Perspectives on Geometric Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometric Analysis of Shapes and Its Application to Medical Image Analysis
Geometric Analysis of Shapes and Its application to Medical Image Analysis by Anirban Mukhopadhyay (Under the DIRECTION of Suchendra M. Bhandarkar) Abstract Geometric analysis of shapes plays an important role in the way the visual world is per- ceived by modern computers. To this end, low-level geometric features provide most obvious and important cues towards understanding the visual scene. A novel intrinsic geometric sur- face descriptor, termed as the Geodesic Field Estimate (GFE) is proposed. Also proposed is a parallel algorithm, well suited for implementation on Graphics Processing Units, for efficient computation of the shortest geodesic paths. Another low level geometric descriptor, termed as the Biharmonic Density Estimate, is proposed to provide an intrinsic geometric scale space signature for multiscale surface feature-based representation of deformable 3D shapes. The computer vision and graphics communities rely on mid-level geometric understanding as well to analyze a scene. Symmetry detection and partial shape matching play an important role as mid-level cues. A comprehensive framework for detection and characterization of partial intrinsic symmetry over 3D shapes is proposed. To identify prominent overlapping symmetric regions, the proposed framework is decoupled into Correspondence Space Voting followed by Transformation Space Mapping procedure. Moreover, a novel multi-criteria optimization framework for matching of partially visible shapes in multiple images using joint geometric embedding is also proposed. The ultimate goal of geometric shape analysis is to resolve high level applications of modern world. This dissertation has focused on three different application scenarios. In the first scenario, a novel approach for the analysis of the non-rigid Left Ventricular (LV) endocardial surface from Multi-Detector CT images, using a generalized isometry-invariant Bag-of-Features (BoF) descriptor, is proposed and implemented. -
Relative Mirror Symmetry and Ramifications of a Formula for Gromov-Witten Invariants
Relative Mirror Symmetry and Ramifications of a Formula for Gromov-Witten Invariants Thesis by Michel van Garrel In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2013 (Defended May 21, 2013) ii c 2013 Michel van Garrel All Rights Reserved iii To my parents Curt and Danielle, the source of all virtues that I possess. To my brothers Cl´ement and Philippe, my best and most fun friends. iv Acknowledgements My greatest thanks go to my advisor Professor Tom Graber, whose insights into the workings of algebraic geometry keep astonishing me and whose ideas were of enormous benefit to me during the pursuit of my Ph.D. My special thanks are given to Professor Yongbin Ruan, who initiated the project on relative mirror symmetry and to whom I am grateful many enjoyable discussions. I am grateful that I am able to count on the continuing support of Professor Eva Bayer and Professor James Lewis. Over the past few years I learned a lot from Daniel Pomerleano, who, among others, introduced me to homological mirror symmetry. Mathieu Florence has been a figure of inspiration and motivation ever since he casually introduced me to algebraic geometry. Finally, my thanks go to the innumerable enjoyable math conversations with Roland Abuaf, Dori Bejleri, Adam Ericksen, Anton Geraschenko, Daniel Halpern-Leistner, Hadi Hedayatzadeh, Cl´ement Hongler, Brian Hwang, Khoa Nguyen, Rom Rains, Mark Shoemaker, Zhiyu Tian, Nahid Walji, Tony Wong and Gjergji Zaimi. v Abstract For a toric Del Pezzo surface S, a new instance of mirror symmetry, said relative, is introduced and developed. -
Karen Keskulla Uhlenbeck
