22 Jan 2021 Length Functions on Groups and Rigidity

Total Page:16

File Type:pdf, Size:1020Kb

22 Jan 2021 Length Functions on Groups and Rigidity Length functions on groups and rigidity Shengkui Ye January 25, 2021 Abstract Let G be a group. A function l : G → [0, ∞) is called a length function if (1) l(gn)= |n|l(g) for any g ∈ G and n ∈ Z; (2) l(hgh−1)= l(g) for any h, g ∈ G; and (3) l(ab) ≤ l(a)+ l(b) for commuting elements a, b. Such length functions exist in many branches of mathematics, mainly as stable word lengths, stable norms, smooth measure-theoretic entropy, translation lengths on CAT(0) spaces and Gromov δ-hyperbolic spaces, stable norms of quasi-cocycles, rotation numbers of circle homeomorphisms, dynamical degrees of birational maps and so on. We study length functions on Lie groups, Gromov hyperbolic groups, arithmetic subgroups, matrix groups over rings and Cremona groups. As applica- tions, we prove that every group homomorphism from an arithmetic subgroup of a simple algebraic Q-group of Q-rank at least 2, or a finite-index subgroup of the elementary group En(R) (n ≥ 3) over an associative ring, or the Cremona group 2 Bir(PC) to any group G having a purely positive length function must have its image finite. Here G can be outer automorphism group Out(Fn) of free groups, mapping classes group MCG(Σg), CAT(0) groups or Gromov hyperbolic groups, or the group Diff(Σ,ω) of diffeomorphisms of a hyperbolic closed surface preserving an area form ω. 0.1 Introduction The rigidity phenomena have been studied for many years. The famous Margulis super- rigidity implies any group homomorphism between irreducible lattices in semisimple Lie groups of real rank rkR(G) ≥ 2 are virtually induced by group homomorphisms between the Lie groups. Therefore, group homomorphisms from ‘higher’-rank irreducible lattices arXiv:2101.08902v1 [math.GR] 22 Jan 2021 to ‘lower’-rank irreducible lattices normally have finite images. Farb, Kaimanovich and Masur [26] [39] prove that every homomorphism from an (irreducible) higher rank lattice into the mapping class group MCG(Σg) has a finite image. Bridson and Wade [17] showed that the same superrigidity remains true if the target is replaced with the outer automor- phism group Out(Fn) of the free group. Mimura [48] proves that every homomorphism from Chevalley group over commutative rings to MCG(Σg) or Out(Fn) has a finite image. Many other rigidity results can be found, e.g. [49] [18] [19] [33] [54] and [53]. In this article, we study rigidity phenomena with the notion of length functions. Let G be a group. We call a function l : G → [0, ∞) a length function if 1) l(gn)= |n|l(g) for any g ∈ G and n ∈ Z; 2) l(aga−1)= l(g) for any a, g ∈ G; 3) l(ab) ≤ l(a)+ l(b) for commuting elements a, b. 1 Such length functions exist in geometric group theory, dynamical system, algebra, algebraic geometry and many other branches of mathematics. For example, the following functions l are length functions (see Section 3 for more examples with details). • (The stable word lengths) Let G be a group generated by a symmetric (not necessar- ily finite) set S. For any g ∈ G, the word length φS(w) = min{n | g = s1s2 ··· sn,each si ∈ S} is the minimal number of elements of S whose product is g. The stable length is defined as φ (gn) l(g) = lim S . n→∞ n • (Stable norms) Let M be a compact smooth manifold and G = Diff(M) the dif- feomorphism group consisting of all self-diffeomorphisms. For any diffeomorphism f : M → M, let kfk = sup kDxfk, x∈M where Dxf is the induced linear map between tangent spaces TxM → Tf(x)M. Define log kf nk log kf −nk l(f) = max{ lim , lim }. n→+∞ n n→+∞ n • (smooth measure-theoretic entropy) Let M be a C∞ closed Riemannian manifold 2 and G = Diffµ(M) consisting of diffeomorphisms of M preserving a Borel probability measure µ. Let l(f) = hµ(f) be the measure-theoretic entropy, for any f ∈ G = 2 Diffµ(M). • (Translation lengths) Let (X,d) be a metric space and G = Isom(X) consisting of isometries γ : X → X. Fix x ∈ X, define d(x, γnx) l(γ) = lim . n→∞ n This contains the translation lengths on CAT(0) spaces and Gromov δ-hyperbolic spaces as special cases. • (average norm for quasi-cocycles) Let G be a group and E be a Hilbert space with an G-action by linear isometrical action. A function f : G → E is a quasi-cocyle if there exists C > 0 such that