Gromov Receives 2009 Abel Prize

Total Page:16

File Type:pdf, Size:1020Kb

Gromov Receives 2009 Abel Prize Gromov Receives 2009 Abel Prize . The Norwegian Academy of Science Medal (1997), and the Wolf Prize (1993). He is a and Letters has decided to award the foreign member of the U.S. National Academy of Abel Prize for 2009 to the Russian- Sciences and of the American Academy of Arts French mathematician Mikhail L. and Sciences, and a member of the Académie des Gromov for “his revolutionary con- Sciences of France. tributions to geometry”. The Abel Prize recognizes contributions of Citation http://www.abelprisen.no/en/ extraordinary depth and influence Geometry is one of the oldest fields of mathemat- to the mathematical sciences and ics; it has engaged the attention of great mathema- has been awarded annually since ticians through the centuries but has undergone Photo from from Photo 2003. It carries a cash award of revolutionary change during the last fifty years. Mikhail L. Gromov 6,000,000 Norwegian kroner (ap- Mikhail Gromov has led some of the most impor- proximately US$950,000). Gromov tant developments, producing profoundly original will receive the Abel Prize from His Majesty King general ideas, which have resulted in new perspec- Harald at an award ceremony in Oslo, Norway, on tives on geometry and other areas of mathematics. May 19, 2009. Riemannian geometry developed from the study Biographical Sketch of curved surfaces and their higher-dimensional analogues and has found applications, for in- Mikhail Leonidovich Gromov was born on Decem- stance, in the theory of general relativity. Gromov ber 23, 1943, in Boksitogorsk, USSR. He obtained played a decisive role in the creation of modern his master’s degree (1965) and his doctorate (1969) global Riemannian geometry. His solutions of from Leningrad University, where he also com- important problems in global geometry relied on pleted his postdoctoral thesis (1973). He was an new general concepts, such as the convergence of assistant professor at Leningrad University from Riemannian manifolds and a compactness prin- 1967 to 1974. ciple, which now bear his name. Since 1982 Gromov has been a permanent Gromov is one of the founders of the field of professor at the Institut des Hautes Études Sci- global symplectic geometry. Holomorphic curves entifiques, Bures-sur-Yvette, France. He has been a French citizen since 1992. He is currently also were known to be an important tool in the geom- Jay Gould Professor of Mathematics at the Cou- etry of complex manifolds. However, the environ- rant Institute of Mathematical Sciences, New York ment of integrable complex structures was too University. rigid. In a famous paper in 1985 he extended the Gromov has received many distinguished in- concept of holomorphic curves to J -holomorphic ternational awards, including the Kyoto Prize in curves on symplectic manifolds. This led to the Basic Sciences (2002), the Balzan Prize (1999), the theory of Gromov-Witten invariants, which is now AMS Leroy P. Steele Prize (1997), the Lobatchewski an extremely active subject linked to modern quantum field theory. It also led to the creation of 730 NOTICES OF THE AMS VOLUME 56, NUMBER 6 More on Gromov in the Notices For more on the work of Mikhail Gromov, see “Encounter with a geometer”, by Marcel Berger, which appeared in two parts in the February and March 2000 issues of the Notices. Journal of Hyperbolic One of Gromov’s celebrated discoveries is Equations (JHDE) described in “WHAT IS… a pseudoholomorphic Managing Editors curve?”, by Simon Donaldson, in the October Philippe G. LeFloch 2005 issue of the Notices. Université Pierre et Marie All Notices material going back to 1995 is Curie (Paris 6), France freely available online at http://www.ams. J-G Liu University of Maryland, org/notices. College Park, USA Abstracting/Indexing symplectic topology, and gradually penetrated and • Mathematical Reviews transformed many other areas of mathematics. • Zentralblatt MATH • Science Citation Index Expanded Print ISSN: 0219-8916 Gromov’s work on groups of polynomial growth (SciSearch®) Online ISSN: 1793-6993 introduced ideas that forever changed the way in • Current Contents®/Physical, Chemical Vol 6 • 4 Issues • 2009 which a discrete infinite group is viewed. Gromov and Earth Sciences • CompuMath Citation Index® discovered the geometry of discrete groups and • Journal Citation Reports/Science Edition solved several outstanding problems. His geo- • ISI Alerting Services metrical approach rendered complicated combina- www.worldscinet.com/JHDE torial arguments much more natural and powerful. Mikhail Gromov is always in pursuit of new Discrete Mathematics, questions and is constantly thinking of new ideas Algorithms and for solutions of old problems. He has produced Applications (DMAA) deep and original work throughout his career and remains remarkably creative. The work of Gromov Co-Editor-in-Chief will continue to be a source of inspiration for