2019 The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2019 to Karen Keskulla Uhlenbeck University of Texas at Austin “for her pioneering achievements in geometric partial differential equations, gauge theory and integrable systems, and for the fundamental impact of her work on analysis, geometry and mathematical physics.” Karen Keskulla Uhlenbeck is a founder of modern by earlier work of Morse, guarantees existence of Geometric Analysis. Her perspective has permeated minimisers of geometric functionals and is successful the field and led to some of the most dramatic in the case of 1-dimensional domains, such as advances in mathematics in the last 40 years. closed geodesics. Geometric analysis is a field of mathematics where Uhlenbeck realised that the condition of Palais— techniques of analysis and differential equations are Smale fails in the case of surfaces due to topological interwoven with the study of geometrical and reasons. The papers of Uhlenbeck, co-authored with topological problems. Specifically, one studies Sacks, on the energy functional for maps of surfaces objects such as curves, surfaces, connections and into a Riemannian manifold, have been extremely fields which are critical points of functionals influential and describe in detail what happens when representing geometric quantities such as energy the Palais-Smale condition is violated. A minimising and volume. For example, minimal surfaces are sequence of mappings converges outside a finite set critical points of the area and harmonic maps are of singular points and by using rescaling arguments, critical points of the Dirichlet energy. Uhlenbeck’s they describe the behaviour near the singularities major contributions include foundational results on as bubbles or instantons, which are the standard minimal surfaces and harmonic maps, Yang-Mills solutions of the minimising map from the 2-sphere to theory, and integrable systems. -
Stringy T3-Fibrations, T-Folds and Mirror Symmetry
Stringy T 3-fibrations, T-folds and Mirror Symmetry Ismail Achmed-Zade Arnold-Sommerfeld-Center Work to appear with D. L¨ust,S. Massai, M.J.D. Hamilton March 13th, 2017 Ismail Achmed-Zade (ASC) Stringy T 3-fibrations and applications March 13th, 2017 1 / 24 Overview 1 String compactifications and dualities T-duality Mirror Symmetry 2 T-folds The case T 2 The case T 3 3 Stringy T 3-bundles The useful T 4 4 Conclusion Recap Open Problems Ismail Achmed-Zade (ASC) Stringy T 3-fibrations and applications March 13th, 2017 2 / 24 Introduction Target space Super string theory lives on a 10-dimensional pseudo-Riemannian manifold, e.g. 4 6 M = R × T with metric η G = µν GT 6 In general we have M = Σµν × X , with Σµν a solution to Einsteins equation. M is a solution to the supergravity equations of motion. Non-geometric backgrounds X need not be a manifold. Exotic backgrounds can lead to non-commutative and non-associative gravity. Ismail Achmed-Zade (ASC) Stringy T 3-fibrations and applications March 13th, 2017 3 / 24 T-duality Example Somtimes different backgrounds yield the same physics IIA IIB 9 1 2 2 ! 9 1 1 2 R × S ; R dt R × S ; R2 dt More generally T-duality for torus compactifications is an O(D; D; Z)-transformation (T D ; G; B; Φ) ! (T^D ; G^; B^; Φ)^ Ismail Achmed-Zade (ASC) Stringy T 3-fibrations and applications March 13th, 2017 4 / 24 Mirror Symmetry Hodge diamond of three-fold X and its mirror X^ 1 1 0 0 0 0 0 h1;1 0 0 h1;2 0 1 h1;2 h1;2 1 ! 1 h1;1 h1;1 1 0 h1;1 0 0 h1;2 0 0 0 0 0 1 1 Mirror Symmetry This operation induces the following symmetry IIA IIB ! X ; g X^; g^ Ismail Achmed-Zade (ASC) Stringy T 3-fibrations and applications March 13th, 2017 5 / 24 Mirror Symmetry is T-duality!? SYZ-conjecture [Strominger, Yau, Zaslow, '96] Consider singular bundles T 3 −! X T^3 −! X^ ! ? ? S3 S3 Apply T-duality along the smooth fibers. -
Heterotic String Compactification with a View Towards Cosmology
Heterotic String Compactification with a View Towards Cosmology by Jørgen Olsen Lye Thesis for the degree Master of Science (Master i fysikk) Department of Physics Faculty of Mathematics and Natural Sciences University of Oslo May 2014 Abstract The goal is to look at what constraints there are for the internal manifold in phe- nomenologically viable Heterotic string compactification. Basic string theory, cosmology, and string compactification is sketched. I go through the require- ments imposed on the internal manifold in Heterotic string compactification when assuming vanishing 3-form flux, no warping, and maximally symmetric 4-dimensional spacetime with unbroken N = 1 supersymmetry. I review the current state of affairs in Heterotic moduli stabilisation and discuss merging cosmology and particle physics in this setup. In particular I ask what additional requirements this leads to for the internal manifold. I