Black Root Rot of Cotton in Australia: the Host, the Pathogen and Disease Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pdf of Online Mansucript
VOLUME 3 JUNE 2019 Fungal Systematics and Evolution PAGES 135–156 doi.org/10.3114/fuse.2019.03.07 Taxonomic revision and multi-locus phylogeny of the North American clade of Ceratocystis L.A. Holland1, D.P. Lawrence1, M.T. Nouri2, R. Travadon1, T.C. Harrington3, F.P. Trouillas2* 1Department of Plant Pathology, University of California, Davis, CA 95616, USA 2Department of Plant Pathology, University of California, Kearney Agricultural Research and Extension Centre, Parlier, CA 93648, USA 3Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA *Corresponding author: [email protected] Key words: Abstract: The North American clade (NAC) of Ceratocystis includes pathogenic species that infect a wide range almond of woody hosts. Previous phylogenetic analyses have suggested that this clade includes cryptic species and a Ceratocystidaceae paraphyletic C. variospora. In this study, we used morphological data and phylogenetic analyses to characterize Ceratocystis canker NAC taxa, including Ceratocystis isolates causing a serious disease of almond trees in California. Phylogenetic new species analyses based on six gene regions supported two new species of Ceratocystis. Ceratocystis destructans is taxonomy introduced as the species causing severe damage to almond trees in California, and it has also been isolated from wounds on Populus and Quercus in Iowa. It is morphologically similar to C. tiliae, a pathogen on Tilia and the most recently characterized species in the NAC. Ceratocystis betulina collected from Betula platyphylla in Japan is also newly described and is the sister taxon to C. variospora. Our six-locus phylogenetic analyses and morphological characterization resolved several cryptic species in the NAC. -
Effects of Low Ph of Hydroponic Nutrient Solution on Plant Growth
HORTSCIENCE 55(8):1251–1258. 2020. https://doi.org/10.21273/HORTSCI14986-20 of pathogen introduction in hydroponic systems is critical, as effective chemical control agents for root diseases of edible Effects of Low pH of Hydroponic crops are limited and may not be registered for use in greenhouses or indoors (Jensen Nutrient Solution on Plant Growth, and Collins, 2011; Stanghellini, 1996). Various disinfection systems (e.g., ultravi- Nutrient Uptake, and Root Rot Disease olet irradiation) have been introduced to commercial hydroponic systems to miti- Ocimum basilicum gate the risk of disease introduction and Incidence of Basil ( spread through the recirculation system for the nutrient solution (Wohanka, 2002). L.) However, once a disease outbreak occurs, growers are often forced to suspend pro- Daniel P. Gillespie and Chieri Kubota duction and disinfect growing systems, Department of Horticulture and Crop Science, The Ohio State University, leading to decreased yields and profit, Columbus, OH 43210 changes to crop schedules, and increased labor (Stanghellini, 1996). Sally A. Miller Among the most common oomycete path- Department of Plant Pathology, The Ohio State University, Wooster, OH ogens experienced in hydroponic crop pro- 44691 duction are Pythium and Phytophthora spp. (Stanghellini and Rasmussen, 1994). Al- Additional index words. acid, CEA, controlled environment, disease, oomycete, pathogen, though these oomycete pathogens can infest Pythium, water culture roots of virtually all crop species grown hydroponically, basil and spinach (Spinacia Abstract. Rootzone pH affects nutrient availability for plants. Hydroponic leafy greens oleracea) are particularly susceptible to in- are grown in nutrient solutions with pH 5.5 to 6.5. Lower pH may inhibit plant growth, fection by oomycete pathogens (Mattson, whereas pathogenic oomycete growth and reproduction may be mitigated. -
Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae
Journal of Fungi Article Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae Mohammad Sayari 1,2,*, Magrieta A. van der Nest 1,3, Emma T. Steenkamp 1, Saleh Rahimlou 4 , Almuth Hammerbacher 1 and Brenda D. Wingfield 1 1 Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; [email protected] (M.A.v.d.N.); [email protected] (E.T.S.); [email protected] (A.H.); brenda.wingfi[email protected] (B.D.W.) 2 Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada 3 Biotechnology Platform, Agricultural Research Council (ARC), Onderstepoort Campus, Pretoria 0110, South Africa 4 Department of Mycology and Microbiology, University of Tartu, 14A Ravila, 50411 Tartu, Estonia; [email protected] * Correspondence: [email protected]; Fax: +1-204-474-7528 Abstract: Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using Citation: Sayari, M.; van der Nest, a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species M.A.; Steenkamp, E.T.; Rahimlou, S.; of the Ceratocystidaceae were identified. -