many Ding-Zhu Du future mathematical discoveries. University of Texas at Dallas, USA Jinlong Shu East China Normal University, About the Prize Shanghai, China The Niels Henrik Abel Memorial Fund was es- Aim & Scope tablished in 2002 to award the Abel Prize for The aim of this journal is to outstanding scientific work in the field of math- advance and promote the theory Print ISSN: 1793-8309 ematics. The prize is awarded by the Norwegian and applications of discrete Online ISSN: 1793-8317 mathematics, which is a research Academy of Science and Letters, and the choice of Vol 1 • 4 Issues • 2009 area in mathematics with applications Abel Laureate is based on the recommendation by in computer science, industrial the Abel Committee consisting of five internation- engineering, bio-informatics, chemistry and communication networks. ally recognized mathematicians. www.worldscinet.com/DMMA Previous recipients of the Abel Prize are: Jean- Pierre Serre (2003), Michael Atiyah and I. M. Singer (2004), Peter Lax (2005), Lennart Carleson (2006), Journal of Topology S. R. S. Varadhan (2007), and John G. Thompson and Analysis (JTA) and Jacques Tits (2008). Managing Editors —From Announcements of the Norwegian Shmuel Weinberger Academy of Science and Letters University of Chicago, USA Guoliang Yu Vanderbilt University, USA Aim & Scope This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group Print ISSN: 1793-5253 theory, index theory, noncommutative Online ISSN: 1793-7167 geometry, and aspects of probability Vol 1 • 4 Issues • 2009 on discrete structures, and geometry of Banach spaces. www.worldscinet.com/JTA www.worldscientific.com JUNE/JULY 2009 NOTICES OF THE AMS 731.
Recommended publications
  • Prvních Deset Abelových Cen Za Matematiku
    Prvních deset Abelových cen za matematiku The first ten Abel Prizes for mathematics [English summary] In: Michal Křížek (author); Lawrence Somer (author); Martin Markl (author); Oldřich Kowalski (author); Pavel Pudlák (author); Ivo Vrkoč (author); Hana Bílková (other): Prvních deset Abelových cen za matematiku. (English). Praha: Jednota českých matematiků a fyziků, 2013. pp. 87–88. Persistent URL: http://dml.cz/dmlcz/402234 Terms of use: © M. Křížek © L. Somer © M. Markl © O. Kowalski © P. Pudlák © I. Vrkoč Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Summary The First Ten Abel Prizes for Mathematics Michal Křížek, Lawrence Somer, Martin Markl, Oldřich Kowalski, Pavel Pudlák, Ivo Vrkoč The Abel Prize for mathematics is an international prize presented by the King of Norway for outstanding results in mathematics. It is named after the Norwegian mathematician Niels Henrik Abel (1802–1829) who found that there is no explicit formula for the roots of a general polynomial of degree five. The financial support of the Abel Prize is comparable with the Nobel Prize, i.e., about one million American dollars. Niels Henrik Abel (1802–1829) M. Křížek a kol.: Prvních deset Abelových cen za matematiku, JČMF, Praha, 2013 87 Already in 1899, another famous Norwegian mathematician Sophus Lie proposed to establish an Abel Prize, when he learned that Alfred Nobel would not include a prize in mathematics among his five proposed Nobel Prizes.
    [Show full text]
  • Issue 73 ISSN 1027-488X
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Feature History Interview ERCOM Hedgehogs Richard von Mises Mikhail Gromov IHP p. 11 p. 31 p. 19 p. 35 September 2009 Issue 73 ISSN 1027-488X S E European M M Mathematical E S Society Geometric Mechanics and Symmetry Oxford University Press is pleased to From Finite to Infinite Dimensions announce that all EMS members can benefit from a 20% discount on a large range of our Darryl D. Holm, Tanya Schmah, and Cristina Stoica Mathematics books. A graduate level text based partly on For more information please visit: lectures in geometry, mechanics, and symmetry given at Imperial College www.oup.co.uk/sale/science/ems London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the FORTHCOMING subject. Differential Equations with Linear 2009 | 460 pp Algebra Paperback | 978-0-19-921291-0 | £29.50 Matthew R. Boelkins, Jack L Goldberg, Hardback | 978-0-19-921290-3 | £65.00 and Merle C. Potter Explores the interplaybetween linear FORTHCOMING algebra and differential equations by Thermoelasticity with Finite Wave examining fundamental problems in elementary differential equations. This Speeds text is accessible to students who have Józef Ignaczak and Martin completed multivariable calculus and is appropriate for Ostoja-Starzewski courses in mathematics and engineering that study Extensively covers the mathematics of systems of differential equations. two leading theories of hyperbolic October 2009 | 464 pp thermoelasticity: the Lord-Shulman Hardback | 978-0-19-538586-1 | £52.00 theory, and the Green-Lindsay theory. Oxford Mathematical Monographs Introduction to Metric and October 2009 | 432 pp Topological Spaces Hardback | 978-0-19-954164-5 | £70.00 Second Edition Wilson A.
