Intro to Aquaponics & Hydroponics

Total Page:16

File Type:pdf, Size:1020Kb

Intro to Aquaponics & Hydroponics 6/23/2020 Joe Masabni Overton Research and Extension Center [email protected] Special Thanks to Andrew S. McArdle, Aquaponics Specialist for his original work 12 Aquaculture + = Aquaculture + Hydroponics = Recirculating Aquaculture Hydroponics Raises fish in densely stocked tanks Farming of plants in a soil-less environment. Drawbacks: Chemicals and fertilizers are provided in a nutrient solution Drawbacks: (many of which are petroleum derived and can be High amounts of waste produced expensive) Extensive Filtration Required 34 Quantity of Quality of Fish Feed Fish Feed Fed Size Aquaculture + Hydroponics = Aquaponics Hydroponic Raceways pH Air Aquaponics Temperature Water The Aquaponic Ecosystem Culmination of both intensive aquaculture and hydroponic Temperature technologies in a recirculating system. Nitrate Fish Plants -Reduced Waste Alkalinity -Hydroponic Fertilizers No Longer Required Nitrite Bacteria Top Off Water Source Ammonia/ Ammonium Carbon Dioxide Water Flow Dissolved Oxygen Filtration 56 1 6/23/2020 78 Flood and Drain System Media filled grow bed Nutrient Film Technique (NFT) pH neutral rock or expanded clay Suitable for smaller plant varieties – Leafy Greens Either continuously flooded Larger plants clog gutters OR flooded and drained Thin film of water Can heat up very easily so chiller may be required Good potential for commercial operation 910 Raft System Floats plants on top of water with roots suspended in the water column Most practical commercial application 11 12 2 6/23/2020 Many system types … Professional to DIY 13 14 UVI System Model Fish Culture Tanks Water Pump Size and number varies among systems Want to use no more than a single pump in your system Clarifier Solids removal Air blowers Provides sufficient dissolved oxygen levels Filter Tanks required by fish and plants Depends on Size of system if required Grow Beds Degassing Tank Primary difference between system designs Vents out excessive amounts gases Primary System Designs Biofilter Raft System Nitrification process Nutrient Film Technique (NFT) Varies depending on system Flood and Drain System Can be in own tank or within growbed for some systems Water Flow Gravity Fed – Typically from fish tanks to a sump with a pump. 15 16 Water Pumps! Backup Generator! Air Blowers! 17 18 3 6/23/2020 ! " # The Aquaponic Nitrogen Cycle You are actually farming one more thing along with the fish and Nitrite vegetables… nitrobacter sp. Nitrate 19 20 21 22 7/8 7/9 7/10 7/11 7/12 7/13 7/14 7/15 7/16 7/17 7/18 7/19 7/20 7/21 7/1 7 7/22 7/23 7/24 7/25 7/28 14 days Sowing/Germinating/Initial Seedling Growth + 20 days in the system Romaine - DRAGOON = 34 day grow out from Seed to table 23 24 4 6/23/2020 Two sources of income Nutritionally Complete Fish Feed fish and plants Soil-borne disease not present & Fish are cold-blooded therefore$% do not&& harbor e-coli pH Adjusters CO2 produced by fish/filtration processes emitted into greenhouse = boosted plant growth No herbicides, pesticides, or chemical fertilizers Plants grow faster than in the soil Calcium Carbonate (CaCO₃) Nutrient rich water used as fertilizer% ' ( % Little to no waste produced Potassium Bicarbonate (KHCO ₃) Can be built anywhere Allow for production of locally grown food 95% less water used compared to soil) methods % 25 26 Fish Vegetables Harvest every 6 weeks with Mini Lettuce Heads the use of four fish tanks. 4 to 6 week growth period from 8.7 harvests / year transplant to harvest 150 lbs / harvest 232-348 heads of lettuce / week 1,305 lbs / year 12,064-18,096 heads of lettuce / year **Based on growing tilapia to 0.5 lbs / gallon** 3/28 Full Size Lettuce Heads 7/25 4 to 6 week growth period from transplant to harvest 144-216 heads of lettuce / week **Ornamental fish such as Koi are different as 7,488-11,232 heads of lettuce / year they can be sold anywhere along the growth cycle depending on desirable size.