Considering Cannabis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phytopythium: Molecular Phylogeny and Systematics
Persoonia 34, 2015: 25–39 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685382 Phytopythium: molecular phylogeny and systematics A.W.A.M. de Cock1, A.M. Lodhi2, T.L. Rintoul 3, K. Bala 3, G.P. Robideau3, Z. Gloria Abad4, M.D. Coffey 5, S. Shahzad 6, C.A. Lévesque 3 Key words Abstract The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium COI clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian LSU phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase Oomycetes subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as Oomycota a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora Peronosporales and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. Phytopythium The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of Pythiales the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense. SSU Article info Received: 28 January 2014; Accepted: 27 September 2014; Published: 30 October 2014. INTRODUCTION establish which species belong to clade K and to make new taxonomic combinations for these species. To achieve this The genus Pythium as defined by Pringsheim in 1858 was goal, phylogenies based on nuclear LSU rRNA (28S), SSU divided by Lévesque & de Cock (2004) into 11 clades based rRNA (18S) and mitochondrial DNA cytochrome oxidase1 (COI) on molecular systematic analyses. -
CANOPY and LEAF GAS EXCHANGE ACCOMPANYING PYTHIUM ROOT ROT of LETTUCE and CHRYSANTHEMUM a Thesis Presented to the Faculty Of
CANOPY AND LEAF GAS EXCHANGE ACCOMPANYING PYTHIUM ROOT ROT OF LETTUCE AND CHRYSANTHEMUM A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph In partial ful filment of requirements for the degree of Master of Science January, 200 1 Q Melanie Beth Johnstone, 200 1 National Library Bibliothèque nationale 191 of Canada du Canada Acquisitions and Acquisitions et Bibliographic Services seivices bibliographiques 395 Wellington Street 395, me Wellington Ottawa ON KIA ON4 Ottawa ON K 1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence dowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seil reproduire, prêter, distribuer ou copies of this thesis in rnicroform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substanhal extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othenvise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT CAKOPY AND LEAF GAS EXCHANGE ACCOMPANYING PYTHIUMROOT ROT OF LETTUCE AND CHRYSANTHEMUM Melanie Beth Johnstone Advisors: University of Guelph, 2000 Professor B. Grodzinski Professor J.C. Sutton The first charactenzation of host carbon assimilation in response to Pythium infection is described. Hydroponic lettuce (Lactuca sativa L. -
Effects of Low Ph of Hydroponic Nutrient Solution on Plant Growth
HORTSCIENCE 55(8):1251–1258. 2020. https://doi.org/10.21273/HORTSCI14986-20 of pathogen introduction in hydroponic systems is critical, as effective chemical control agents for root diseases of edible Effects of Low pH of Hydroponic crops are limited and may not be registered for use in greenhouses or indoors (Jensen Nutrient Solution on Plant Growth, and Collins, 2011; Stanghellini, 1996). Various disinfection systems (e.g., ultravi- Nutrient Uptake, and Root Rot Disease olet irradiation) have been introduced to commercial hydroponic systems to miti- Ocimum basilicum gate the risk of disease introduction and Incidence of Basil ( spread through the recirculation system for the nutrient solution (Wohanka, 2002). L.) However, once a disease outbreak occurs, growers are often forced to suspend pro- Daniel P. Gillespie and Chieri Kubota duction and disinfect growing systems, Department of Horticulture and Crop Science, The Ohio State University, leading to decreased yields and profit, Columbus, OH 43210 changes to crop schedules, and increased labor (Stanghellini, 1996). Sally A. Miller Among the most common oomycete path- Department of Plant Pathology, The Ohio State University, Wooster, OH ogens experienced in hydroponic crop pro- 44691 duction are Pythium and Phytophthora spp. (Stanghellini and Rasmussen, 1994). Al- Additional index words. acid, CEA, controlled environment, disease, oomycete, pathogen, though these oomycete pathogens can infest Pythium, water culture roots of virtually all crop species grown hydroponically, basil and spinach (Spinacia Abstract. Rootzone pH affects nutrient availability for plants. Hydroponic leafy greens oleracea) are particularly susceptible to in- are grown in nutrient solutions with pH 5.5 to 6.5. Lower pH may inhibit plant growth, fection by oomycete pathogens (Mattson, whereas pathogenic oomycete growth and reproduction may be mitigated. -
Francesco Orsini Marielle Dubbeling Henk De Zeeuw Giorgio Gianquinto Editors Rooftop Urban Agriculture