conclude that realistic manifolds on which to compactify in this setup are severely constrained. An extensive mathematics appendix is provided in an attempt to make the thesis more self-contained. Acknowledgements I would like to start by thanking my supervier Øyvind Grøn for condoning my hubris and for giving me free rein to delve into string theory as I saw fit. It has lead to a period of intense study and immense pleasure. Next up is my brother Kjetil, who has always been a good friend and who has been constantly looking out for me. It is a source of comfort knowing that I can always turn to him for help. Mentioning friends in such an acknowledgement is nearly mandatory. At least they try to give me that impression. -
Iasinstitute for Advanced Study
IAInsti tSute for Advanced Study Faculty and Members 2012–2013 Contents Mission and History . 2 School of Historical Studies . 4 School of Mathematics . 21 School of Natural Sciences . 45 School of Social Science . 62 Program in Interdisciplinary Studies . 72 Director’s Visitors . 74 Artist-in-Residence Program . 75 Trustees and Officers of the Board and of the Corporation . 76 Administration . 78 Past Directors and Faculty . 80 Inde x . 81 Information contained herein is current as of September 24, 2012. Mission and History The Institute for Advanced Study is one of the world’s leading centers for theoretical research and intellectual inquiry. The Institute exists to encourage and support fundamental research in the sciences and human - ities—the original, often speculative thinking that produces advances in knowledge that change the way we understand the world. It provides for the mentoring of scholars by Faculty, and it offers all who work there the freedom to undertake research that will make significant contributions in any of the broad range of fields in the sciences and humanities studied at the Institute. Y R Founded in 1930 by Louis Bamberger and his sister Caroline Bamberger O Fuld, the Institute was established through the vision of founding T S Director Abraham Flexner. Past Faculty have included Albert Einstein, I H who arrived in 1933 and remained at the Institute until his death in 1955, and other distinguished scientists and scholars such as Kurt Gödel, George F. D N Kennan, Erwin Panofsky, Homer A. Thompson, John von Neumann, and A Hermann Weyl. N O Abraham Flexner was succeeded as Director in 1939 by Frank Aydelotte, I S followed by J. -
Mostow Type Rigidity Theorems
Handbook of c Higher Education Press Group Actions (Vol. IV) and International Press ALM41, Ch. 4, pp. 139{188 Beijing-Boston Mostow type rigidity theorems Marc Bourdon ∗ Abstract This is a survey on rigidity theorems that rely on the quasi-conformal geometry of boundaries of hyperbolic spaces. 2010 Mathematics Subject Classification: 20F65, 20F67, 20F69, 22E40, 30C65, 30L10. Keywords and Phrases: Hyperbolic groups and nonpositively curved groups, asymptotic properties of groups, discrete subgroups of Lie groups, quasiconformal mappings. 1 Introduction The Mostow celebrated rigidity theorem for rank-one symmetric spaces states that every isomorphism between fundamental groups of compact, negatively curved, lo- cally symmetric manifolds, of dimension at least 3, is induced by an isometry. In his proof, Mostow exploits two major ideas: group actions on boundaries and reg- ularity properties of quasi-conformal homeomorphisms. This set of ideas revealed itself very fruitful. It forms one of the bases of the theory of Gromov hyperbolic groups. It also serves as a motivation to develop quasi-conformal geometry on metric spaces. The present text attempts to provide a synthetic presentation of the rigidity theorems that rely on the quasi-conformal geometry of boundaries of hyperbolic spaces. Previous surveys on the subject include [74, 34, 13, 102, 80]. The orig- inality of this text lies more in its form. It has two objectives. The first one is to discuss and prove some classical results like Mostow's rigidity in rank one, Ferrand's solution of Lichn´erowicz's conjecture, the Sullivan-Tukia and the Pansu ∗Universit´eLille 1, D´epartement de math´ematiques, Bat. -
A Survey of Calabi-Yau Manifolds