** 27 28 Item Cost Aquaculture License Tanks $ 3,824.96 Hydroponic Raceways $ 1,403.26 Exotic Species Permit Waterline Plumbing $ 839.46 Airline Plumbing $ 1,299.15 other $ 3,750 Waste water discharge permit Total $ 11,116.83 Flood zone declaration 29 30 5 6/23/2020 Hydroponics: History HYDROPONICS CROP PRODUCTION Hydroponics has been practiced for centuries. Daniel I. Leskovar Texas A&M AgriLife Research ‐Uvalde The floating gardens (“chinampas”) of the Aztecs in Mexico were hydroponic in nature. College Station, May 23, 2014 d‐[email protected] 31 32 Medium‐less Hydroponic Systems Medium‐less Hydroponic Systems Floating Hydroponics: Nutrient‐flow‐technique (NFT): Plant roots are suspended in a static, continuously aerated nutrient Plant roots are in contact with a continuous solution. flow of nutrient solution. 33 34 Medium‐less Hydroponic Systems Medium Hydroponic Systems Ebb‐and‐Flow System Aeroponics: Mainly for hobby‐ Plant roots are suspended in a home‐type growing continuous mist of nutrient units. solution. Rooting medium: gravel, sand, volcanic rock, etc. 35 36 6 6/23/2020 Vertical Hydroponic Systems (medium or Medium Hydroponic Systems medium‐less) Drip/pass‐through System Cucumber & tomato plants growing on gravel beds. Tomato plants growing on rockwool. Cucumber plants growing in sand beds. Other media sources: Sawdust, coco coir, peat, vermiculite, perlite, pumice, rice hulls… 37 38 Screening lettuce cultivars and other leafy‐greens in Vegetable Crops grown in hydroponic systems our Research Center Leaf lettuce Tomatoes Peppers Cucumbers Strawberries Watercress Celery Herbs 39 40 Screening lettuce cultivars and other leafy‐greens in Hydroponics: our Research Center Advantages 1. Crops can be grown where no suitable soil exists. 2. Labor for many traditional practices is largely eliminated. 3. Maximum yields are possible, economically feasible in high‐density and expensive areas. 4. Conservation of water and nutrients (reduction in pollution of land and streams). 5. Elimination or reduction of soil‐borne plant diseases and insects. 6. Better control of the system (nutrition, watering, EC, pH, etc.). 7. Transplant shock is reduced. 41 42 7 6/23/2020 Hydroponic Nutrient Solution Hydroponics: Disadvantages There are commercial formulations available, easy to 1. Initial and operational costs are higher than soil culture. use, with nutrient composition and concentration according to the type of crop and growth stage. 2. Skill and knowledge are needed to operate properly. 3. Introduced soil‐borne diseases and nematodes may be spread quickly to all beds on the same nutrient tank of a closed system. 4. The reaction of the plant to good or poor nutrition is fast. Daily supervision is important to catch any problems that may arise. 43 44 Hydroponic Nutrient Solution Hydroponic Crops Nutrition: The composition and strength • pH should be kept between 5.5 ‐ 6.5 pH of the nutrient solution • If pH drops below 5.0 or goes over 7.0, plant growth may be affected. should be adjusted according More critical in static solution (i.e. floating raft) than in flowing systems. Low pH: macronutrient deficiencies & excessive uptake of micronutrients (possible to the crop and its growth toxicities). stage. Leafy greens (lettuce, celery, herbs) High pH: micronutrient deficiencies (unavailable by precipitation). Fruiting vegetables (tomatoes, eggplants, peppers, cucumbers, cantaloupes, strawberries, etc.) 45 46 Hydroponic Nutrient Solution: Hydroponic Nutrient Solution: EC pH: pH EC: is an index of salt concentration that defines the total amount of salts in a solution. Adjusting the pH of the nutrient solution: It is a good indicator of the amount of available