Francesco Orsini Marielle Dubbeling Henk De Zeeuw Giorgio Gianquinto Editors Rooftop Urban Agriculture
Urban Agriculture Francesco Orsini Marielle Dubbeling Henk de Zeeuw Giorgio Gianquinto Editors Rooftop Urban Agriculture 123 Urban Agriculture Series editors Christine Aubry, AgroParisTech, INRA UMR SADAPT, Paris, France Éric Duchemin, Université du Québec à Montréal Institut des Science de Environment, Montreal, Québec, Canada Joe Nasr, Centre for Studies in Food Security, Ryerson University, Toronto, Ontario, Canada The Urban Agriculture Book Series at Springer is for researchers, professionals, policy-makers and practitioners working on agriculture in and near urban areas. Urban agriculture (UA) can serve as a multifunctional resource for resilient food systems and socio-culturally, economically and ecologically sustainable cities. For the Book Series Editors, the main objective of this series is to mobilize and enhance capacities to share UA experiences and research results, compare methodologies and tools, identify technological obstacles, and adapt solutions. By diffusing this knowledge, the aim is to contribute to building the capacity of policy- makers, professionals and practitioners in governments, international agencies, civil society, the private sector as well as academia, to effectively incorporate UA in their field of interests. It is also to constitute a global research community to debate the lessons from UA initiatives, to compare approaches, and to supply tools for aiding in the conception and evaluation of various strategies of UA development. The concerned scientific field of this series is large because UA combines agricultural issues with those related to city management and development. Thus this interdisciplinary Book Series brings together environmental sciences, agronomy, urban and regional planning, architecture, landscape design, economics, social sciences, soil sciences, public health and nutrition, recognizing UA’s contribution to meeting society’s basic needs, feeding people, structuring the cities while shaping their development. -
Phylogenetic Assignment of the Fungicolous Hypoxylon Invadens (Ascomycota, Xylariales) and Investigation of Its Secondary Metabolites
microorganisms Article Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites Kevin Becker 1,2 , Christopher Lambert 1,2,3 , Jörg Wieschhaus 1 and Marc Stadler 1,2,* 1 Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; [email protected] (K.B.); [email protected] (C.L.); [email protected] (J.W.) 2 German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany 3 Department for Molecular Cell Biology, Helmholtz Centre for Infection Research GmbH (HZI) Inhoffenstraße 7, 38124 Braunschweig, Germany * Correspondence: [email protected]; Tel.: +49-531-6181-4240; Fax: +49-531-6181-9499 Received: 23 July 2020; Accepted: 8 September 2020; Published: 11 September 2020 Abstract: The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H. fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H. invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H. invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H. invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). -
Co-Adaptations Between Ceratocystidaceae Ambrosia Fungi and the Mycangia of Their Associated Ambrosia Beetles
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles Chase Gabriel Mayers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Biology Commons, Developmental Biology Commons, and the Evolution Commons Recommended Citation Mayers, Chase Gabriel, "Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles" (2018). Graduate Theses and Dissertations. 16731. https://lib.dr.iastate.edu/etd/16731 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles by Chase Gabriel Mayers A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Microbiology Program of Study Committee: Thomas C. Harrington, Major Professor Mark L. Gleason Larry J. Halverson Dennis V. Lavrov John D. Nason The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Chase Gabriel Mayers, 2018. -
Novel Species of Huntiella from Naturally-Occurring Forest Trees in Greece and South Africa
A peer-reviewed open-access journal MycoKeys 69: 33–52 (2020) Huntiella species in Greece and South Africa 33 doi: 10.3897/mycokeys.69.53205 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Novel species of Huntiella from naturally-occurring forest trees in Greece and South Africa FeiFei Liu1,2, Seonju Marincowitz1, ShuaiFei Chen1,2, Michael Mbenoun1, Panaghiotis Tsopelas3, Nikoleta Soulioti3, Michael J. Wingfield1 1 Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology In- stitute (FABI), University of Pretoria, Pretoria 0028, South Africa 2 China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China 3 Institute of Mediter- ranean Forest Ecosystems, Terma Alkmanos, 11528 Athens, Greece Corresponding author: ShuaiFei Chen ([email protected]) Academic