Surveys in Differential Geometry XIII A survey of Calabi-Yau manifolds Shing-Tung Yau Contents 1. Introduction 278 2. General constructions of complete Ricci-flat metrics in K¨ahler geometry 278 2.1. The Ricci tensor of Calabi-Yau manifolds 278 2.2. The Calabi conjecture 279 2.3. Yau’s theorem 279 2.4. Calabi-Yau manifolds and Calabi-Yau metrics 280 2.5. Examples of compact Calabi-Yau manifolds 281 2.6. Noncompact Calabi-Yau manifolds 282 2.7. Calabi-Yau cones: Sasaki-Einstein manifolds 283 2.8. The balanced condition on Calabi-Yau metrics 284 3. Moduli and arithmetic of Calabi-Yau manifolds 285 3.1. Moduli of K3 surfaces 285 3.2. Moduli of high dimensional Calabi-Yau manifolds 286 3.3. The modularity of Calabi–Yau threefolds over Q 287 4. Calabi-Yau manifolds in physics 288 4.1. Calabi-Yau manifolds in string theory 288 4.2. Calabi-Yau manifolds and mirror symmetry 289 4.3. Mathematics inspired by mirror symmetry 291 5. Invariants of Calabi-Yau manifolds 291 5.1. Gromov-Witten invariants 291 5.2. Counting formulas 292 5.3. Proofs of counting formulas for Calabi-Yau threefolds 293 5.4. Integrability of mirror map and arithmetic applications 293 5.5. Donaldson-Thomas invariants 294 5.6. Stable bundles and sheaves 296 5.7. Yau-Zaslow formula for K3 surfaces 296 5.8. Chern-Simons knot invariants, open strings and string dualities 297 c 2009 International Press 277 278 S.-T. YAU 6. Homological mirror symmetry 299 7. SYZ geometric interpretation of mirror symmetry 300 7.1. -
Geometric Analysis and Integral Geometry
598 Geometric Analysis and Integral Geometry AMS Special Session on Radon Transforms and Geometric Analysis in Honor of Sigurdur Helgason’s 85th Birthday January 4–7, 2012 Boston, MA Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces January 8–9, 2012 Medford, MA Eric Todd Quinto Fulton Gonzalez Jens Gerlach Christensen Editors American Mathematical Society Geometric Analysis and Integral Geometry AMS Special Session on Radon Transforms and Geometric Analysis in Honor of Sigurdur Helgason’s 85th Birthday January 4–7, 2012 Boston, MA Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces January 8–9, 2012 Medford, MA Eric Todd Quinto Fulton Gonzalez Jens Gerlach Christensen Editors 598 Geometric Analysis and Integral Geometry AMS Special Session on Radon Transforms and Geometric Analysis in Honor of Sigurdur Helgason’s 85th Birthday January 4–7, 2012 Boston, MA Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces January 8–9, 2012 Medford, MA Eric Todd Quinto Fulton Gonzalez Jens Gerlach Christensen Editors American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Martin J. Strauss 2010 Mathematics Subject Classification. Primary 22E30, 43A85, 44A12, 45Q05, 92C55; Secondary 22E46, 32L25, 35S30, 65R32. Library of Congress Cataloging-in-Publication Data AMS Special Session on Radon Transforms and Geometric Analysis (2012 : Boston, Mass.) Geometric analysis and integral geometry : AMS special session in honor of Sigurdur Helgason’s 85th birthday, radon transforms and geometric analysis, January 4-7, 2012, Boston, MA ; Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces, January 8-9, 2012, Medford, MA / Eric Todd Quinto, Fulton Gonzalez, Jens Gerlach Christensen, editors. -
Curvature-Free Margulis Lemma for Gromov-Hyperbolic Spaces
Curvature-Free Margulis Lemma for Gromov-Hyperbolic Spaces G. Besson, G. Courtois, S. Gallot, A. Sambusetti December 2, 2020 Abstract We prove curvature-free versions of the celebrated Margulis Lemma. We are interested by both the algebraic aspects and the geometric ones, with however an emphasis on the second and we aim at giving quantitative (computable) estimates of some important invariants. Our goal is to get rid of the pointwise curvature assumptions in order to extend the results to more general spaces such as certain metric spaces. Essentially the upper bound on the curvature is replaced by the assumption that the space is hyperbolic in the sense of Gromov and the lower bound of the curvature by an upper bound on the entropy of which we recall the definition. Contents 1 Introduction 2 2 Basic definitions and notations8 3 Entropy, Doubling and Packing Properties 10 3.1 Entropies . 10 3.2 Doubling and Packing Properties . 13 3.3 Comparison between the various possible hypotheses : bound on the entropy, doubling and packing conditions, Ricci curvature . 14 3.4 Doubling property induced on subgroups . 20 4 Free Subgroups 21 4.1 Ping-pong Lemma . 21 arXiv:1712.08386v3 [math.DG] 1 Dec 2020 4.2 When the asymptotic displacement is bounded below . 24 4.3 When some Margulis constant is bounded below: . 27 4.3.1 When the Margulis constant L∗ is bounded below: . 28 4.3.2 When the Margulis constant L is bounded below: . 32 4.4 Free semi-groups for convex distances . 35 5 Co-compact actions on Gromov-hyperbolic spaces 36 5.1 A Bishop-Gromov inequality for Gromov-hyperbolic spaces . -