ions to the plants in the root zone. EC values for hydroponic systems range from 1.5 to 2.5 dS/m Add alkalis, like solutions of Sodium Hydroxide (NaOH), or Potassium Hydroxide (KOH). In closed (recirculating) systems EC of the nutrient solution changes: Add acids, like Nitric, Sulfuric, or Hydrochloric Acid (HNO3, H2SO4, and HCl, respectively). Indicates root plants are removing nutrients from the solution. More fertilizer salts need to be added to replenish the nutrient concentration levels. (No individual nutrient loses can be determined). There are pH control Indicates substantial quantities of water are being removed from the nutrient solutions commercially solution at a very rapid rate (during hot, low‐humidity days). Lost water due available. to evapotranspiration should be replaced. In medium‐based systems measuring EC in leachates or in the retained solution can be used to determine leaching requirements. 47 48 8 6/23/2020 Hydroponic Nutrient Solution: To and O Hydroponic Systems: Sanitation 2 The most common root disease in hydroponic Preventing the introduction of pest problems is the simplest and most systems is root rot caused by the fungal‐like important pest control procedure. organism, Pythium. • Use clean or sterilized containers, plants, water, growth media, etc. It spreads quickly in closed systems. • Keep the growth area free of foreign plants. • Keep tools, equipment, materials (including clothing), hands, and footwear free Symptoms Healthy root system • Plants are stunted. of disease organisms. • Root tips are brown and dead. • Use resistant cultivars. • Plants wilt at mid‐day and may recover at night. • Minimize exposure of the nutrient solution to light to prevent algae growth. • Plants yellow and die. • Brown tissue on the outer portion of the root easily pulls off leaving a strand of vascular tissue
Recommended publications
  • Effects of Low Ph of Hydroponic Nutrient Solution on Plant Growth
    HORTSCIENCE 55(8):1251–1258. 2020. https://doi.org/10.21273/HORTSCI14986-20 of pathogen introduction in hydroponic systems is critical, as effective chemical control agents for root diseases of edible Effects of Low pH of Hydroponic crops are limited and may not be registered for use in greenhouses or indoors (Jensen Nutrient Solution on Plant Growth, and Collins, 2011; Stanghellini, 1996). Various disinfection systems (e.g., ultravi- Nutrient Uptake, and Root Rot Disease olet irradiation) have been introduced to commercial hydroponic systems to miti- Ocimum basilicum gate the risk of disease introduction and Incidence of Basil ( spread through the recirculation system for the nutrient solution (Wohanka, 2002). L.) However, once a disease outbreak occurs, growers are often forced to suspend pro- Daniel P. Gillespie and Chieri Kubota duction and disinfect growing systems, Department of Horticulture and Crop Science, The Ohio State University, leading to decreased yields and profit, Columbus, OH 43210 changes to crop schedules, and increased labor (Stanghellini, 1996). Sally A. Miller Among the most common oomycete path- Department of Plant Pathology, The Ohio State University, Wooster, OH ogens experienced in hydroponic crop pro- 44691 duction are Pythium and Phytophthora spp. (Stanghellini and Rasmussen, 1994). Al- Additional index words. acid, CEA, controlled environment, disease, oomycete, pathogen, though these oomycete pathogens can infest Pythium, water culture roots of virtually all crop species grown hydroponically, basil and spinach (Spinacia Abstract. Rootzone pH affects nutrient availability for plants. Hydroponic leafy greens oleracea) are particularly susceptible to in- are grown in nutrient solutions with pH 5.5 to 6.5. Lower pH may inhibit plant growth, fection by oomycete pathogens (Mattson, whereas pathogenic oomycete growth and reproduction may be mitigated.