kf(gh) − f(g) − gf(h)k <C for any g, h ∈ G. Let l : G → [0, +∞) be defined by kf(gn)k l(g) = lim . n→∞ n • (Rotation numbers of circle homeomorphisms) Let R be the real line and G = HomeZ(R) = {f | f : R → R is a monotonically increasing homeomorphism such that f(x + n) = f(x) for any n ∈ Z}. For any f ∈ HomeZ(R) and x ∈ [0, 1), the translation number is defined as f n(x) − x l(f) = lim . n→∞ n 2 • (Asymptotic distortions) Let f be a C1+bv diffeomorphism of the closed interval [0, 1] or the circle S1. (“bv” means derivative with finite total variation.) The asymptotic distortion of f is defined (by Navas [50]) as l(f) = lim var(log Df n). n→∞ This gives a length function l on the group Diff1+bv(M) of C1+bv diffeomorphisms for M = [0, 1] or S1. • (Dynamical degree) Let CP n be the complex projective space and f : CP n 99K CP n be a birational map given by (x0 : x1 : ··· : xn) 99K (f0 : f1 : ··· : fn), where the fi’s are homogeneous polynomials of the same degree without common factors. The degree of f is deg f = deg fi. Define 1 1 l(f) = max{ lim log deg(f n) n , lim log deg(f −n) n }. n→∞ n→∞ This gives a length function l : Bir(CP n) → [0, +∞). Here Bir(CP n) is the group of birational maps, also called Cremona group. The terminologies of length functions are used a lot in the literature (eg. [28], [22]). However, they usually mean different things from ours (in particular, it seems that the condition 3) has not been addressed for commuting elements before). Our first observation is the following result on vanishing of length functions. 2 Theorem 0.1 Let GA = Z ⋊A Z be an abelian-by-cyclic group, where A ∈ SL2(Z). 2 (i) When the absolute value of the trace |tr(A)| > 2, any length function l : Z ⋊A Z → 2 R≥0 vanishes on Z . 2 (ii) When |tr(A)| = 2 and A =6 I2, any length function l : Z ⋊A Z → R≥0 vanishes on the direct summand of Z2 spanned by eigenvectors of A. 2 Corollary 0.2 Suppose that the semi-direct product GA = Z ⋊A Z acts on a compact manifold by Lipschitz homeomorphisms (or C2-diffeomorphisms, resp.). The topological 2 entropy htop(g)=0 (or Lyapunov exponents of g are zero, resp.) for any g ∈ Z when |tr(A)| > 2 or any eigenvector g ∈ Z2 when |tr(A)| =2. It is well-known that the central element in the integral Heisenberg group GA (for 1 1 A = ) is distorted in the word metric. When the Heisenberg group G acts on a 0 1 A C∞ compact Riemannian manifold, Hu-Shi-Wang [36] proves that the topological entropy and all Lyapunov exponents of the central element are zero. These results are special cases of Theorem 0.1 and Corollary 0.2, by choosing special length functions. A length function l : G → [0, ∞) is called purely positive if l(g) > 0 for any infinite- order element g. A group G is called virtually poly-positive, if there is a finite-index subgroup H<G and a subnormal series 1= Hn ⊳ Hn−1 ⊳ ··· ⊳ H0 = H such that every finitely generated subgroup of each quotient Hi/Hi+1 (i = 0, ..., n − 1) has a purely positive length function. Our following results are on the rigidity of group homomorphisms. 3 Theorem 0.3 Let Γ be an arithmetic subgroup of a simple algebraic Q-group of Q-rank at least 2. Suppose that G is virtually poly-positive. Then any group homomorphism f :Γ → G has its image finite. Theorem 0.4 Let G be a group having a finite-index subgroup H<G and a subnormal series 1= Hn ⊳ Hn−1 ⊳ ··· ⊳ H0 = H satisfying that (i) every finitely generated subgroup of each quotient Hi/Hi+1 (i = 0, ..., n − 1) has a purely positive length function, i.e. G is virtually poly-positive; and (ii) any torsion abelian subgroup in every finitely generated subgroup of each quotient Hi/Hi+1 (i =0, ..., n − 1) is finitely generated. Let R be a finitely generated associative ring with identity and En(R) the elementary subgroup. Suppose that Γ < En(R) is finite-index subgroup. Then any group homomor- phism f :Γ → G has its image finite when n ≥ 3. Corollary 0.5 Let Γ be an arithmetic subgroup of a simple algebraic Q-group of Q-rank at least 2, or a finite-index subgroup of the elementary subgroup En(R) (n ≥ 3) for an associative ring R. Then any group homomorphism f : E → G has its image finite. Here G is one of the following groups: • a Gromov hyperbolic group, • CAT(0) group, • automorphism group Aut(Fk) of a free group, • outer automorphism group Out(Fk) of a free group or • mapping class group MCG(Σg) (g ≥ 2).
