A Summary of the Work of Gregory Margulis Lizhen Ji
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gromov Receives 2009 Abel Prize
Gromov Receives 2009 Abel Prize . The Norwegian Academy of Science Medal (1997), and the Wolf Prize (1993). He is a and Letters has decided to award the foreign member of the U.S. National Academy of Abel Prize for 2009 to the Russian- Sciences and of the American Academy of Arts French mathematician Mikhail L. and Sciences, and a member of the Académie des Gromov for “his revolutionary con- Sciences of France. tributions to geometry”. The Abel Prize recognizes contributions of Citation http://www.abelprisen.no/en/ extraordinary depth and influence Geometry is one of the oldest fields of mathemat- to the mathematical sciences and ics; it has engaged the attention of great mathema- has been awarded annually since ticians through the centuries but has undergone Photo from from Photo 2003. It carries a cash award of revolutionary change during the last fifty years. Mikhail L. Gromov 6,000,000 Norwegian kroner (ap- Mikhail Gromov has led some of the most impor- proximately US$950,000). Gromov tant developments, producing profoundly original will receive the Abel Prize from His Majesty King general ideas, which have resulted in new perspec- Harald at an award ceremony in Oslo, Norway, on tives on geometry and other areas of mathematics. May 19, 2009. Riemannian geometry developed from the study Biographical Sketch of curved surfaces and their higher-dimensional analogues and has found applications, for in- Mikhail Leonidovich Gromov was born on Decem- stance, in the theory of general relativity. Gromov ber 23, 1943, in Boksitogorsk, USSR. He obtained played a decisive role in the creation of modern his master’s degree (1965) and his doctorate (1969) global Riemannian geometry. -
Bounded Orbits of Homogeneous Dynamics
BOUNDED ORBITS OF HOMOGENEOUS DYNAMICS JINPENG AN AND LIFAN GUAN Abstract. Homogeneous dynamics is a special kind of dynamics given by Lie groups, and is closely related to Diophantine approximation and other areas in number theory. In this paper, we survey main problems and results concerning bounded orbits of homogeneous dynamics, and discuss their relations with Diophantine approximation problems including the Oppenheim conjecture, the Littlewood conjecture, and the Schmidt conjecture. 1. Introduction Homogeneous dynamics is a special kind of dynamics. Its phase space is a homogeneous space of a Lie group, and the dynamical system is induced by the group multiplication. More precisely, let G be a Lie group1,Γ ⊂ G be a closed subgroup, and consider the homogeneous space X = G=Γ. In homogeneous dynamics, one studies the natural translation action of another subgroup H ⊂ G on X, examines properties of orbits and invariant measures of the action, and investigates the asymptotic behavior of the action when elements in H tend to infinity. This kind of dynamical systems gives rise to several classical examples, including geodesic flows and horocycle flows on surfaces of constant negative curvature. By combining methods from dynamical systems and Lie theory, one is able to obtain stronger results in homogeneous dynamics than in more general dynamics. A typical example is Ratner's theorems for unipotent flows [63], which state that if the subgroup H is generated by unipotent elements, then the closures of H-orbits in X are algebraically defined submanifolds, and the H-invariant measures on X can be also classified in an algebraic way. -
Jacques Tits
Jacques Tits Jacques Tits was born in Uccle, in the southern outskirts of Brussels, Belgium, on August 12, 1930. He retired from his professorship at the Collège de France in Paris in 2000 and has since then been Professor Emeritus. His father a mathematician, Jacques’s mathematical talent showed early. At the age of three he was able to do all the operations of arithmetic. He skipped several years at school. His father died when Jacques was only 13 years old. Since the family had very little to live on, Jacques started tutoring students four years older to contribute to the household expenses. He passed the entrance exam at the Free University of Brussels at the age of 14, and received his doctorate in 1950 at 20 years of age. Tits was promoted to professor at the Free University of Brussels in 1962 and remained in this position for two years before accepting a professorship at the University of Bonn in 1964. In 1973 he moved to Paris, taking up a position as Chair of Group Theory in the Collège de France. Shortly after, in 1974, he became a naturalised French subject. Tits held this chair until he retired in 2000. Jacques Tits has been a member of the French Académie des Sciences since 1974. In 1992 he was elected a Foreign Member of the US National Academy of Sciences and the American Academy of Arts and Sciences. In addition he holds memberships of science academies in Holland and Belgium. He has been awarded honorary doctorates from the Universities of Utrecht, Ghent, Bonn and Leuven. -