    [Show full text]
  • Francesco Orsini Marielle Dubbeling Henk De Zeeuw Giorgio Gianquinto Editors Rooftop Urban Agriculture
    Urban Agriculture Francesco Orsini Marielle Dubbeling Henk de Zeeuw Giorgio Gianquinto Editors Rooftop Urban Agriculture 123 Urban Agriculture Series editors Christine Aubry, AgroParisTech, INRA UMR SADAPT, Paris, France Éric Duchemin, Université du Québec à Montréal Institut des Science de Environment, Montreal, Québec, Canada Joe Nasr, Centre for Studies in Food Security, Ryerson University, Toronto, Ontario, Canada The Urban Agriculture Book Series at Springer is for researchers, professionals, policy-makers and practitioners working on agriculture in and near urban areas. Urban agriculture (UA) can serve as a multifunctional resource for resilient food systems and socio-culturally, economically and ecologically sustainable cities. For the Book Series Editors, the main objective of this series is to mobilize and enhance capacities to share UA experiences and research results, compare methodologies and tools, identify technological obstacles, and adapt solutions. By diffusing this knowledge, the aim is to contribute to building the capacity of policy-­ makers, professionals and practitioners in governments, international agencies, civil society, the private sector as well as academia, to effectively incorporate UA in their field of interests. It is also to constitute a global research community to debate the lessons from UA initiatives, to compare approaches, and to supply tools for aiding in the conception and evaluation of various strategies of UA development. The concerned scientific field of this series is large because UA combines agricultural issues with those related to city management and development. Thus this interdisciplinary Book Series brings together environmental sciences, agronomy, urban and regional planning, architecture, landscape design, economics, social sciences, soil sciences, public health and nutrition, recognizing UA’s contribution to meeting society’s basic needs, feeding people, structuring the cities while shaping their development.
    [Show full text]
  • Development of Hydroponic Production Systems for Strawberry Production
    Development of Hydroponic Production Systems for Strawberry Production Principle Investigators and Cooperators: Principal Investigators: Lead PI Co-PI Dr. Michael Timmons Dr. Neil Mattson Professor, Cornell University Associate Professor, Cornell University Department of Biological & Department of Horticulture Environmental Engineering 49D Plant Science, Ithaca NY 14853 302 Riley-Robb Hall, Ithaca, NY 14853 (607) 255-0621 (607) 255-1630 [email protected] [email protected] Project Manager: Mr. Matthew Moghaddam Department of Horticulture, Cornell University [email protected] Background and Justification: New York consumers have limited access to fresh, high quality, locally grown produce at competitive pricing with imported product. It is well known that consumers place an added value on locally produced products. This then provides an opportunity for the small-scale producer and that opportunity can be partially addressed through aquaponics and product diversification. Strawberries are a highly favored fruit, yet almost all strawberries are imported into the New York State markets. NY ranked eighth in strawberry production in 2014 with 3.2 million pounds, but falls far behind the top five states (CA 2758 million lbs. per year, FL 207 M, OR 15, NC 15, WA 10, MI 4.5, WI 3.8, PA 3.3 M) (USDA, 2014). This domestic production comes from 56,000 acres of which only 22 acres are from greenhouse operations. This is in sharp contrast to Japan where 12,990 acres are greenhouse grown from a total country production of 14,876 acres. Historical production methods (field grown) need not prevent adaptation of new methods (greenhouse) as demonstrated in Mexico that had no history of strawberry production.
    [Show full text]
  • Ecological Study of Aquaponics Bacterial Microbiota Over the Course of a Lettuce Growth Cycle
    water Article Ecological Study of Aquaponics Bacterial Microbiota over the Course of a Lettuce Growth Cycle Mathilde Eck †, Iris Szekely †,Sébastien Massart and M. Haïssam Jijakli * Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium; [email protected] (M.E.); [email protected] (I.S.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +32-(0)81-62-2431 † These authors contributed equally to this work. Abstract: The study of microorganisms in aquaponics is an important topic which requires more research before exploiting the full potential of beneficial microorganisms. In this experiment, we fo- cused on the evolution over time of the bacterial communities in four compartments of an aquaponic system i.e., the sump, the biofilter, the lettuce rhizoplane and lettuce root. We studied these com- munities over the course of a lettuce growth cycle via regular sampling and sequencing of the 16S rRNA gene of the collected bacteria. We also followed the physicochemical parameters of the aquaponic water throughout the experiment. Results show that a different community could be found in each compartment and that all four communities were stable throughout time and resilient to naturally occurring water parameter changes which characterize functioning aquaponic systems. Furthermore, the communities of the sump and biofilter also seem stable over the years as the predominant taxa (Luteolibacter, Flavobacterium, Nitrospira) observed in our study are similar to the Citation: Eck, M.; Szekely, I.; ones previously reported for this aquaponic system. Finally, our results provide proof for similarities Massart, S.; Jijakli, M.H.