Recommended publications
  • Quotient Groups §7.8 (Ed.2), 8.4 (Ed.2): Quotient Groups and Homomorphisms, Part I
    Math 371 Lecture #33 x7.7 (Ed.2), 8.3 (Ed.2): Quotient Groups x7.8 (Ed.2), 8.4 (Ed.2): Quotient Groups and Homomorphisms, Part I Recall that to make the set of right cosets of a subgroup K in a group G into a group under the binary operation (or product) (Ka)(Kb) = K(ab) requires that K be a normal subgroup of G. For a normal subgroup N of a group G, we denote the set of right cosets of N in G by G=N (read G mod N). Theorem 8.12. For a normal subgroup N of a group G, the product (Na)(Nb) = N(ab) on G=N is well-defined. We saw the proof of this before. Theorem 8.13. For a normal subgroup N of a group G, we have (1) G=N is a group under the product (Na)(Nb) = N(ab), (2) when jGj < 1 that jG=Nj = jGj=jNj, and (3) when G is abelian, so is G=N. Proof. (1) We know that the product is well-defined. The identity element of G=N is Ne because for all a 2 G we have (Ne)(Na) = N(ae) = Na; (Na)(Ne) = N(ae) = Na: The inverse of Na is Na−1 because (Na)(Na−1) = N(aa−1) = Ne; (Na−1)(Na) = N(a−1a) = Ne: Associativity of the product in G=N follows from the associativity in G: [(Na)(Nb)](Nc) = (N(ab))(Nc) = N((ab)c) = N(a(bc)) = (N(a))(N(bc)) = (N(a))[(N(b))(N(c))]: This establishes G=N as a group.
    [Show full text]
  • Lie Group Structures on Quotient Groups and Universal Complexifications for Infinite-Dimensional Lie Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Functional Analysis 194, 347–409 (2002) doi:10.1006/jfan.2002.3942 Lie Group Structures on Quotient Groups and Universal Complexifications for Infinite-Dimensional Lie Groups Helge Glo¨ ckner1 Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918 E-mail: [email protected] Communicated by L. Gross Received September 4, 2001; revised November 15, 2001; accepted December 16, 2001 We characterize the existence of Lie group structures on quotient groups and the existence of universal complexifications for the class of Baker–Campbell–Hausdorff (BCH–) Lie groups, which subsumes all Banach–Lie groups and ‘‘linear’’ direct limit r r Lie groups, as well as the mapping groups CK ðM; GÞ :¼fg 2 C ðM; GÞ : gjM=K ¼ 1g; for every BCH–Lie group G; second countable finite-dimensional smooth manifold M; compact subset SK of M; and 04r41: Also the corresponding test function r r # groups D ðM; GÞ¼ K CK ðM; GÞ are BCH–Lie groups. 2002 Elsevier Science (USA) 0. INTRODUCTION It is a well-known fact in the theory of Banach–Lie groups that the topological quotient group G=N of a real Banach–Lie group G by a closed normal Lie subgroup N is a Banach–Lie group provided LðNÞ is complemented in LðGÞ as a topological vector space [7, 30]. Only recently, it was observed that the hypothesis that LðNÞ be complemented can be omitted [17, Theorem II.2]. This strengthened result is then used in [17] to characterize those real Banach–Lie groups which possess a universal complexification in the category of complex Banach–Lie groups.
