7. Quotient Groups III We Know That the Kernel of a Group Homomorphism Is a Normal Subgroup
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quotient Groups §7.8 (Ed.2), 8.4 (Ed.2): Quotient Groups and Homomorphisms, Part I
Math 371 Lecture #33 x7.7 (Ed.2), 8.3 (Ed.2): Quotient Groups x7.8 (Ed.2), 8.4 (Ed.2): Quotient Groups and Homomorphisms, Part I Recall that to make the set of right cosets of a subgroup K in a group G into a group under the binary operation (or product) (Ka)(Kb) = K(ab) requires that K be a normal subgroup of G. For a normal subgroup N of a group G, we denote the set of right cosets of N in G by G=N (read G mod N). Theorem 8.12. For a normal subgroup N of a group G, the product (Na)(Nb) = N(ab) on G=N is well-defined. We saw the proof of this before. Theorem 8.13. For a normal subgroup N of a group G, we have (1) G=N is a group under the product (Na)(Nb) = N(ab), (2) when jGj < 1 that jG=Nj = jGj=jNj, and (3) when G is abelian, so is G=N. Proof. (1) We know that the product is well-defined. The identity element of G=N is Ne because for all a 2 G we have (Ne)(Na) = N(ae) = Na; (Na)(Ne) = N(ae) = Na: The inverse of Na is Na−1 because (Na)(Na−1) = N(aa−1) = Ne; (Na−1)(Na) = N(a−1a) = Ne: Associativity of the product in G=N follows from the associativity in G: [(Na)(Nb)](Nc) = (N(ab))(Nc) = N((ab)c) = N(a(bc)) = (N(a))(N(bc)) = (N(a))[(N(b))(N(c))]: This establishes G=N as a group. -
Group Homomorphisms
1-17-2018 Group Homomorphisms Here are the operation tables for two groups of order 4: · 1 a a2 + 0 1 2 1 1 a a2 0 0 1 2 a a a2 1 1 1 2 0 a2 a2 1 a 2 2 0 1 There is an obvious sense in which these two groups are “the same”: You can get the second table from the first by replacing 0 with 1, 1 with a, and 2 with a2. When are two groups the same? You might think of saying that two groups are the same if you can get one group’s table from the other by substitution, as above. However, there are problems with this. In the first place, it might be very difficult to check — imagine having to write down a multiplication table for a group of order 256! In the second place, it’s not clear what a “multiplication table” is if a group is infinite. One way to implement a substitution is to use a function. In a sense, a function is a thing which “substitutes” its output for its input. I’ll define what it means for two groups to be “the same” by using certain kinds of functions between groups. These functions are called group homomorphisms; a special kind of homomorphism, called an isomorphism, will be used to define “sameness” for groups. Definition. Let G and H be groups. A homomorphism from G to H is a function f : G → H such that f(x · y)= f(x) · f(y) forall x,y ∈ G. -
Categories of Sets with a Group Action
Categories of sets with a group action Bachelor Thesis of Joris Weimar under supervision of Professor S.J. Edixhoven Mathematisch Instituut, Universiteit Leiden Leiden, 13 June 2008 Contents 1 Introduction 1 1.1 Abstract . .1 1.2 Working method . .1 1.2.1 Notation . .1 2 Categories 3 2.1 Basics . .3 2.1.1 Functors . .4 2.1.2 Natural transformations . .5 2.2 Categorical constructions . .6 2.2.1 Products and coproducts . .6 2.2.2 Fibered products and fibered coproducts . .9 3 An equivalence of categories 13 3.1 G-sets . 13 3.2 Covering spaces . 15 3.2.1 The fundamental group . 15 3.2.2 Covering spaces and the homotopy lifting property . 16 3.2.3 Induced homomorphisms . 18 3.2.4 Classifying covering spaces through the fundamental group . 19 3.3 The equivalence . 24 3.3.1 The functors . 25 4 Applications and examples 31 4.1 Automorphisms and recovering the fundamental group . 31 4.2 The Seifert-van Kampen theorem . 32 4.2.1 The categories C1, C2, and πP -Set ................... 33 4.2.2 The functors . 34 4.2.3 Example . 36 Bibliography 38 Index 40 iii 1 Introduction 1.1 Abstract In the 40s, Mac Lane and Eilenberg introduced categories. Although by some referred to as abstract nonsense, the idea of categories allows one to talk about mathematical objects and their relationions in a general setting. Its origins lie in the field of algebraic topology, one of the topics that will be explored in this thesis. First, a concise introduction to categories will be given. -