    [Show full text]
  • Plant Diseases and Management Approaches in Organic Farming Systems
    PY54CH01-vanBruggen ARI 4 May 2016 13:13 V I E Review in Advance first posted online E W on May 23, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Plant Diseases and Management Approaches in Organic Farming Systems A.H.C. van Bruggen1 and M.R. Finckh2 1Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611; email: ahcvanbruggen@ufl.edu 2Faculty of Organic Agricultural Sciences, Ecological Plant Protection, University of Kassel, 37213 Witzenhausen, Germany Annu. Rev. Phytopathol. 2016. 54:1–30 Keywords The Annual Review of Phytopathology is online at ecosystem health, disease suppression, plant diversity, food web phyto.annualreviews.org Annu. Rev. Phytopathol. 2016.54. Downloaded from www.annualreviews.org complexity, organic-conventional agriculture, crop-loss assessment This article’s doi: 10.1146/annurev-phyto-080615-100123 Abstract Copyright c 2016 by Annual Reviews. Organic agriculture has expanded worldwide. Numerous papers were pub- All rights reserved lished in the past 20 years comparing plant diseases in organic and conven- tional crops. Root diseases are generally less severe owing to greater soil health, whereas some foliar diseases can be problematic in organic agricul- ture. The soil microbial community and nitrogen availability play an impor- Access provided by Chinese Academy of Agricultural Sciences (Agricultural Information Institute) on 05/25/16. For personal use only. tant role in disease development and yield. Recently, the focus has shifted to optimizing organic crop production by improving plant nutrition, weed control, and plant health.
    [Show full text]
  • Black Root Rot of Cotton in Australia: the Host, the Pathogen and Disease Management
    CSIRO PUBLISHING Crop & Pasture Science, 2013, 64, 1112–1126 Review http://dx.doi.org/10.1071/CP13231 Black root rot of cotton in Australia: the host, the pathogen and disease management Lily L. Pereg Research Group of Molecular Biology, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia. Email: [email protected] Abstract. Black root rot is a seedling disease caused by the soil-borne fungal pathogen Thielaviopsis basicola, a species with a worldwide distribution. Diseased plants show blackening of the roots and a reduced number of lateral roots, stunted or slow growth, and delayed flowering or maturity. It was first detected in cotton in Australia in 1989, and by 2004, T. basicola reached all cotton-growing regions in New South Wales and Queensland and the disease was declared as an Australian pandemic. This review covers aspects of the disease that have implications in black root rot spread, severity and management, including the biology and ecology of T. basicola, host range and specificity, chemical and biological control of T. basicola in cotton cropping systems, and crop rotations and host resistance. This review is of special interest to Australian readers; however, the incorporation of ample information on the biology of the pathogen, its interactions with plants and it relation to disease management will benefit readers worldwide. Received 1 July 2013, accepted 4 November 2013, published online 18 December 2013 Australian cotton plants, and delayed flowering or maturity. Belowground Cotton belongs to the genus Gossypium in the Malvaceae family symptoms include blackening of the roots and reduced number (USDA 2013b), and of the 17 native species of Gossypium in of lateral roots (Allen 2001).