    [Show full text]
  • The Category of Generalized Lie Groups 283
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 199, 1974 THE CATEGORYOF GENERALIZEDLIE GROUPS BY SU-SHING CHEN AND RICHARD W. YOH ABSTRACT. We consider the category r of generalized Lie groups. A generalized Lie group is a topological group G such that the set LG = Hom(R, G) of continuous homomorphisms from the reals R into G has certain Lie algebra and locally convex topological vector space structures. The full subcategory rr of f-bounded (r positive real number) generalized Lie groups is shown to be left complete. The class of locally compact groups is contained in T. Various prop- erties of generalized Lie groups G and their locally convex topological Lie algebras LG = Horn (R, G) are investigated. 1. Introduction. The category FT of finite dimensional Lie groups does not admit arbitrary Cartesian products. Therefore we shall enlarge the category £r to the category T of generalized Lie groups introduced by K. Hofmann in [ll]^1) The category T contains well-known subcategories, such as the category of compact groups [11], the category of locally compact groups (see §5) and the category of finite dimensional De groups. The Lie algebra LG = Horn (R, G) of a generalized Lie group G is a vital and important device just as in the case of finite dimensional Lie groups. Thus we consider the category SI of locally convex topological Lie algebras (§2). The full subcategory Í2r of /--bounded locally convex topological Lie algebras of £2 is roughly speaking the family of all objects on whose open semiballs of radius r the Campbell-Hausdorff formula holds.
    [Show full text]
  • Quotient-Rings.Pdf
    4-21-2018 Quotient Rings Let R be a ring, and let I be a (two-sided) ideal. Considering just the operation of addition, R is a group and I is a subgroup. In fact, since R is an abelian group under addition, I is a normal subgroup, and R the quotient group is defined. Addition of cosets is defined by adding coset representatives: I (a + I)+(b + I)=(a + b)+ I. The zero coset is 0+ I = I, and the additive inverse of a coset is given by −(a + I)=(−a)+ I. R However, R also comes with a multiplication, and it’s natural to ask whether you can turn into a I ring by multiplying coset representatives: (a + I) · (b + I)= ab + I. I need to check that that this operation is well-defined, and that the ring axioms are satisfied. In fact, everything works, and you’ll see in the proof that it depends on the fact that I is an ideal. Specifically, it depends on the fact that I is closed under multiplication by elements of R. R By the way, I’ll sometimes write “ ” and sometimes “R/I”; they mean the same thing. I Theorem. If I is a two-sided ideal in a ring R, then R/I has the structure of a ring under coset addition and multiplication. Proof. Suppose that I is a two-sided ideal in R. Let r, s ∈ I. Coset addition is well-defined, because R is an abelian group and I a normal subgroup under addition. I proved that coset addition was well-defined when I constructed quotient groups.
    [Show full text]
  • Math 412. Adventure Sheet on Quotient Groups
    Math 412. Adventure sheet on Quotient Groups Fix an arbitrary group (G; ◦). DEFINITION: A subgroup N of G is normal if for all g 2 G, the left and right N-cosets gN and Ng are the same subsets of G. NOTATION: If H ⊆ G is any subgroup, then G=H denotes the set of left cosets of H in G. Its elements are sets denoted gH where g 2 G. The cardinality of G=H is called the index of H in G. DEFINITION/THEOREM 8.13: Let N be a normal subgroup of G. Then there is a well-defined binary operation on the set G=N defined as follows: G=N × G=N ! G=N g1N ? g2N = (g1 ◦ g2)N making G=N into a group. We call this the quotient group “G modulo N”. A. WARMUP: Define the sign map: Sn ! {±1g σ 7! 1 if σ is even; σ 7! −1 if σ is odd. (1) Prove that sign map is a group homomorphism. (2) Use the sign map to give a different proof that An is a normal subgroup of Sn for all n. (3) Describe the An-cosets of Sn. Make a table to describe the quotient group structure Sn=An. What is the identity element? B. OPERATIONS ON COSETS: Let (G; ◦) be a group and let N ⊆ G be a normal subgroup. (1) Take arbitrary ng 2 Ng. Prove that there exists n0 2 N such that ng = gn0. (2) Take any x 2 g1N and any y 2 g2N. Prove that xy 2 g1g2N.