Kernel and Image
Math 217 Worksheet 1 February: x3.1 Professor Karen E Smith (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. T Definitions: Given a linear transformation V ! W between vector spaces, we have 1. The source or domain of T is V ; 2. The target of T is W ; 3. The image of T is the subset of the target f~y 2 W j ~y = T (~x) for some x 2 Vg: 4. The kernel of T is the subset of the source f~v 2 V such that T (~v) = ~0g. Put differently, the kernel is the pre-image of ~0. Advice to the new mathematicians from an old one: In encountering new definitions and concepts, n m please keep in mind concrete examples you already know|in this case, think about V as R and W as R the first time through. How does the notion of a linear transformation become more concrete in this special case? Think about modeling your future understanding on this case, but be aware that there are other important examples and there are important differences (a linear map is not \a matrix" unless *source and target* are both \coordinate spaces" of column vectors). The goal is to become comfortable with the abstract idea of a vector space which embodies many n features of R but encompasses many other kinds of set-ups. A. For each linear transformation below, determine the source, target, image and kernel. 2 3 x1 3 (a) T : R ! R such that T (4x25) = x1 + x2 + x3. -
Lie Group Structures on Quotient Groups and Universal Complexifications for Infinite-Dimensional Lie Groups
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Functional Analysis 194, 347–409 (2002) doi:10.1006/jfan.2002.3942 Lie Group Structures on Quotient Groups and Universal Complexifications for Infinite-Dimensional Lie Groups Helge Glo¨ ckner1 Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918 E-mail: [email protected] Communicated by L. Gross Received September 4, 2001; revised November 15, 2001; accepted December 16, 2001 We characterize the existence of Lie group structures on quotient groups and the existence of universal complexifications for the class of Baker–Campbell–Hausdorff (BCH–) Lie groups, which subsumes all Banach–Lie groups and ‘‘linear’’ direct limit r r Lie groups, as well as the mapping groups CK ðM; GÞ :¼fg 2 C ðM; GÞ : gjM=K ¼ 1g; for every BCH–Lie group G; second countable finite-dimensional smooth manifold M; compact subset SK of M; and 04r41: Also the corresponding test function r r # groups D ðM; GÞ¼ K CK ðM; GÞ are BCH–Lie groups. 2002 Elsevier Science (USA) 0. INTRODUCTION It is a well-known fact in the theory of Banach–Lie groups that the topological quotient group G=N of a real Banach–Lie group G by a closed normal Lie subgroup N is a Banach–Lie group provided LðNÞ is complemented in LðGÞ as a topological vector space [7, 30]. Only recently, it was observed that the hypothesis that LðNÞ be complemented can be omitted [17, Theorem II.2]. This strengthened result is then used in [17] to characterize those real Banach–Lie groups which possess a universal complexification in the category of complex Banach–Lie groups. -
The Category of Generalized Lie Groups 283
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 199, 1974 THE CATEGORYOF GENERALIZEDLIE GROUPS BY SU-SHING CHEN AND RICHARD W. YOH ABSTRACT. We consider the category r of generalized Lie groups. A generalized Lie group is a topological group G such that the set LG = Hom(R, G) of continuous homomorphisms from the reals R into G has certain Lie algebra and locally convex topological vector space structures. The full subcategory rr of f-bounded (r positive real number) generalized Lie groups is shown to be left complete. The class of locally compact groups is contained in T. Various prop- erties of generalized Lie groups G and their locally convex topological Lie algebras LG = Horn (R, G) are investigated. 1. Introduction. The category FT of finite dimensional Lie groups does not admit arbitrary Cartesian products. Therefore we shall enlarge the category £r to the category T of generalized Lie groups introduced by K. Hofmann in [ll]^1) The category T contains well-known subcategories, such as the category of compact groups [11], the category of locally compact groups (see §5) and the category of finite dimensional De groups. The Lie algebra LG = Horn (R, G) of a generalized Lie group G is a vital and important device just as in the case of finite dimensional Lie groups. Thus we consider the category SI of locally convex topological Lie algebras (§2). The full subcategory Í2r of /--bounded locally convex topological Lie algebras of £2 is roughly speaking the family of all objects on whose open semiballs of radius r the Campbell-Hausdorff formula holds. -
