Intro to Aquaponics & Hydroponics
Total Page:16
File Type:pdf, Size:1020Kb
6/23/2020 Joe Masabni Overton Research and Extension Center [email protected] Special Thanks to Andrew S. McArdle, Aquaponics Specialist for his original work 12 Aquaculture + = Aquaculture + Hydroponics = Recirculating Aquaculture Hydroponics Raises fish in densely stocked tanks Farming of plants in a soil-less environment. Drawbacks: Chemicals and fertilizers are provided in a nutrient solution Drawbacks: (many of which are petroleum derived and can be High amounts of waste produced expensive) Extensive Filtration Required 34 Quantity of Quality of Fish Feed Fish Feed Fed Size Aquaculture + Hydroponics = Aquaponics Hydroponic Raceways pH Air Aquaponics Temperature Water The Aquaponic Ecosystem Culmination of both intensive aquaculture and hydroponic Temperature technologies in a recirculating system. Nitrate Fish Plants -Reduced Waste Alkalinity -Hydroponic Fertilizers No Longer Required Nitrite Bacteria Top Off Water Source Ammonia/ Ammonium Carbon Dioxide Water Flow Dissolved Oxygen Filtration 56 1 6/23/2020 78 Flood and Drain System Media filled grow bed Nutrient Film Technique (NFT) pH neutral rock or expanded clay Suitable for smaller plant varieties – Leafy Greens Either continuously flooded Larger plants clog gutters OR flooded and drained Thin film of water Can heat up very easily so chiller may be required Good potential for commercial operation 910 Raft System Floats plants on top of water with roots suspended in the water column Most practical commercial application 11 12 2 6/23/2020 Many system types … Professional to DIY 13 14 UVI System Model Fish Culture Tanks Water Pump Size and number varies among systems Want to use no more than a single pump in your system Clarifier Solids removal Air blowers Provides sufficient dissolved oxygen levels Filter Tanks required by fish and plants Depends on Size of system if required Grow Beds Degassing Tank Primary difference between system designs Vents out excessive amounts gases Primary System Designs Biofilter Raft System Nitrification process Nutrient Film Technique (NFT) Varies depending on system Flood and Drain System Can be in own tank or within growbed for some systems Water Flow Gravity Fed – Typically from fish tanks to a sump with a pump. 15 16 Water Pumps! Backup Generator! Air Blowers! 17 18 3 6/23/2020 ! " # The Aquaponic Nitrogen Cycle You are actually farming one more thing along with the fish and Nitrite vegetables… nitrobacter sp. Nitrate 19 20 21 22 7/8 7/9 7/10 7/11 7/12 7/13 7/14 7/15 7/16 7/17 7/18 7/19 7/20 7/21 7/1 7 7/22 7/23 7/24 7/25 7/28 14 days Sowing/Germinating/Initial Seedling Growth + 20 days in the system Romaine - DRAGOON = 34 day grow out from Seed to table 23 24 4 6/23/2020 Two sources of income Nutritionally Complete Fish Feed fish and plants Soil-borne disease not present & Fish are cold-blooded therefore$% do not&& harbor e-coli pH Adjusters CO2 produced by fish/filtration processes emitted into greenhouse = boosted plant growth No herbicides, pesticides, or chemical fertilizers Plants grow faster than in the soil Calcium Carbonate (CaCO₃) Nutrient rich water used as fertilizer% ' ( % Little to no waste produced Potassium Bicarbonate (KHCO ₃) Can be built anywhere Allow for production of locally grown food 95% less water used compared to soil) methods % 25 26 Fish Vegetables Harvest every 6 weeks with Mini Lettuce Heads the use of four fish tanks. 4 to 6 week growth period from 8.7 harvests / year transplant to harvest 150 lbs / harvest 232-348 heads of lettuce / week 1,305 lbs / year 12,064-18,096 heads of lettuce / year **Based on growing tilapia to 0.5 lbs / gallon** 3/28 Full Size Lettuce Heads 7/25 4 to 6 week growth period from transplant to harvest 144-216 heads of lettuce / week **Ornamental fish such as Koi are different as 7,488-11,232 heads of lettuce / year they can be sold anywhere along the growth cycle depending on desirable size.** 27 28 Item Cost Aquaculture License Tanks $ 3,824.96 Hydroponic Raceways $ 1,403.26 Exotic Species Permit Waterline Plumbing $ 839.46 Airline Plumbing $ 1,299.15 other $ 3,750 Waste water discharge permit Total $ 11,116.83 Flood zone declaration 29 30 5 6/23/2020 Hydroponics: History HYDROPONICS CROP PRODUCTION Hydroponics has been practiced for centuries. Daniel I. Leskovar Texas A&M AgriLife Research ‐Uvalde The floating gardens (“chinampas”) of the Aztecs in Mexico were hydroponic in nature. College Station, May 23, 2014 d‐[email protected] 31 32 Medium‐less Hydroponic Systems Medium‐less Hydroponic Systems Floating Hydroponics: Nutrient‐flow‐technique (NFT): Plant roots are suspended in a static, continuously aerated nutrient Plant roots are in contact with a continuous solution. flow of nutrient solution. 