editor: R. Phookamsak | Received 13 April 2020 | Accepted 4 June 2020 | Published 10 July 2020 Citation: Liu FF, Marincowitz S, Chen SF, Mbenoun M, Tsopelas P, Soulioti N, Wingfield MJ (2020) Novel species of Huntiella from naturally-occurring forest trees in Greece and South Africa. MycoKeys 69: 33–52. https://doi. org/10.3897/mycokeys.69.53205 Abstract Huntiella species are wood-infecting, filamentous ascomycetes that occur in fresh wounds on a wide va- riety of tree species. These fungi are mainly known as saprobes although some have been associated with disease symptoms. Six fungal isolates with typical culture characteristics of Huntiella spp. were collected from wounds on native forest trees in Greece and South Africa. The aim of this study was to identify these isolates, using morphological characters and multigene phylogenies of the rRNA internal transcribed spacer (ITS) region, portions of the β-tubulin (BT1) and translation elongation factor 1α (TEF-1α) genes. -
Development of Hydroponic Production Systems for Strawberry Production
Development of Hydroponic Production Systems for Strawberry Production Principle Investigators and Cooperators: Principal Investigators: Lead PI Co-PI Dr. Michael Timmons Dr. Neil Mattson Professor, Cornell University Associate Professor, Cornell University Department of Biological & Department of Horticulture Environmental Engineering 49D Plant Science, Ithaca NY 14853 302 Riley-Robb Hall, Ithaca, NY 14853 (607) 255-0621 (607) 255-1630 [email protected] [email protected] Project Manager: Mr. Matthew Moghaddam Department of Horticulture, Cornell University [email protected] Background and Justification: New York consumers have limited access to fresh, high quality, locally grown produce at competitive pricing with imported product. It is well known that consumers place an added value on locally produced products. This then provides an opportunity for the small-scale producer and that opportunity can be partially addressed through aquaponics and product diversification. Strawberries are a highly favored fruit, yet almost all strawberries are imported into the New York State markets. NY ranked eighth in strawberry production in 2014 with 3.2 million pounds, but falls far behind the top five states (CA 2758 million lbs. per year, FL 207 M, OR 15, NC 15, WA 10, MI 4.5, WI 3.8, PA 3.3 M) (USDA, 2014). This domestic production comes from 56,000 acres of which only 22 acres are from greenhouse operations. This is in sharp contrast to Japan where 12,990 acres are greenhouse grown from a total country production of 14,876 acres. Historical production methods (field grown) need not prevent adaptation of new methods (greenhouse) as demonstrated in Mexico that had no history of strawberry production. -
Intro to Aquaponics & Hydroponics
6/23/2020 Joe Masabni Overton Research and Extension Center [email protected] Special Thanks to Andrew S. McArdle, Aquaponics Specialist for his original work 12 Aquaculture + = Aquaculture + Hydroponics = Recirculating Aquaculture Hydroponics Raises fish in densely stocked tanks Farming of plants in a soil-less environment. Drawbacks: Chemicals and fertilizers are provided in a nutrient solution Drawbacks: (many of which are petroleum derived and can be High amounts of waste produced expensive) Extensive Filtration Required 34 Quantity of Quality of Fish Feed Fish Feed Fed Size Aquaculture + Hydroponics = Aquaponics Hydroponic Raceways pH Air Aquaponics Temperature Water The Aquaponic Ecosystem Culmination of both intensive aquaculture and hydroponic Temperature technologies in a recirculating system. Nitrate Fish Plants -Reduced Waste Alkalinity -Hydroponic Fertilizers No Longer Required Nitrite Bacteria Top Off Water Source Ammonia/ Ammonium Carbon Dioxide Water Flow Dissolved Oxygen Filtration 56 1 6/23/2020 78 Flood and Drain System Media filled grow bed Nutrient Film Technique (NFT) pH neutral rock or expanded clay Suitable for smaller plant varieties – Leafy Greens Either continuously flooded Larger plants clog gutters OR flooded and drained Thin film of water Can heat up very easily so chiller may be required Good potential for commercial operation 910 Raft System Floats plants on top of water with roots suspended in the water column Most practical commercial application 11 12 2 6/23/2020 Many system types … Professional -
Supplementary Table 1. Hosts Reported to Be Susceptible to Black Root Rot Infection