Urban Agriculture Francesco Orsini Marielle Dubbeling Henk de Zeeuw Giorgio Gianquinto Editors Rooftop Urban Agriculture 123 Urban Agriculture Series editors Christine Aubry, AgroParisTech, INRA UMR SADAPT, Paris, France Éric Duchemin, Université du Québec à Montréal Institut des Science de Environment, Montreal, Québec, Canada Joe Nasr, Centre for Studies in Food Security, Ryerson University, Toronto, Ontario, Canada The Urban Agriculture Book Series at Springer is for researchers, professionals, policy-makers and practitioners working on agriculture in and near urban areas. Urban agriculture (UA) can serve as a multifunctional resource for resilient food systems and socio-culturally, economically and ecologically sustainable cities. For the Book Series Editors, the main objective of this series is to mobilize and enhance capacities to share UA experiences and research results, compare methodologies and tools, identify technological obstacles, and adapt solutions. By diffusing this knowledge, the aim is to contribute to building the capacity of policy- makers, professionals and practitioners in governments, international agencies, civil society, the private sector as well as academia, to effectively incorporate UA in their field of interests. It is also to constitute a global research community to debate the lessons from UA initiatives, to compare approaches, and to supply tools for aiding in the conception and evaluation of various strategies of UA development. The concerned scientific field of this series is large because UA combines agricultural issues with those related to city management and development. Thus this interdisciplinary Book Series brings together environmental sciences, agronomy, urban and regional planning, architecture, landscape design, economics, social sciences, soil sciences, public health and nutrition, recognizing UA’s contribution to meeting society’s basic needs, feeding people, structuring the cities while shaping their development. -
Development of Hydroponic Production Systems for Strawberry Production
Development of Hydroponic Production Systems for Strawberry Production Principle Investigators and Cooperators: Principal Investigators: Lead PI Co-PI Dr. Michael Timmons Dr. Neil Mattson Professor, Cornell University Associate Professor, Cornell University Department of Biological & Department of Horticulture Environmental Engineering 49D Plant Science, Ithaca NY 14853 302 Riley-Robb Hall, Ithaca, NY 14853 (607) 255-0621 (607) 255-1630 [email protected] [email protected] Project Manager: Mr. Matthew Moghaddam Department of Horticulture, Cornell University [email protected] Background and Justification: New York consumers have limited access to fresh, high quality, locally grown produce at competitive pricing with imported product. It is well known that consumers place an added value on locally produced products. This then provides an opportunity for the small-scale producer and that opportunity can be partially addressed through aquaponics and product diversification. Strawberries are a highly favored fruit, yet almost all strawberries are imported into the New York State markets. NY ranked eighth in strawberry production in 2014 with 3.2 million pounds, but falls far behind the top five states (CA 2758 million lbs. per year, FL 207 M, OR 15, NC 15, WA 10, MI 4.5, WI 3.8, PA 3.3 M) (USDA, 2014). This domestic production comes from 56,000 acres of which only 22 acres are from greenhouse operations. This is in sharp contrast to Japan where 12,990 acres are greenhouse grown from a total country production of 14,876 acres. Historical production methods (field grown) need not prevent adaptation of new methods (greenhouse) as demonstrated in Mexico that had no history of strawberry production. -
Intro to Aquaponics & Hydroponics
6/23/2020 Joe Masabni Overton Research and Extension Center [email protected] Special Thanks to Andrew S. McArdle, Aquaponics Specialist for his original work 12 Aquaculture + = Aquaculture + Hydroponics = Recirculating Aquaculture Hydroponics Raises fish in densely stocked tanks Farming of plants in a soil-less environment. Drawbacks: Chemicals and fertilizers are provided in a nutrient solution Drawbacks: (many of which are petroleum derived and can be High amounts of waste produced expensive) Extensive Filtration Required 34 Quantity of Quality of Fish Feed Fish Feed Fed Size Aquaculture + Hydroponics = Aquaponics Hydroponic Raceways pH Air Aquaponics Temperature Water The Aquaponic Ecosystem Culmination of both intensive aquaculture and hydroponic Temperature technologies in a recirculating system. Nitrate Fish Plants -Reduced Waste Alkalinity -Hydroponic Fertilizers No Longer Required Nitrite Bacteria Top Off Water Source Ammonia/ Ammonium Carbon Dioxide Water Flow Dissolved Oxygen Filtration 56 1 6/23/2020 78 Flood and Drain System Media filled grow bed Nutrient Film Technique (NFT) pH neutral rock or expanded clay Suitable for smaller plant varieties – Leafy Greens Either continuously flooded Larger plants clog gutters OR flooded and drained Thin film of water Can heat up very easily so chiller may be required Good potential for commercial operation 910 Raft System Floats plants on top of water with roots suspended in the water column Most practical commercial application 11 12 2 6/23/2020 Many system types … Professional -