    [Show full text]
  • Considering Cannabis
    October 2015 CONTROLLED ENVIRONMENT AGRICULTURE Consi dering Canna bis THE SCIENCE AND PRACTICALITY OF GROWING CEA’S TRENDIEST CROP. WILL YOU BE CAUGHT UP IN THE “GREEN RUSH” ? Page 10 PAGE 16 PAGE 24 PAGE 26 FIELD-GROWN FROM FOOTBALL GROWING LETTUCE Which TO FARMING A ORGANIC? These ones work in young man's journey are the best fertilizers hydroponic systems? into hydroponics 1 Reader Service Number 200 Reader Service Number 201 From Your Editor first time we’ve broken from the mold and pushed the boundaries of the traditional hor - ticulture industry. In June 2011, GrowerTalks was the first trade publication in our industry to openly discuss cannabis—a feature story Managing Editor Jennifer Zurko won a presti - gious national award for. Four years later, cannabis cultivation is more widespread and the topic is less likely to ruffle as many feathers—we think. Not knowing exactly where this story would take me, I set out with simply an open mind and a curiosity to explore the cannabis industry objectively and try to answer some questions I thought my readers would be cu - rious about. Naturally, I began my journey to learn Since sending out the first more about the industry in Burlington, Ver - mont, the place I call home. Vermont has a issue of Inside Grower four years ago, we’ve small, but tightly regulated, medical cannabis maintained a focus on the cultivation of edible program and it’s possible the state legislature will legalize the recreational use of mari - crops in controlled environments—and we’ll juana in 2016.
    [Show full text]
  • Shallow Aggregate Ebb-And-Flow System for Greenhouse Lettuce Rp Oduction Joseph Chidiac University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2017 Shallow Aggregate Ebb-and-Flow System for Greenhouse Lettuce rP oduction Joseph Chidiac University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Agronomy and Crop Sciences Commons, and the Horticulture Commons Recommended Citation Chidiac, Joseph, "Shallow Aggregate Ebb-and-Flow System for Greenhouse Lettuce Production" (2017). Theses and Dissertations. 2514. http://scholarworks.uark.edu/etd/2514 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Shallow Aggregate Ebb-and-Flow System for Greenhouse Lettuce Production A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Horticulture by Joseph R. Chidiac University of Arkansas Bachelor of Science in Biological Engineering, 2011 December 2017 University of Arkansas This thesis is approved for recommendation to the Graduate Council _____________________ Dr. Michael R. Evans Thesis Director _____________________ _____________________ Dr. Craig Rothrock Dr. M. Elena Garcia Committee Member Committee Member _____________________ Dr. Douglas Karcher Committee Member ABSTRACT A novel soilless technique for the production of lettuce was developed and evaluated for its viability for ornamental greenhouse growers adapting their ebb-and-flood irrigation benching systems to diversify into growing lettuce, without having to purchase the conventional nutrient film technique (NFT) or deep flow technique (DFT) hydroponic systems. The experimental design was a three by four factorial, with three treatments for aggregate depth (19, 38, and 57 mm) and four treatments for irrigation frequency (once every 1, 2, 4, or 8 hours), for a total of twelve treatment combinations.
    [Show full text]
  • Pythium Root Rot on Hydroponically Grown Basil and Spinach
    Neil Mattson [email protected] Volume 3 Number 1 January 2018 Pythium Root Rot on 2018 Sponsors Hydroponically Grown Basil and Spinach Waterborne diseases that infect roots are a common production issue in hydroponic production. Several species of the water mold, Pythium, attack greenhouse crops. Basil and spinach are susceptible to economically devastating levels of Pythium root infection in hydroponics. In this article we will present symptoms of Pythium infection and management strategies. Many Pythium species, are generalists, meaning they can attack a wide range of plant species. Pythium aphanidermatum and Pythium dissotocum are two species commonly reported in hydroponics. Both species can produce zoospores, a mobile propagule that can propel itself through water. Figure 1. Roots from basil growing in hydroponic rafts (deep water culture) exhibiting root discoloration from Pythium root rot. Photo: Neil Mattson, Cornell University www.e-gro.org 1 e-GRO Edible Alert - 2018 Pythium on Hydroponic Basil and Spinach Symptoms of Pythium Root Rot As Pythium infects and colonizes roots it can lead to a visible discoloration (browning) and decay of the root system (Figures 1 and 2). Overall root system development may be poor with few lateral roots or root hairs (Figure 1). Often the outer portion of the root (cortex) sloughs away leaving behind the inner part of the root (steele). This leads to the characteristic “rat tail” appearance of Pythium infected roots. The root system Figure 2. Roots of baby leaf spinach growing in a can eventually turn slimy and black. Speedling tray in raft hydroponics infected with Pythium root rot. Notice discolored roots with poor branching.
