establishment and Early Impact of Spathius Galinae (Hymenoptera: Braconidae) on Emerald Ash Borer (Coleoptera: Buprestidae) in the Northeastern United States
    applyparastyle "fig//caption/p[1]" parastyle "FigCapt" Copyedited by: OUP Journal of Economic Entomology, XX(XX), 2019, 1–10 doi: 10.1093/jee/toz159 Biological and Microbial Control Research Downloaded from https://academic.oup.com/jee/advance-article-abstract/doi/10.1093/jee/toz159/5519704 by ESA Member Access user on 13 September 2019 Establishment and Early Impact of Spathius galinae (Hymenoptera: Braconidae) on Emerald Ash Borer (Coleoptera: Buprestidae) in the Northeastern United States Jian J. Duan,1,6 Roy G. Van Driesche,2 Ryan S. Crandall,2 Jonathan M. Schmude,1 Claire E. Rutledge,3 Benjamin H. Slager,4 Juli R. Gould,5 and Joseph S. Elkinton2 1USDA ARS, Beneficial Insects Introduction Research Unit, Newark, DE 19713, 2Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, 3Department Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06511, 4USDA APHIS PPQ Emerald Ash Borer Program, Brighton, MI 48116, 5USDA, APHIS, CPHST, Buzzards Bay, MA 02542, and 6Corresponding author, e-mail: [email protected] Subject Editor: Julio Bernal Received 7 March 2019; Editorial decision 14 May 2019 Abstract The emerald ash borer (EAB), Agrilus planipennis Fairmaire, a buprestid beetle native to Asia, has become a serious pest of ash trees (Fraxinus spp.) in North America since the early 2000s. Due to the impracticality of applying insecticides in natural forests, biocontrol is the most viable method to manage EAB in natural eco- systems. Here, we report the first evidence for the establishment and impact ofSpathius galinae Belokobylskij & Strazenac, a larval parasitoid first released in North America in 2016 and 2017 at six mixed-hardwood forest sites, in Connecticut, New York, and Massachusetts.
    [Show full text]
  • Biological-Control-Programmes-In
    Biological Control Programmes in Canada 2001–2012 This page intentionally left blank Biological Control Programmes in Canada 2001–2012 Edited by P.G. Mason1 and D.R. Gillespie2 1Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada; 2Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada iii CABI is a trading name of CAB International CABI Head Offi ce CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 T: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 T: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org Chapters 1–4, 6–11, 15–17, 19, 21, 23, 25–28, 30–32, 34–36, 39–42, 44, 46–48, 52–56, 60–61, 64–71 © Crown Copyright 2013. Reproduced with the permission of the Controller of Her Majesty’s Stationery. Remaining chapters © CAB International 2013. All rights reserved. No part of this publication may be reproduced in any form or by any means, electroni- cally, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biological control programmes in Canada, 2001-2012 / [edited by] P.G. Mason and D.R. Gillespie. p. cm. Includes bibliographical references and index. ISBN 978-1-78064-257-4 (alk. paper) 1. Insect pests--Biological control--Canada. 2. Weeds--Biological con- trol--Canada. 3. Phytopathogenic microorganisms--Biological control- -Canada.
    [Show full text]
  • A New Species of Campoletis Förster (Hymenoptera, Ichneumonidae) with a Key to Species Known from China, Japan and South Korea
    ZooKeys 1004: 99–108 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.1004.57913 RESEARch ARTicLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Campoletis Förster (Hymenoptera, Ichneumonidae) with a key to species known from China, Japan and South Korea Ya-Wei Wei1,2, Yong-Bin Zhou1,2, Qing-Chi Zou3, Mao-Ling Sheng4 1 College of Forestry, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China 2 Re- search Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network, Changtu, Liaoning, 112500, China 3 Liaoning Natural Forest Protection Center, 126 Changjiang Street, Shenyang 110036, China 4 General Station of Forest and Grassland Pest Management, National Forestry and Grassland Administration, 58 Huanghe North Street, Shenyang 110034, China Corresponding author: Yong-Bin Zhou ([email protected]); Mao-Ling Sheng ([email protected]) Academic editor: K. van Achterberg | Received 23 August 2020 | Accepted 22 November 2020 | Published 16 December 2020 http://zoobank.org/3FC8C713-7866-42BE-A179-F59B6D4FC519 Citation: Wei Y-W, Zhou Y-B, Zou Q-C, Sheng M-L (2020) A new species of Campoletis Förster (Hymenoptera, Ichneumonidae) with a key to species known from China, Japan and South Korea. ZooKeys 1004: 99–108. https://doi. org/10.3897/zookeys.1004.57913 Abstract A new species of the genus Campoletis Förster, 1869, C. deserticola Sheng & Zhou, sp. nov., collected from Zhangwu, Liaoning Province and Songshan National Natural Reserve, Yanqing, Beijing, China, is described and illustrated. A taxonomic key to the species of Campoletis known in China is provided. Keywords Campopleginae, taxonomy, parasitoid wasp Introduction Campoletis Förster, 1869, a relatively large genus of the subfamily Campopleginae (Hy- menoptera, Ichneumonidae), comprises 112 described species (Yu et al.