Ecological Study of Aquaponics Bacterial Microbiota Over the Course of a Lettuce Growth Cycle
water Article Ecological Study of Aquaponics Bacterial Microbiota over the Course of a Lettuce Growth Cycle Mathilde Eck †, Iris Szekely †,Sébastien Massart and M. Haïssam Jijakli * Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium; [email protected] (M.E.); [email protected] (I.S.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +32-(0)81-62-2431 † These authors contributed equally to this work. Abstract: The study of microorganisms in aquaponics is an important topic which requires more research before exploiting the full potential of beneficial microorganisms. In this experiment, we fo- cused on the evolution over time of the bacterial communities in four compartments of an aquaponic system i.e., the sump, the biofilter, the lettuce rhizoplane and lettuce root. We studied these com- munities over the course of a lettuce growth cycle via regular sampling and sequencing of the 16S rRNA gene of the collected bacteria. We also followed the physicochemical parameters of the aquaponic water throughout the experiment. Results show that a different community could be found in each compartment and that all four communities were stable throughout time and resilient to naturally occurring water parameter changes which characterize functioning aquaponic systems. Furthermore, the communities of the sump and biofilter also seem stable over the years as the predominant taxa (Luteolibacter, Flavobacterium, Nitrospira) observed in our study are similar to the Citation: Eck, M.; Szekely, I.; ones previously reported for this aquaponic system. Finally, our results provide proof for similarities Massart, S.; Jijakli, M.H. -
PROOF Biological Control of Pythium Root Rot of Chrysanthemum in Small-Scale Hydroponic Units
PHYTOPATHOLOGY PROOF W. Liu et al. (2007) Phytoparasitica 35(2):xxx-xxx PROOF Biological Control of Pythium Root Rot of Chrysanthemum in Small-scale Hydroponic Units W. Liu,1 J.C. Sutton,1;∗ B. Grodzinski,2J.W. Kloepper3 and M.S. Reddy3 The capacity of several strains of root-colonizing bacteria to suppress Pythium aphanider- matum, Pythium dissotocum and root rot was investigated in chrysanthemums grown in single-plant hydroponic units containing an aerated nutrient solution. The strains were 4 −1 applied in the nutrient solution at a final density of 10 CFU ml and 14 days later the 4 root systems were inoculated with Pythium by immersion in suspensions of 10 zoospores −1 ml solution. Controls received no bacteria, no Pythium, or one of the Pythium spp. but no bacteria. Strain effectiveness was estimated based on percent roots colonized by Pythium and area under disease progress curves (AUDPC). In plants treated respectively with Pseudomonas (Ps.) chlororaphis 63-28 and Bacillus cereus HY06 and inoculated with P. aphanidermatum, root colonization by the pathogen was 83% and 72% lower than in the pathogen control, and AUDPC value was reduced by 61% and 65%. For P. dissotocum, the respective strains reduced root colonization by 87% and 91%, and AUDPC values by 70% and 90%. In plants treated respectively with Pseudomonas chlororaphis Tx-1 and Comamonas acidovorans c-4-7-28, root colonization by P. aphanidermatum was 84% and 80% lower than in the controls and AUDPC values were reduced by 66% and 57%; these strains did not suppress P. dissotocum. Burkholderia gladioli C-2-74 and C. -
Plant Diseases and Management Approaches in Organic Farming Systems
PY54CH01-vanBruggen ARI 4 May 2016 13:13 V I E Review in Advance first posted online E W on May 23, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Plant Diseases and Management Approaches in Organic Farming Systems A.H.C. van Bruggen1 and M.R. Finckh2 1Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611; email: ahcvanbruggen@ufl.edu 2Faculty of Organic Agricultural Sciences, Ecological Plant Protection, University of Kassel, 37213 Witzenhausen, Germany Annu. Rev. Phytopathol. 2016. 54:1–30 Keywords The Annual Review of Phytopathology is online at ecosystem health, disease suppression, plant diversity, food web phyto.annualreviews.org Annu. Rev. Phytopathol. 2016.54. Downloaded from www.annualreviews.org complexity, organic-conventional agriculture, crop-loss assessment This article’s doi: 10.1146/annurev-phyto-080615-100123 Abstract Copyright c 2016 by Annual Reviews. Organic agriculture has expanded worldwide. Numerous papers were pub- All rights reserved lished in the past 20 years comparing plant diseases in organic and conven- tional crops. Root diseases are generally less severe owing to greater soil health, whereas some foliar diseases can be problematic in organic agricul- ture. The soil microbial community and nitrogen availability play an impor- Access provided by Chinese Academy of Agricultural Sciences (Agricultural Information Institute) on 05/25/16. For personal use only. tant role in disease development and yield. Recently, the focus has shifted to optimizing organic crop production by improving plant nutrition, weed control, and plant health. -