    [Show full text]
  • Improving Lettuce Productivity While Suppressing Biofilm Growth and Comparing Bacterial Profiles of Root Area and Nutrient Solutions in Windowfarm Systems
    Improving Lettuce Productivity while Suppressing Biofilm Growth and Comparing Bacterial Profiles of Root Area and Nutrient Solutions in Windowfarm Systems THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Seungjun Lee Graduate Program in Food Science and Nutrition The Ohio State University 2014 Master's Examination Committee: Dr. Jiyoung Lee, Advisor Dr. Ahmed Yousef Dr. Luis Rodriguez-Saona Copyrighted by Seungjun Lee 2014 Abstract Hydroponic systems have gained worldwide popularity and are increasingly used in various purposes in different geographic areas. To improve and produce more hydroponic crops, a variety of hydroponic systems have been developed, such as: wick, drip, ebb- flow, water culture, nutrient film technique, aeroponic, and windowfarm systems. Numerous studies show that hydroponics have many advantages over culture systems; i.e., reuse of water, ease in controlling external factors, and reduction of traditional farming practices (e.g., cultivating, weeding, watering, and tilling). However, limitations include: high setup cost, rapid pathogen spread, and specialized management. The purpose of this Review (Chapter 1), ‘Introduction to Hydroponic Systems’ are to: 1) characterize the trends, advantages, and limitations of different systems; 2) introduce different types and methods of operation; and 3) discuss research being conducted in plant diseases and the role of beneficial bacteria. The Review (Chapter 1) provides a better understanding of hydroponics and newly applied systems and discusses their optimization to enhance food quality and quantity, and reduce plant diseases. In Chapter 2, the windowfarm is described, when plants are often prone to infections by phytopathogens that slow plant growth and reduce crop productivity and excessive biofilm build-up due to high concentration of nutrients in the system.
    [Show full text]
  • Avocado Root Rot: Steep, Rocky Terrain and Biodiversity Help Protect Small Farmers in Post-Conflict Colombia
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Spring 2019 Avocado Root Rot: Steep, Rocky Terrain and Biodiversity Help Protect Small Farmers in Post-Conflict Colombia Morgan Frankel San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Frankel, Morgan, "Avocado Root Rot: Steep, Rocky Terrain and Biodiversity Help Protect Small Farmers in Post-Conflict Colombia" (2019). Master's Theses. 4998. DOI: https://doi.org/10.31979/etd.nfg7-3gjd https://scholarworks.sjsu.edu/etd_theses/4998 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. AVOCADO ROOT ROT: STEEP, ROCKY TERRAIN AND BIODIVERSITY HELP PROTECT SMALL FARMERS IN POST-CONFLICT COLOMBIA A Thesis Presented to The Faculty of Environmental Studies San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Morgan Frankel May 2019 © 2019 Morgan Frankel ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled AVOCADO ROOT ROT: STEEP, ROCKY TERRAIN AND BIODIVERSITY HELP PROTECT SMALL FARMERS IN POST-CONFLICT COLOMBIA by Morgan Frankel APPROVED FOR THE DEPARTMENT OF ENVIRONMENTAL STUDIES SAN JOSÉ STATE UNIVERSITY May 2019 Rachel O’Malley, Ph.D. Department of Environmental Studies William Russell, Ph.D. Department of Environmental Studies Jenny Broome, Ph.D. Driscoll’s Berries Global Plant Health Abstract AVOCADO ROOT ROT: STEEP, ROCKY TERRAIN AND BIODIVERSITY HELP PROTECT SMALL FARMERS IN POST-CONFLICT COLOMBIA by Morgan Frankel In recent years, small avocado producers in coastal Colombia returned to their farms after decades of war to discover they must battle the pathogen Phytophthora cinnamomi devastating their trees.
    [Show full text]
  • Urban Growth: a Synthesis of Agriculture and Architecture By
    Urban Growth: A Synthesis of Agriculture and Architecture by Ashley Marcynuk A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Architecture in M.Arch (Professional) Carleton University Ottawa, Ontario ©2011 Ashley Marcynuk Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre r6f6rence ISBN: 978-0-494-81600-4 Our file Notre r6f6rence ISBN: 978-0-494-81600-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]