Derived Functors and Homological Dimension (Pdf)
DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic. -
Math 120 Homework 3 Solutions
Math 120 Homework 3 Solutions Xiaoyu He, with edits by Prof. Church April 21, 2018 [Note from Prof. Church: solutions to starred problems may not include all details or all portions of the question.] 1.3.1* Let σ be the permutation 1 7! 3; 2 7! 4; 3 7! 5; 4 7! 2; 5 7! 1 and let τ be the permutation 1 7! 5; 2 7! 3; 3 7! 2; 4 7! 4; 5 7! 1. Find the cycle decompositions of each of the following permutations: σ; τ; σ2; στ; τσ; τ 2σ. The cycle decompositions are: σ = (135)(24) τ = (15)(23)(4) σ2 = (153)(2)(4) στ = (1)(2534) τσ = (1243)(5) τ 2σ = (135)(24): 1.3.7* Write out the cycle decomposition of each element of order 2 in S4. Elements of order 2 are also called involutions. There are six formed from a single transposition, (12); (13); (14); (23); (24); (34), and three from pairs of transpositions: (12)(34); (13)(24); (14)(23). 3.1.6* Define ' : R× ! {±1g by letting '(x) be x divided by the absolute value of x. Describe the fibers of ' and prove that ' is a homomorphism. The fibers of ' are '−1(1) = (0; 1) = fall positive realsg and '−1(−1) = (−∞; 0) = fall negative realsg. 3.1.7* Define π : R2 ! R by π((x; y)) = x + y. Prove that π is a surjective homomorphism and describe the kernel and fibers of π geometrically. The map π is surjective because e.g. π((x; 0)) = x. The kernel of π is the line y = −x through the origin. -
Självständiga Arbeten I Matematik
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Geometric interpretation of non-associative composition algebras av Fredrik Cumlin 2020 - No K13 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM Geometric interpretation of non-associative composition algebras Fredrik Cumlin Självständigt arbete i matematik 15 högskolepoäng, grundnivå Handledare: Wushi Goldring 2020 Abstract This paper aims to discuss the connection between non-associative composition algebra and geometry. It will first recall the notion of an algebra, and investigate the properties of an algebra together with a com- position norm. The composition norm will induce a law on the algebra, which is stated as the composition law. This law is then used to derive the multiplication and conjugation laws, where the last is also known as convolution. These laws are then used to prove Hurwitz’s celebrated the- orem concerning the different finite composition algebras. More properties of composition algebras will be covered, in order to look at the structure of the quaternions H and octonions O. The famous Fano plane will be the finishing touch of the relationship between the standard orthogonal vectors which construct the octonions. Lastly, the notion of invertible maps in relation to invertible loops will be covered, to later show the connection between 8 dimensional rotations − and multiplication of unit octonions. 2 Contents 1 Algebra 4 1.1 The multiplication laws . .6 1.2 The conjugation laws . .7 1.3 Dickson double . .8 1.4 Hurwitz’s theorem . 11 2 Properties of composition algebras 14 2.1 The left-, right- and bi-multiplication maps . 16 2.2 Basic properties of quaternions and octonions . -
Discrete Topological Transformations for Image Processing Michel Couprie, Gilles Bertrand