Rice Diseases and Disorders in Louisiana D E
Louisiana State University LSU Digital Commons LSU Agricultural Experiment Station Reports LSU AgCenter 1991 Rice diseases and disorders in Louisiana D E. Groth Follow this and additional works at: http://digitalcommons.lsu.edu/agexp Recommended Citation Groth, D E., "Rice diseases and disorders in Louisiana" (1991). LSU Agricultural Experiment Station Reports. 668. http://digitalcommons.lsu.edu/agexp/668 This Article is brought to you for free and open access by the LSU AgCenter at LSU Digital Commons. It has been accepted for inclusion in LSU Agricultural Experiment Station Reports by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Bulletin No. 828 July 1991 Rice Diseases and Disorders in Louisiana D. E. Groth, M. C .. Rush, and C.A. Hollier MIDL s 6 7 E36 n o .828 1 9 91 July Contents Page Acknowledgments...... ..... .. ..... ........................... .. ...... ................................... 3 Introduction ................... .................................................... ... .. ...................... 5 Rice Disease Identification . .. ....... ....... ...... ...... ...... ...... ...... ..... ..... ....... ...... 6 Guide to Identifying Rice Diseases Present in Louisiana.... .. .. .................. 7 Rice Diseases in Louisiana . ..... ....... ..... ....... .... .. ... ...... ....... ... .. .... ....... .... 11 Bacterial Leaf Blight ............................................................................ 11 Black Kernel............................ ... .. ... ..................................................... -
ABSTRACT REEVES, ELLA ROBYN. Pythium Spp. Associated with Root
ABSTRACT REEVES, ELLA ROBYN. Pythium spp. Associated with Root Rot and Stunting of Winter Field and Cover Crops in North Carolina. (Under the direction of Dr. Barbara Shew and Dr. Jim Kerns). Soft red winter wheat (Triticum aestivum) was valued at over $66 million in North Carolina in 2019, but mild to severe stunting and root rot limit yields in the Coastal Plain region during years with above-average rainfall. Pythium irregulare, P. vanterpoolii, and P. spinosum were previously identified as causal agents of stunting and root rot of winter wheat in this region. Annual double-crop rotation systems that incorporate winter wheat, or other winter crops such as clary sage, rapeseed, or a cover crop are common in the Coastal Plain of North Carolina. Stunting and root rot reduce yields of clary sage, and limit stand establishment and biomass accumulation of other winter crops in wet soils, but the role that Pythium spp. play in root rot of these crops is not understood, To investigate species prevalence, isolates of Pythium were collected from stunted winter wheat, clary sage, rye, rapeseed, and winter pea plants collected in eastern North Carolina during the growing season of 2018-2019, and from all crops except winter wheat again in 2019-2020. A total of 534 isolates were identified from all hosts. P. irregulare (32%), P. vanterpoolii (17%), and P. spinosum (16%) were the species most frequently recovered from wheat. P. irregulare (37% of all isolates) and members of the species complex Pythium sp. cluster B2A (28% of all isolates) comprised the majority of isolates collected from clary sage, rye, rapeseed, and winter pea. -
The Pennsylvania State University
The Pennsylvania State University The Graduate School Department of Plant Pathology and Environmental Microbiology CHARACTERIZATION OF Pythium and Phytopythium SPECIES FREQUENTLY FOUND IN IRRIGATION WATER A Thesis in Plant Pathology by Carla E. Lanze © 2015 Carla E. Lanze Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science August 2015 ii The thesis of Carla E. Lanze was reviewed and approved* by the following Gary W. Moorman Professor of Plant Pathology Thesis Advisor David M. Geiser Professor of Plant Pathology Interim Head of the Department of Plant Pathology and Environmental Microbiology Beth K. Gugino Associate Professor of Plant Pathology Todd C. LaJeunesse Associate Professor of Biology *Signatures are on file in the Graduate School iii ABSTRACT Some Pythium and Phytopythium species are problematic greenhouse crop pathogens. This project aimed to determine if pathogenic Pythium species are harbored in greenhouse recycled irrigation water tanks and to determine the ecology of the Pythium species found in these tanks. In previous research, an extensive water survey was performed on the recycled irrigation water tanks of two commercial greenhouses in Pennsylvania that experience frequent poinsettia crop loss due to Pythium aphanidermatum. In that work, only a preliminary identification of the baited species was made. Here, detailed analyses of the isolates were conducted. The Pythium and Phytopythium species recovered during the survey by baiting the water were identified and assessed for pathogenicity in lab and greenhouse experiments. The Pythium species found during the tank surveys were: a species genetically very similar to P. sp. nov. OOMYA1702-08 in Clade B2, two distinct species of unknown identity in Clade E2, P.