Pierre Deligne
www.abelprize.no Pierre Deligne Pierre Deligne was born on 3 October 1944 as a hobby for his own personal enjoyment. in Etterbeek, Brussels, Belgium. He is Profes- There, as a student of Jacques Tits, Deligne sor Emeritus in the School of Mathematics at was pleased to discover that, as he says, the Institute for Advanced Study in Princeton, “one could earn one’s living by playing, i.e. by New Jersey, USA. Deligne came to Prince- doing research in mathematics.” ton in 1984 from Institut des Hautes Études After a year at École Normal Supériure in Scientifiques (IHÉS) at Bures-sur-Yvette near Paris as auditeur libre, Deligne was concur- Paris, France, where he was appointed its rently a junior scientist at the Belgian National youngest ever permanent member in 1970. Fund for Scientific Research and a guest at When Deligne was around 12 years of the Institut des Hautes Études Scientifiques age, he started to read his brother’s university (IHÉS). Deligne was a visiting member at math books and to demand explanations. IHÉS from 1968-70, at which time he was His interest prompted a high-school math appointed a permanent member. teacher, J. Nijs, to lend him several volumes Concurrently, he was a Member (1972– of “Elements of Mathematics” by Nicolas 73, 1977) and Visitor (1981) in the School of Bourbaki, the pseudonymous grey eminence Mathematics at the Institute for Advanced that called for a renovation of French mathe- Study. He was appointed to a faculty position matics. This was not the kind of reading mat- there in 1984. -
Mostow Type Rigidity Theorems
Handbook of c Higher Education Press Group Actions (Vol. IV) and International Press ALM41, Ch. 4, pp. 139{188 Beijing-Boston Mostow type rigidity theorems Marc Bourdon ∗ Abstract This is a survey on rigidity theorems that rely on the quasi-conformal geometry of boundaries of hyperbolic spaces. 2010 Mathematics Subject Classification: 20F65, 20F67, 20F69, 22E40, 30C65, 30L10. Keywords and Phrases: Hyperbolic groups and nonpositively curved groups, asymptotic properties of groups, discrete subgroups of Lie groups, quasiconformal mappings. 1 Introduction The Mostow celebrated rigidity theorem for rank-one symmetric spaces states that every isomorphism between fundamental groups of compact, negatively curved, lo- cally symmetric manifolds, of dimension at least 3, is induced by an isometry. In his proof, Mostow exploits two major ideas: group actions on boundaries and reg- ularity properties of quasi-conformal homeomorphisms. This set of ideas revealed itself very fruitful. It forms one of the bases of the theory of Gromov hyperbolic groups. It also serves as a motivation to develop quasi-conformal geometry on metric spaces. The present text attempts to provide a synthetic presentation of the rigidity theorems that rely on the quasi-conformal geometry of boundaries of hyperbolic spaces. Previous surveys on the subject include [74, 34, 13, 102, 80]. The orig- inality of this text lies more in its form. It has two objectives. The first one is to discuss and prove some classical results like Mostow's rigidity in rank one, Ferrand's solution of Lichn´erowicz's conjecture, the Sullivan-Tukia and the Pansu ∗Universit´eLille 1, D´epartement de math´ematiques, Bat. -
The Abel Prize Laureate 2017
The Abel Prize Laureate 2017 Yves Meyer École normale supérieure Paris-Saclay, France www.abelprize.no Yves Meyer receives the Abel Prize for 2017 “for his pivotal role in the development of the mathematical theory of wavelets.” Citation The Abel Committee The Norwegian Academy of Science and or “wavelets”, obtained by both dilating infinite sequence of nested subspaces Meyer’s expertise in the mathematics Letters has decided to award the Abel and translating a fixed function. of L2(R) that satisfy a few additional of the Calderón-Zygmund school that Prize for 2017 to In the spring of 1985, Yves Meyer invariance properties. This work paved opened the way for the development of recognised that a recovery formula the way for the construction by Ingrid wavelet theory, providing a remarkably Yves Meyer, École normale supérieure found by Morlet and Alex Grossmann Daubechies of orthonormal bases of fruitful link between a problem set Paris-Saclay, France was an identity previously discovered compactly supported wavelets. squarely in pure mathematics and a theory by Alberto Calderón. At that time, Yves In the following decades, wavelet with wide applicability in the real world. “for his pivotal role in the Meyer was already a leading figure analysis has been applied in a wide development of the mathematical in the Calderón-Zygmund theory of variety of arenas as diverse as applied theory of wavelets.” singular integral operators. Thus began and computational harmonic analysis, Meyer’s study of wavelets, which in less data compression, noise reduction, Fourier analysis provides a useful way than ten years would develop into a medical imaging, archiving, digital cinema, of decomposing a signal or function into coherent and widely applicable theory. -