Discrete Topological Transformations for Image Processing Michel Couprie, Gilles Bertrand To cite this version: Michel Couprie, Gilles Bertrand. Discrete Topological Transformations for Image Processing. Brimkov, Valentin E. and Barneva, Reneta P. Digital Geometry Algorithms, 2, Springer, pp.73-107, 2012, Lecture Notes in Computational Vision and Biomechanics, 978-94-007-4174-4. 10.1007/978-94- 007-4174-4_3. hal-00727377 HAL Id: hal-00727377 https://hal-upec-upem.archives-ouvertes.fr/hal-00727377 Submitted on 3 Sep 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chapter 3 Discrete Topological Transformations for Image Processing Michel Couprie and Gilles Bertrand Abstract Topology-based image processing operators usually aim at trans- forming an image while preserving its topological characteristics. This chap- ter reviews some approaches which lead to efficient and exact algorithms for topological transformations in 2D, 3D and grayscale images. Some transfor- mations which modify topology in a controlled manner are also described. Finally, based on the framework of critical kernels, we show how to design a topologically sound parallel thinning algorithm guided by a priority function. 3.1 Introduction Topology-preserving operators, such as homotopic thinning and skeletoniza- tion, are used in many applications of image analysis to transform an object while leaving unchanged its topological characteristics. -
Kernel Methodsmethods Simple Idea of Data Fitting
KernelKernel MethodsMethods Simple Idea of Data Fitting Given ( xi,y i) i=1,…,n xi is of dimension d Find the best linear function w (hyperplane) that fits the data Two scenarios y: real, regression y: {-1,1}, classification Two cases n>d, regression, least square n<d, ridge regression New sample: x, < x,w> : best fit (regression), best decision (classification) 2 Primary and Dual There are two ways to formulate the problem: Primary Dual Both provide deep insight into the problem Primary is more traditional Dual leads to newer techniques in SVM and kernel methods 3 Regression 2 w = arg min ∑(yi − wo − ∑ xij w j ) W i j w = arg min (y − Xw )T (y − Xw ) W d(y − Xw )T (y − Xw ) = 0 dw ⇒ XT (y − Xw ) = 0 w = [w , w ,L, w ]T , ⇒ T T o 1 d X Xw = X y L T x = ,1[ x1, , xd ] , T −1 T ⇒ w = (X X) X y y = [y , y ,L, y ]T ) 1 2 n T −1 T xT y =< x (, X X) X y > 1 xT X = 2 M xT 4 n n×xd Graphical Interpretation ) y = Xw = Hy = X(XT X)−1 XT y = X(XT X)−1 XT y d X= n FICA Income X is a n (sample size) by d (dimension of data) matrix w combines the columns of X to best approximate y Combine features (FICA, income, etc.) to decisions (loan) H projects y onto the space spanned by columns of X Simplify the decisions to fit the features 5 Problem #1 n=d, exact solution n>d, least square, (most likely scenarios) When n < d, there are not enough constraints to determine coefficients w uniquely d X= n W 6 Problem #2 If different attributes are highly correlated (income and FICA) The columns become dependent Coefficients -
Quotient-Rings.Pdf
4-21-2018 Quotient Rings Let R be a ring, and let I be a (two-sided) ideal. Considering just the operation of addition, R is a group and I is a subgroup. In fact, since R is an abelian group under addition, I is a normal subgroup, and R the quotient group is defined. Addition of cosets is defined by adding coset representatives: I (a + I)+(b + I)=(a + b)+ I. The zero coset is 0+ I = I, and the additive inverse of a coset is given by −(a + I)=(−a)+ I. R However, R also comes with a multiplication, and it’s natural to ask whether you can turn into a I ring by multiplying coset representatives: (a + I) · (b + I)= ab + I. I need to check that that this operation is well-defined, and that the ring axioms are satisfied. In fact, everything works, and you’ll see in the proof that it depends on the fact that I is an ideal. Specifically, it depends on the fact that I is closed under multiplication by elements of R. R By the way, I’ll sometimes write “ ” and sometimes “R/I”; they mean the same thing. I Theorem. If I is a two-sided ideal in a ring R, then R/I has the structure of a ring under coset addition and multiplication. Proof. Suppose that I is a two-sided ideal in R. Let r, s ∈ I. Coset addition is well-defined, because R is an abelian group and I a normal subgroup under addition. I proved that coset addition was well-defined when I constructed quotient groups.