Download Enumerative Geometry and String Theory Free Ebook
ENUMERATIVE GEOMETRY AND STRING THEORY DOWNLOAD FREE BOOK Sheldon Katz | 206 pages | 31 May 2006 | American Mathematical Society | 9780821836873 | English | Providence, United States Enumerative Geometry and String Theory Chapter 2. The most accessible portal into very exciting recent material. Topological field theory, primitive forms and related topics : — Nuclear Physics B. Bibcode : PThPh. Bibcode : hep. As an example, consider the torus described above. Enumerative Geometry and String Theory standard analogy for this is to consider a multidimensional object such as a garden hose. An example is the red circle in the figure. This problem was solved by the nineteenth-century German mathematician Hermann Schubertwho found that there are Enumerative Geometry and String Theory 2, such lines. Once these topics are in place, the connection between physics and enumerative geometry is made with the introduction of topological quantum field theory and quantum cohomology. Enumerative Geometry and String Theory mirror symmetry relationship is a particular example of what physicists call a duality. Print Price 1: The book contains a lot of extra material that was not included Enumerative Geometry and String Theory the original fifteen lectures. Increasing the dimension from two to four real dimensions, the Calabi—Yau becomes a K3 surface. This problem asks for the number and construction of circles that are tangent to three given circles, points or lines. Topological Quantum Field Theory. Online Price 1: Online ISBN There are infinitely many circles like it on a torus; in fact, the entire surface is a union of such circles. For other uses, see Mirror symmetry. As an example, count the conic sections tangent to five given lines in the projective plane. -
Recent Advances in Geometric Analysis
Advanced Lectures in Mathematics Volume XI Recent Advances in Geometric Analysis Editors: Yng-Ing Lee, Chang-Shou Lin, and Mao-Pei Tsui International Press 浧䷘㟨十⒉䓗䯍 www.intlpress.com HIGHER EDUCATION PRESS Yng-Ing Lee Chang-Shou Lin National Taiwan University National Chung Cheng University Mao-Pei Tsui University of Toledo Copyright © 2010 by International Press, Somerville, Massachusetts, U.S.A., and by Higher Education Press, Beijing, China. This work is published and sold in China exclusively by Higher Education Press of China. No part of this work can be reproduced in any form, electronic or mechanical, recording, or by any information storage and data retrieval system, without prior approval from International Press. Requests for reproduction for scientific and/or educational purposes will normally be granted free of charge. In those cases where the author has retained copyright, requests for permission to use or reproduce any material should be addressed directly to the author. ISBN 978-1-57146-143-8 Typeset using the LaTeX system. Printed in the USA on acid-free paper. ADVANCED LECTURES IN MATHEMATICS Executive Editors Shing-Tung Yau Kefeng Liu Harvard University University of California at Los Angeles Zhejiang University Lizhen Ji Hangzhou, China University of Michigan, Ann Arbor Editorial Board Chongqing Cheng Tatsien Li Nanjing University Fudan University Nanjing, China Shanghai, China Zhong-Ci Shi Zhiying Wen Institute of Computational Mathematics Tsinghua University Chinese Academy of Sciences (CAS) Beijing, China Beijing, China Lo Yang Zhouping Xin Institute of Mathematics The Chinese University of Hong Kong Chinese Academy of Sciences (CAS) Hong Kong, China Beijing, China Weiping Zhang Xiangyu Zhou Nankai University Institute of Mathematics Tianjin, China Chinese Academy of Sciences (CAS) Beijing, China Xiping Zhu Zhongshan University Guangzhou, China Preface “2007 International Conference in Geometric Analysis” was held in Taiwan University from June 18th to 22nd, 2007.