    [Show full text]
  • Mostow Type Rigidity Theorems
    Handbook of c Higher Education Press Group Actions (Vol. IV) and International Press ALM41, Ch. 4, pp. 139{188 Beijing-Boston Mostow type rigidity theorems Marc Bourdon ∗ Abstract This is a survey on rigidity theorems that rely on the quasi-conformal geometry of boundaries of hyperbolic spaces. 2010 Mathematics Subject Classification: 20F65, 20F67, 20F69, 22E40, 30C65, 30L10. Keywords and Phrases: Hyperbolic groups and nonpositively curved groups, asymptotic properties of groups, discrete subgroups of Lie groups, quasiconformal mappings. 1 Introduction The Mostow celebrated rigidity theorem for rank-one symmetric spaces states that every isomorphism between fundamental groups of compact, negatively curved, lo- cally symmetric manifolds, of dimension at least 3, is induced by an isometry. In his proof, Mostow exploits two major ideas: group actions on boundaries and reg- ularity properties of quasi-conformal homeomorphisms. This set of ideas revealed itself very fruitful. It forms one of the bases of the theory of Gromov hyperbolic groups. It also serves as a motivation to develop quasi-conformal geometry on metric spaces. The present text attempts to provide a synthetic presentation of the rigidity theorems that rely on the quasi-conformal geometry of boundaries of hyperbolic spaces. Previous surveys on the subject include [74, 34, 13, 102, 80]. The orig- inality of this text lies more in its form. It has two objectives. The first one is to discuss and prove some classical results like Mostow's rigidity in rank one, Ferrand's solution of Lichn´erowicz's conjecture, the Sullivan-Tukia and the Pansu ∗Universit´eLille 1, D´epartement de math´ematiques, Bat.
    [Show full text]
  • Quasi P Or Not Quasi P? That Is the Question
    Rose-Hulman Undergraduate Mathematics Journal Volume 3 Issue 2 Article 2 Quasi p or not Quasi p? That is the Question Ben Harwood Northern Kentucky University, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Harwood, Ben (2002) "Quasi p or not Quasi p? That is the Question," Rose-Hulman Undergraduate Mathematics Journal: Vol. 3 : Iss. 2 , Article 2. Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss2/2 Quasi p- or not quasi p-? That is the Question.* By Ben Harwood Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099 e-mail: [email protected] Section Zero: Introduction The question might not be as profound as Shakespeare’s, but nevertheless, it is interesting. Because few people seem to be aware of quasi p-groups, we will begin with a bit of history and a definition; and then we will determine for each group of order less than 24 (and a few others) whether the group is a quasi p-group for some prime p or not. This paper is a prequel to [Hwd]. In [Hwd] we prove that (Z3 £Z3)oZ2 and Z5 o Z4 are quasi 2-groups. Those proofs now form a portion of Proposition (12.1) It should also be noted that [Hwd] may also be found in this journal. Section One: Why should we be interested in quasi p-groups? In a 1957 paper titled Coverings of algebraic curves [Abh2], Abhyankar conjectured that the algebraic fundamental group of the affine line over an algebraically closed field k of prime characteristic p is the set of quasi p-groups, where by the algebraic fundamental group of the affine line he meant the family of all Galois groups Gal(L=k(X)) as L varies over all finite normal extensions of k(X) the function field of the affine line such that no point of the line is ramified in L, and where by a quasi p-group he meant a finite group that is generated by all of its p-Sylow subgroups.