33 34 Medium‐less Hydroponic Systems Medium Hydroponic Systems Ebb‐and‐Flow System Aeroponics: Mainly for hobby‐ Plant roots are suspended in a home‐type growing continuous mist of nutrient units. solution. Rooting medium: gravel, sand, volcanic rock, etc. 35 36 6 6/23/2020 Vertical Hydroponic Systems (medium or Medium Hydroponic Systems medium‐less) Drip/pass‐through System Cucumber & tomato plants growing on gravel beds. Tomato plants growing on rockwool. Cucumber plants growing in sand beds. Other media sources: Sawdust, coco coir, peat, vermiculite, perlite, pumice, rice hulls… 37 38 Screening lettuce cultivars and other leafy‐greens in Vegetable Crops grown in hydroponic systems our Research Center Leaf lettuce Tomatoes Peppers Cucumbers Strawberries Watercress Celery Herbs 39 40 Screening lettuce cultivars and other leafy‐greens in Hydroponics: our Research Center Advantages 1. Crops can be grown where no suitable soil exists. 2. Labor for many traditional practices is largely eliminated. 3. Maximum yields are possible, economically feasible in high‐density and expensive areas. 4. Conservation of water and nutrients (reduction in pollution of land and streams). 5. Elimination or reduction of soil‐borne plant diseases and insects. 6. Better control of the system (nutrition, watering, EC, pH, etc.). 7. Transplant shock is reduced. 41 42 7 6/23/2020 Hydroponic Nutrient Solution Hydroponics: Disadvantages There are commercial formulations available, easy to 1. Initial and operational costs are higher than soil culture. use, with nutrient composition and concentration according to the type of crop and growth stage. 2. Skill and knowledge are needed to operate properly. 3. Introduced soil‐borne diseases and nematodes may be spread quickly to all beds on the same nutrient tank of a closed system. 4. The reaction of the plant to good or poor nutrition is fast. Daily supervision is important to catch any problems that may arise. 43 44 Hydroponic Nutrient Solution Hydroponic Crops Nutrition: The composition and strength • pH should be kept between 5.5 ‐ 6.5 pH of the nutrient solution • If pH drops below 5.0 or goes over 7.0, plant growth may be affected. should be adjusted according More critical in static solution (i.e. floating raft) than in flowing systems. Low pH: macronutrient deficiencies & excessive uptake of micronutrients (possible to the crop and its growth toxicities). stage. Leafy greens (lettuce, celery, herbs) High pH: micronutrient deficiencies (unavailable by precipitation). Fruiting vegetables (tomatoes, eggplants, peppers, cucumbers, cantaloupes, strawberries, etc.) 45 46 Hydroponic Nutrient Solution: Hydroponic Nutrient Solution: EC pH: pH EC: is an index of salt concentration that defines the total amount of salts in a solution. Adjusting the pH of the nutrient solution: It is a good indicator of the amount of available ions to the plants in the root zone. EC values for hydroponic systems range from 1.5 to 2.5 dS/m Add alkalis, like solutions of Sodium Hydroxide (NaOH), or Potassium Hydroxide (KOH). In closed (recirculating) systems EC of the nutrient solution changes: Add acids, like Nitric, Sulfuric, or Hydrochloric Acid (HNO3, H2SO4, and HCl, respectively). Indicates root plants are removing nutrients from the solution. More fertilizer salts need to be added to replenish the nutrient concentration levels. (No individual nutrient loses can be determined). There are pH control Indicates substantial quantities of water are being removed from the nutrient solutions commercially solution at a very rapid rate (during hot, low‐humidity days). Lost water due available. to evapotranspiration should be replaced. In medium‐based systems measuring EC in leachates or in the retained solution can be used to determine leaching requirements. 47 48 8 6/23/2020 Hydroponic Nutrient Solution: To and O Hydroponic Systems: Sanitation 2 The most common root disease in hydroponic Preventing the introduction of pest problems is the simplest and most systems is root rot caused by the fungal‐like important pest control procedure. organism, Pythium. • Use clean or sterilized containers, plants, water, growth media, etc. It spreads quickly in closed systems. • Keep the growth area free of foreign plants. • Keep tools, equipment, materials (including clothing), hands, and footwear free Symptoms Healthy root system • Plants are stunted. of disease organisms. • Root tips are brown and dead. • Use resistant cultivars. • Plants wilt at mid‐day and may recover at night. • Minimize exposure of the nutrient solution to light to prevent algae growth. • Plants yellow and die. • Brown tissue on the outer portion of the root easily pulls off leaving a strand of vascular tissue