Geometric Structures on Manifolds
UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Sam Saiki It was defended on May 4th 2017 and approved by J. DeBlois, Ph.D., Asst. Professor, Department of Mathematics, University of Pittsburgh T. Hales, Ph.D., Professor, Department of Mathematics, University of Pittsburgh B. McReynolds, Ph.D., Assoc. Professor, Department of Mathematics, Purdue University G. Sparling, Ph.D., Assoc. Professor, Department of Mathematics, University of Pittsburgh Dissertation Director: J. DeBlois, Ph.D., Asst. Professor, Department of Mathematics, University of Pittsburgh ii GEOMETRIC STRUCTURES ON MANIFOLDS Sam Saiki, PhD University of Pittsburgh, 2017 In this thesis I will introduce three questions that involve hyperbolic and projective structures on manifolds and present my progress toward their solution. I prove that the Hilbert length spectrum (a natural generalization of the marked length spectrum) determines the projective structure on certain non compact properly convex orb- ifolds up to duality, generalizing a result of Daryl Cooper and Kelly Delp (“The marked length spectrum of a projective manifold or orbifold”) in the compact case. I develop software that computes the complex volume of a boundary unipotent repre- sentation of a 3-manifold’s fundamental group into PSL 2, C and SL 2, C . This extends p q p q the Ptolemy module software of Matthias Goerner and uses the theory of Stavros Garoufa- lidis, Dylan Thurston, and Christian Zickert found in “The complex volume of SL n, C - p q representations of 3-manifolds”. I apply my software to a census of Carlo Petronio and find non-trivial representations from non torus boundary manifolds.
[Show full text]