    [Show full text]
  • The Development and Understanding of the Concept of Quotient Group
    HISTORIA MATHEMATICA 20 (1993), 68-88 The Development and Understanding of the Concept of Quotient Group JULIA NICHOLSON Merton College, Oxford University, Oxford OXI 4JD, United Kingdom This paper describes the way in which the concept of quotient group was discovered and developed during the 19th century, and examines possible reasons for this development. The contributions of seven mathematicians in particular are discussed: Galois, Betti, Jordan, Dedekind, Dyck, Frobenius, and H61der. The important link between the development of this concept and the abstraction of group theory is considered. © 1993 AcademicPress. Inc. Cet article decrit la d6couverte et le d6veloppement du concept du groupe quotient au cours du 19i~me si~cle, et examine les raisons possibles de ce d6veloppement. Les contributions de sept math6maticiens seront discut6es en particulier: Galois, Betti, Jordan, Dedekind, Dyck, Frobenius, et H61der. Le lien important entre le d6veloppement de ce concept et l'abstraction de la th6orie des groupes sera consider6e. © 1993 AcademicPress, Inc. Diese Arbeit stellt die Entdeckung beziehungsweise die Entwicklung des Begriffs der Faktorgruppe wfihrend des 19ten Jahrhunderts dar und untersucht die m/)glichen Griinde for diese Entwicklung. Die Beitrfi.ge von sieben Mathematikern werden vor allem diskutiert: Galois, Betti, Jordan, Dedekind, Dyck, Frobenius und H61der. Die wichtige Verbindung zwischen der Entwicklung dieses Begriffs und der Abstraktion der Gruppentheorie wird betrachtet. © 1993 AcademicPress. Inc. AMS subject classifications: 01A55, 20-03 KEY WORDS: quotient group, group theory, Galois theory I. INTRODUCTION Nowadays one can hardly conceive any more of a group theory without factor groups... B. L. van der Waerden, from his obituary of Otto H61der [1939] Although the concept of quotient group is now considered to be fundamental to the study of groups, it is a concept which was unknown to early group theorists.
    [Show full text]
  • A STUDY on the ALGEBRAIC STRUCTURE of SL 2(Zpz)
    A STUDY ON THE ALGEBRAIC STRUCTURE OF SL2 Z pZ ( ~ ) A Thesis Presented to The Honors Tutorial College Ohio University In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Mathematics by Evan North April 2015 Contents 1 Introduction 1 2 Background 5 2.1 Group Theory . 5 2.2 Linear Algebra . 14 2.3 Matrix Group SL2 R Over a Ring . 22 ( ) 3 Conjugacy Classes of Matrix Groups 26 3.1 Order of the Matrix Groups . 26 3.2 Conjugacy Classes of GL2 Fp ....................... 28 3.2.1 Linear Case . .( . .) . 29 3.2.2 First Quadratic Case . 29 3.2.3 Second Quadratic Case . 30 3.2.4 Third Quadratic Case . 31 3.2.5 Classes in SL2 Fp ......................... 33 3.3 Splitting of Classes of(SL)2 Fp ....................... 35 3.4 Results of SL2 Fp ..............................( ) 40 ( ) 2 4 Toward Lifting to SL2 Z p Z 41 4.1 Reduction mod p ...............................( ~ ) 42 4.2 Exploring the Kernel . 43 i 4.3 Generalizing to SL2 Z p Z ........................ 46 ( ~ ) 5 Closing Remarks 48 5.1 Future Work . 48 5.2 Conclusion . 48 1 Introduction Symmetries are one of the most widely-known examples of pure mathematics. Symmetry is when an object can be rotated, flipped, or otherwise transformed in such a way that its appearance remains the same. Basic geometric figures should create familiar examples, take for instance the triangle. Figure 1: The symmetries of a triangle: 3 reflections, 2 rotations. The red lines represent the reflection symmetries, where the trianlge is flipped over, while the arrows represent the rotational symmetry of the triangle.