Supplementary table 1. Hosts reported to be susceptible to black root rot infection Family Species Common References name 1. Adoxaceae Sambucus nigra Elderberry Michel (2009) 2. Amaranthaceae Beta vulgaris Beet Aderhold (1906) Chenopodium album Lamb's Gayed (1972) quarters Amaranthus Redroot Gayed (1972) retroflexus pigweed 3. Apiaceae Apium graveolens Celery Aderhold (1906) Daucus carota Wild carrot Aderhold (1906) Pastinaca sativa Parsnip Taubenhaus (1914) Cryptotaenia Japanese Kasuyama & Tanimei (2008) japonica hornwort 4. Apocynaceae Catharanthus roseus Madagascar McGovern & Seijo (1999) periwinkle 5. Aquifoliaceae Ilex crenata Japanese holly Lambe & Wills (1978) Ilex cornuta Chinese holly Lambe & Wills (1978) Ilex aquifolium English holly Lambe & Wills (1978) Ilex opaca American holly Lambe & Wills (1978) Ilex aquipernyi Dragon lady Lambe & Wills (1978) holly 6. Araceae Scindapsus aureus Devil's ivy Keller & Potter (1954) (syn. Epipremmum aureus) Elaeis guineensis Oil palm Stover (1950) 7. Araliaceae Aralia quinquefolia Ginseng Van Hook (1904) (now in genus Panax) 8. Asteraceae Aster sp. - Massee (1912) Scorzonera hispanica Black salsify Aderhold (1906) Senecio elegans Wild cineraria Zopf (1876b) Senecio cruentus - Keller & Potter (1954) Gerbera jemsonii Baberton daisy Keller & Potter (1954) Conyza canadensis Horseweed Gayed (1972) (syn. Erigeron canadensis) Cichorium intybus Chicory Prinsloo (1991) Lactuca sativa Lettuce O’Brien & Davis (1994) 2 Family Species Common References name Sonchus oleraceus Common O’Brien & Davis (1994) sowthistle Santolina viridis Holy flax Vasil'eva (1960) (syn. Santolina rosmarinifolia) 9. Begoniaceae Begonia Wax begonia Aderhold (1906) semperflorens Begonia rubra Orange Selby (1896) begonia Catalpa speciosa Northern Selby (1896) catalpa 10. Brassicaceae Capsella bursa- Shapherd's Massee (1912) pastoris purse Cochlearia Horseradish Sorokïn (1876) armoracia Brassica oleracae Cabbage Yarwood (1981) 11. -
Ecological Study of Aquaponics Bacterial Microbiota Over the Course of a Lettuce Growth Cycle
water Article Ecological Study of Aquaponics Bacterial Microbiota over the Course of a Lettuce Growth Cycle Mathilde Eck †, Iris Szekely †,Sébastien Massart and M. Haïssam Jijakli * Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium; [email protected] (M.E.); [email protected] (I.S.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +32-(0)81-62-2431 † These authors contributed equally to this work. Abstract: The study of microorganisms in aquaponics is an important topic which requires more research before exploiting the full potential of beneficial microorganisms. In this experiment, we fo- cused on the evolution over time of the bacterial communities in four compartments of an aquaponic system i.e., the sump, the biofilter, the lettuce rhizoplane and lettuce root. We studied these com- munities over the course of a lettuce growth cycle via regular sampling and sequencing of the 16S rRNA gene of the collected bacteria. We also followed the physicochemical parameters of the aquaponic water throughout the experiment. Results show that a different community could be found in each compartment and that all four communities were stable throughout time and resilient to naturally occurring water parameter changes which characterize functioning aquaponic systems. Furthermore, the communities of the sump and biofilter also seem stable over the years as the predominant taxa (Luteolibacter, Flavobacterium, Nitrospira) observed in our study are similar to the Citation: Eck, M.; Szekely, I.; ones previously reported for this aquaponic system. Finally, our results provide proof for similarities Massart, S.; Jijakli, M.H. -
Evaluation of the Impact of Pathogenic Fungi on the Growth of Pisum Sativum L.- a Review Article
International Journal of Agricultural Technology 2021Vol. 17(2):443-464 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) Evaluation of the impact of pathogenic fungi on the growth of Pisum sativum L.- A review article Chaudhary, N.*, Singh, C., Pathak, P., Rathi, A. and Vyas, D. Lab of Microbial Technology and Plant Pathology, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya, Sagar (470003) M.P. India. Chaudhary, N., Singh, C., Pathak, P., Rathi, A. and Vyas, D. (2021). Evaluation of the impact of pathogenic fungi on the growth of Pisum sativum L.- A review article. International Journal of Agricultural Technology 17(2):443-464. Abstract In India pea is the second greatest protein source followed by chickpea for the people of the country, over the years due to pathogen attack and climate change, the yield of pea has reduced categorically which generated great concern among scientists, policymakers, and common people thus resulting into the development of strategies to assess the impact and severity of the disease spread around the country various measures were taken into the account to find out the best method to control the disease. It has been found that pea is most susceptible to fungal pathogens. After reviewing the literature it is deduced that there are enormous species of fungi reported showing beneficial as well as harmful relationships with the pea and other crop plants worldwide. Disease in the pea plant is mainly caused by microorganisms like fungi, bacteria, and some nematodes, but much of the losses are occurred due to fungal pathogens (generally soil-borne).