On a Problem in Simultaneous Diophantine Approximation: Schmidt’S Conjecture
On a problem in simultaneous Diophantine approximation: Schmidt’s conjecture Dzmitry Badziahin ∗ Andrew Pollington† Sanju Velani‡ York Arlington, VA York Dedicated to the memory of Graham Everest and Antonia J Jones Abstract For any i, j > 0 with i + j = 1, let Bad(i, j) denote the set of points (x, y) R2 for which max qx 1/i, qy 1/j > c/q for all q N. Here c = c(x, y) is a positive constant.∈ Our main result{k k impliesk k that} any finite intersection∈ of such sets has full dimension. This settles a conjecture of Wolfgang M. Schmidt in the theory of simultaneous Diophantine approximation. 2010 Mathematics Subject Classification: Primary 11J13, 11J83; Secondary 11K55 Keywords and phrases: Diophantine approximation, simultaneously badly approximable numbers, Hausdorff dimension, Cantor sets 1 Introduction A real number x is said to be badly approximable if there exists a positive constant c(x) such that qx > c(x) q−1 q N . k k ∀ ∈ Here and throughout denotes the distance of a real number to the nearest integer. It k · k is well know that the set Bad of badly approximable numbers is of Lebesgue measure zero. However, a result of Jarn´ık (1928) states that dim Bad = 1 , (1) where dim X denotes the Hausdorff dimension of the set X. Thus, in terms of dimension the set of badly approximable numbers is maximal; it has the same dimension as the real line. For details regarding Hausdorff dimension the reader is referred to [3]. In higher dimensions there are various natural generalizations of Bad. -
Unipotent Flows and Applications
Clay Mathematics Proceedings Volume 10, 2010 Unipotent Flows and Applications Alex Eskin 1. General introduction 1.1. Values of indefinite quadratic forms at integral points. The Op- penheim Conjecture. Let X Q(x1; : : : ; xn) = aijxixj 1≤i≤j≤n be a quadratic form in n variables. We always assume that Q is indefinite so that (so that there exists p with 1 ≤ p < n so that after a linear change of variables, Q can be expresses as: Xp Xn ∗ 2 − 2 Qp(y1; : : : ; yn) = yi yi i=1 i=p+1 We should think of the coefficients aij of Q as real numbers (not necessarily rational or integer). One can still ask what will happen if one substitutes integers for the xi. It is easy to see that if Q is a multiple of a form with rational coefficients, then the set of values Q(Zn) is a discrete subset of R. Much deeper is the following conjecture: Conjecture 1.1 (Oppenheim, 1929). Suppose Q is not proportional to a ra- tional form and n ≥ 5. Then Q(Zn) is dense in the real line. This conjecture was extended by Davenport to n ≥ 3. Theorem 1.2 (Margulis, 1986). The Oppenheim Conjecture is true as long as n ≥ 3. Thus, if n ≥ 3 and Q is not proportional to a rational form, then Q(Zn) is dense in R. This theorem is a triumph of ergodic theory. Before Margulis, the Oppenheim Conjecture was attacked by analytic number theory methods. (In particular it was known for n ≥ 21, and for diagonal forms with n ≥ 5). -
Perspectives on Geometric Analysis
Surveys in Differential Geometry X Perspectives on geometric analysis Shing-Tung Yau This essay grew from a talk I gave on the occasion of the seventieth anniversary of the Chinese Mathematical Society. I dedicate the lecture to the memory of my teacher S.S. Chern who had passed away half a year before (December 2004). During my graduate studies, I was rather free in picking research topics. I[731] worked on fundamental groups of manifolds with non-positive curva- ture. But in the second year of my studies, I started to look into differential equations on manifolds. However, at that time, Chern was very much inter- ested in the work of Bott on holomorphic vector fields. Also he told me that I should work on Riemann hypothesis. (Weil had told him that it was time for the hypothesis to be settled.) While Chern did not express his opinions about my research on geometric analysis, he started to appreciate it a few years later. In fact, after Chern gave a course on Calabi’s works on affine geometry in 1972 at Berkeley, S.Y. Cheng told me about these inspiring lec- tures. By 1973, Cheng and I started to work on some problems mentioned in Chern’s lectures. We did not realize that the great geometers Pogorelov, Calabi and Nirenberg were also working on them. We were excited that we solved some of the conjectures of Calabi on improper affine spheres. But soon after we found out that Pogorelov [563] published his results right be- fore us by different arguments. Nevertheless our ideas are useful in handling other problems in affine geometry, and my knowledge about Monge-Amp`ere equations started to broaden in these years. -
Curvature-Free Margulis Lemma for Gromov-Hyperbolic Spaces