    [Show full text]
  • Parasitism and Migration in Southern Palaearctic Populations of the Painted Lady Butterfly, Vanessa Cardui (Lepidoptera: Nymphalidae)
    Eur. J. Entomol. 109: 85–94, 2012 http://www.eje.cz/scripts/viewabstract.php?abstract=1683 ISSN 1210-5759 (print), 1802-8829 (online) Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae) CONSTANTÍ STEFANESCU 1, 2, RICHARD R. ASKEW 3,JORDI CORBERA4 and MARK R. SHAW 5 1 Butterfly Monitoring Scheme, Museu de Granollers-Ciències Naturals, Francesc Macià, 51, Granollers, E-08402, Spain; e-mail: [email protected] 2Global Ecology Unit, CREAF-CEAB-CSIC, Edifici C, Campus de Bellaterra, Bellaterra, E-08193, Spain 3 Beeston Hall Mews, Tarporley, Cheshire, CW6 9TZ, England, UK 4 Secció de Ciències Naturals, Museu de Mataró, El Carreró 17-19, Mataró, E-08301, Spain 5 Honorary Research Associate, National Museums of Scotland, Scotland, UK Key words. Lepidoptera, Nymphalidae, population dynamics, seasonal migration, enemy-free space, primary parasitoids, Cotesia vanessae, secondary parasitoids Abstract. The painted lady butterfly (Vanessa cardui) (Lepidoptera: Nymphalidae: Nymphalinae) is well known for its seasonal long-distance migrations and for its dramatic population fluctuations between years. Although parasitism has occasionally been noted as an important mortality factor for this butterfly, no comprehensive study has quantified and compared its parasitoid com- plexes in different geographical areas or seasons. In 2009, a year when this butterfly was extraordinarily abundant in the western Palaearctic, we assessed the spatial and temporal variation in larval parasitism in central Morocco (late winter and autumn) and north-east Spain (spring and late summer). The primary parasitoids in the complexes comprised a few relatively specialized koinobi- onts that are a regular and important mortality factor in the host populations.
    [Show full text]
  • Beiträge Zur Bayerischen Entomofaunistik 13: 67–207
    Beiträge zur bayerischen Entomofaunistik 13:67–207, Bamberg (2014), ISSN 1430-015X Grundlegende Untersuchungen zur vielfältigen Insektenfauna im Tiergarten Nürnberg unter besonderer Betonung der Hymenoptera Auswertung von Malaisefallenfängen in den Jahren 1989 und 1990 von Klaus von der Dunk & Manfred Kraus Inhaltsverzeichnis 1. Einleitung 68 2. Untersuchungsgebiet 68 3. Methodik 69 3.1. Planung 69 3.2. Malaisefallen (MF) im Tiergarten 1989, mit Gelbschalen (GS) und Handfänge 69 3.3. Beschreibung der Fallenstandorte 70 3.4. Malaisefallen, Gelbschalen und Handfänge 1990 71 4. Darstellung der Untersuchungsergebnisse 71 4.1. Die Tabellen 71 4.2. Umfang der Untersuchungen 73 4.3. Grenzen der Interpretation von Fallenfängen 73 5. Untersuchungsergebnisse 74 5.1. Hymenoptera 74 5.1.1. Hymenoptera – Symphyta (Blattwespen) 74 5.1.1.1. Tabelle Symphyta 74 5.1.1.2. Tabellen Leerungstermine der Malaisefallen und Gelbschalen und Blattwespenanzahl 78 5.1.1.3. Symphyta 79 5.1.2. Hymenoptera – Terebrantia 87 5.1.2.1. Tabelle Terebrantia 87 5.1.2.2. Tabelle Ichneumonidae (det. R. Bauer) mit Ergänzungen 91 5.1.2.3. Terebrantia: Evanoidea bis Chalcididae – Ichneumonidae – Braconidae 100 5.1.2.4. Bauer, R.: Ichneumoniden aus den Fängen in Malaisefallen von Dr. M. Kraus im Tiergarten Nürnberg in den Jahren 1989 und 1990 111 5.1.3. Hymenoptera – Apocrita – Aculeata 117 5.1.3.1. Tabellen: Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 117 5.1.3.2. Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 122 5.1.4. Coleoptera 131 5.1.4.1. Tabelle Coleoptera 131 5.1.4.2.
    [Show full text]
  • Field Release of the Parasitoid Spathius Galinae for the for the Biological Control of the Emerald Ash Borer (Agrilus Planipennis) in the Contiguous United States
    United States Department of Agriculture Marketing and Field Release of the Regulatory Programs Parasitoid Spathius Animal and Plant Health Inspection galinae for the Biological Service Control of the Emerald Ash Borer (Agrilus planipennis) in the Contiguous United States Environmental Assessment, March 2015 Field Release of the Parasitoid Spathius galinae for the for the Biological Control of the Emerald Ash Borer (Agrilus planipennis) in the Contiguous United States Environmental Assessment, March 2015 Agency Contact: Robert Tichenor Pest Permitting Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 133 Riverdale, MD 20737–1236 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form.
    [Show full text]