    [Show full text]
  • Perspectives on Geometric Analysis
    Surveys in Differential Geometry X Perspectives on geometric analysis Shing-Tung Yau This essay grew from a talk I gave on the occasion of the seventieth anniversary of the Chinese Mathematical Society. I dedicate the lecture to the memory of my teacher S.S. Chern who had passed away half a year before (December 2004). During my graduate studies, I was rather free in picking research topics. I[731] worked on fundamental groups of manifolds with non-positive curva- ture. But in the second year of my studies, I started to look into differential equations on manifolds. However, at that time, Chern was very much inter- ested in the work of Bott on holomorphic vector fields. Also he told me that I should work on Riemann hypothesis. (Weil had told him that it was time for the hypothesis to be settled.) While Chern did not express his opinions about my research on geometric analysis, he started to appreciate it a few years later. In fact, after Chern gave a course on Calabi’s works on affine geometry in 1972 at Berkeley, S.Y. Cheng told me about these inspiring lec- tures. By 1973, Cheng and I started to work on some problems mentioned in Chern’s lectures. We did not realize that the great geometers Pogorelov, Calabi and Nirenberg were also working on them. We were excited that we solved some of the conjectures of Calabi on improper affine spheres. But soon after we found out that Pogorelov [563] published his results right be- fore us by different arguments. Nevertheless our ideas are useful in handling other problems in affine geometry, and my knowledge about Monge-Amp`ere equations started to broaden in these years.
    [Show full text]
  • Lie Groups in Quantum Information Session 3: Simple Lie Groups and Simple Lie Algebras
    Lie groups in quantum information Session 3: Simple Lie groups and simple Lie algebras Andrew Zhao June 26, 2019 1 Simple groups We begin with the definition of normal subgroups (sometimes also referred to as invariant subgroups). Given a particular group, these are the subgroups (recall: subsets closed with respect to the group operation) which are invariant to conjugation by any element of the full group. Definition 1.1. Let G be a group and N ⊆ G a subgroup. We call N a normal subgroup of G if, ∀n ∈ N −1 and ∀g ∈ G, gng ∈ N. (This relation is often denoted N C G.) Example 1.1. Consider the symmetric group S3 := {1, (01), (02), (12), (012), (021)}. Its normal subgroups are S3, {1}, and {1, (012), (021)}. Proof. Since groups are closed by definition, the entire group is always a normal subgroup of itself. The subgroup containing only the identity element is also always normal, since g1g−1 = gg−1 = 1 ∈ {1}. The only nontrivial normal subgroup of S3 is N = {e, (012), (021)}, which can be checked explicitly by −1 calculating gng for all g ∈ S3 and n ∈ N. As an example, for n = (012), we have: 2 0 2 (01)(012)(01)−1 = (1) 0 1 2 1 0 1 2 1 = 0 1 2 0 0 = = (021) ∈ N, 1 2 0 0 0 (021)(012)(021)−1 = (2) 1 2 2 1 1 2 | {z } 1 = (012) ∈ N. The remaining calculations follow similarly. Not all groups have nontrivial normal subgroups. Those which do not are said to be simple.
    [Show full text]
  • 7. Quotient Groups III We Know That the Kernel of a Group Homomorphism Is a Normal Subgroup
    7. Quotient groups III We know that the kernel of a group homomorphism is a normal subgroup. In fact the opposite is true, every normal subgroup is the kernel of a homomorphism: Theorem 7.1. If H is a normal subgroup of a group G then the map γ : G −! G=H given by γ(x) = xH; is a homomorphism with kernel H. Proof. Suppose that x and y 2 G. Then γ(xy) = xyH = xHyH = γ(x)γ(y): Therefore γ is a homomorphism. eH = H plays the role of the identity. The kernel is the inverse image of the identity. γ(x) = xH = H if and only if x 2 H. Therefore the kernel of γ is H. If we put all we know together we get: Theorem 7.2 (First isomorphism theorem). Let φ: G −! G0 be a group homomorphism with kernel K. Then φ[G] is a group and µ: G=H −! φ[G] given by µ(gH) = φ(g); is an isomorphism. If γ : G −! G=H is the map γ(g) = gH then φ(g) = µγ(g). The following triangle summarises the last statement: φ G - G0 - γ ? µ G=H Example 7.3. Determine the quotient group Z3 × Z7 Z3 × f0g Note that the quotient of an abelian group is always abelian. So by the fundamental theorem of finitely generated abelian groups the quotient is a product of abelian groups. 1 Consider the projection map onto the second factor Z7: π : Z3 × Z7 −! Z7 given by (a; b) −! b: This map is onto and the kernel is Z3 ×f0g.
    [Show full text]