Curvature-Free Margulis Lemma for Gromov-Hyperbolic Spaces G. Besson, G. Courtois, S. Gallot, A. Sambusetti December 2, 2020 Abstract We prove curvature-free versions of the celebrated Margulis Lemma. We are interested by both the algebraic aspects and the geometric ones, with however an emphasis on the second and we aim at giving quantitative (computable) estimates of some important invariants. Our goal is to get rid of the pointwise curvature assumptions in order to extend the results to more general spaces such as certain metric spaces. Essentially the upper bound on the curvature is replaced by the assumption that the space is hyperbolic in the sense of Gromov and the lower bound of the curvature by an upper bound on the entropy of which we recall the definition. Contents 1 Introduction 2 2 Basic definitions and notations8 3 Entropy, Doubling and Packing Properties 10 3.1 Entropies . 10 3.2 Doubling and Packing Properties . 13 3.3 Comparison between the various possible hypotheses : bound on the entropy, doubling and packing conditions, Ricci curvature . 14 3.4 Doubling property induced on subgroups . 20 4 Free Subgroups 21 4.1 Ping-pong Lemma . 21 arXiv:1712.08386v3 [math.DG] 1 Dec 2020 4.2 When the asymptotic displacement is bounded below . 24 4.3 When some Margulis constant is bounded below: . 27 4.3.1 When the Margulis constant L∗ is bounded below: . 28 4.3.2 When the Margulis constant L is bounded below: . 32 4.4 Free semi-groups for convex distances . 35 5 Co-compact actions on Gromov-hyperbolic spaces 36 5.1 A Bishop-Gromov inequality for Gromov-hyperbolic spaces . -
Rigidity, Locally Symmetric Varieties and the Grothendieck-Katz Conjecture
Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture Benson Farb and Mark Kisin ∗ May 8, 2009 Abstract Using Margulis’s results on lattices in semisimple Lie groups, we prove the Grothendieck- Katz p-Curvature Conjecture for many locally symmetric varieties, including Hilbert- Blumenthal modular varieties and the moduli space of abelian varieties Ag when g > 1. 1 Introduction In this paper we prove certain cases of the well-known p-curvature conjecture of Grothendieck- Katz stated below. The conjecture posits that one can deduce algebraic solutions of certain differential equations when one has solutions after reducing modulo a prime for almost every prime. Our main purpose is to point out that rigidity theorems from the theory of discrete subgroups of Lie groups can be fruitfully applied to this problem. More precisely, let X be a smooth connected variety over C and let V be a vector bundle on X equipped with an integrable connection ∇. Then there is a finitely generated Z-algebra R ⊂ C such that X arises from a smooth R-scheme and (V, ∇) descends to a vector bundle with integrable connection on this R-scheme. We will again denote by X and (V, ∇) the corresponding objects over R. For any maximal ideal p of R, we can reduce mod p to obtain a differential equation (V/pV, ∇) on a smooth scheme over a finite field of characteristic p > 0. Attached to this system is an invariant, the p-curvature of (V/pV, ∇), which is an OX -linear map ψ (V, ∇) : Der(O ⊗ R/p, O ⊗ R/p) → End (V/p,V/p) p X X OX where Der denotes the sheaf of derivations. -
Limit Sets of Discrete Groups of Isometries of Exotic Hyperbolic Spaces
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 351, Number 4, April 1999, Pages 1507{1530 S 0002-9947(99)02113-3 LIMIT SETS OF DISCRETE GROUPS OF ISOMETRIES OF EXOTIC HYPERBOLIC SPACES KEVIN CORLETTE AND ALESSANDRA IOZZI Abstract. Let Γ be a geometrically finite discrete group of isometries of hy- perbolic space n,where = ; ; or (in which case n =2).Weprove F F RCH O that the criticalH exponent of Γ equals the Hausdorff dimension of the limit sets Λ(Γ) and that the smallest eigenvalue of the Laplacian acting on square integrable functions is a quadratic function of either of them (when they are sufficiently large). A generalization of Hopf ergodicity theorem for the geodesic flow with respect to the Bowen-Margulis measure is also proven. 1. Introduction In a previous paper [C], the first author studied limit sets of discrete groups of isometries of rank one symmetric spaces of noncompact type. These symmet- ric spaces are the hyperbolic spaces associated with the reals, complexes, quater- nions, or Cayley numbers. The main point of interest in that paper was the Haus- dorff dimension (in an appropriate sense) of the limit set and its relationships with other invariants, such as the smallest eigenvalue of the Laplacian acting on square- integrable functions and the exponent of growth of the group. In the cases where the group of all isometries of the symmetric space has Kazhdan’s property, this led to conclusions about limitations on the possible exponents of growth, among other things. The most precise results were obtained for a class of groups which, in that paper, were called geometrically cocompact; these groups are also known as convex cocompact groups, or geometrically finite groups without cusps.