    [Show full text]
  • Jacques Tits
    Jacques Tits Jacques Tits was born in Uccle, in the southern outskirts of Brussels, Belgium, on August 12, 1930. He retired from his professorship at the Collège de France in Paris in 2000 and has since then been Professor Emeritus. His father a mathematician, Jacques’s mathematical talent showed early. At the age of three he was able to do all the operations of arithmetic. He skipped several years at school. His father died when Jacques was only 13 years old. Since the family had very little to live on, Jacques started tutoring students four years older to contribute to the household expenses. He passed the entrance exam at the Free University of Brussels at the age of 14, and received his doctorate in 1950 at 20 years of age. Tits was promoted to professor at the Free University of Brussels in 1962 and remained in this position for two years before accepting a professorship at the University of Bonn in 1964. In 1973 he moved to Paris, taking up a position as Chair of Group Theory in the Collège de France. Shortly after, in 1974, he became a naturalised French subject. Tits held this chair until he retired in 2000. Jacques Tits has been a member of the French Académie des Sciences since 1974. In 1992 he was elected a Foreign Member of the US National Academy of Sciences and the American Academy of Arts and Sciences. In addition he holds memberships of science academies in Holland and Belgium. He has been awarded honorary doctorates from the Universities of Utrecht, Ghent, Bonn and Leuven.
    [Show full text]
  • The Abel Prize 2003-2007 the First Five Years
    springer.com Mathematics : History of Mathematics Holden, Helge, Piene, Ragni (Eds.) The Abel Prize 2003-2007 The First Five Years Presenting the winners of the Abel Prize, which is one of the premier international prizes in mathematics The book presents the winners of the first five Abel Prizes in mathematics: 2003 Jean-Pierre Serre; 2004 Sir Michael Atiyah and Isadore Singer; 2005 Peter D. Lax; 2006 Lennart Carleson; and 2007 S.R. Srinivasa Varadhan. Each laureate provides an autobiography or an interview, a curriculum vitae, and a complete bibliography. This is complemented by a scholarly description of their work written by leading experts in the field and by a brief history of the Abel Prize. Interviews with the laureates can be found at http://extras.springer.com . Order online at springer.com/booksellers Springer Nature Customer Service Center GmbH Springer Customer Service Tiergartenstrasse 15-17 2010, XI, 329 p. With DVD. 1st 69121 Heidelberg edition Germany T: +49 (0)6221 345-4301 [email protected] Printed book Hardcover Book with DVD Hardcover ISBN 978-3-642-01372-0 £ 76,50 | CHF 103,00 | 86,99 € | 95,69 € (A) | 93,08 € (D) Out of stock Discount group Science (SC) Product category Commemorative publication Series The Abel Prize Prices and other details are subject to change without notice. All errors and omissions excepted. Americas: Tax will be added where applicable. Canadian residents please add PST, QST or GST. Please add $5.00 for shipping one book and $ 1.00 for each additional book. Outside the US and Canada add $ 10.00 for first book, $5.00 for each additional book.
    [Show full text]
  • Pierre Deligne
    www.abelprize.no Pierre Deligne Pierre Deligne was born on 3 October 1944 as a hobby for his own personal enjoyment. in Etterbeek, Brussels, Belgium. He is Profes- There, as a student of Jacques Tits, Deligne sor Emeritus in the School of Mathematics at was pleased to discover that, as he says, the Institute for Advanced Study in Princeton, “one could earn one’s living by playing, i.e. by New Jersey, USA. Deligne came to Prince- doing research in mathematics.” ton in 1984 from Institut des Hautes Études After a year at École Normal Supériure in Scientifiques (IHÉS) at Bures-sur-Yvette near Paris as auditeur libre, Deligne was concur- Paris, France, where he was appointed its rently a junior scientist at the Belgian National youngest ever permanent member in 1970. Fund for Scientific Research and a guest at When Deligne was around 12 years of the Institut des Hautes Études Scientifiques age, he started to read his brother’s university (IHÉS). Deligne was a visiting member at math books and to demand explanations. IHÉS from 1968-70, at which time he was His interest prompted a high-school math appointed a permanent member. teacher, J. Nijs, to lend him several volumes Concurrently, he was a Member (1972– of “Elements of Mathematics” by Nicolas 73, 1977) and Visitor (1981) in the School of Bourbaki, the pseudonymous grey eminence Mathematics at the Institute for Advanced that called for a renovation of French mathe- Study. He was appointed to a faculty position matics. This was not the kind of reading mat- there in 1984.
    [Show full text]
  • Sinai Awarded 2014 Abel Prize
    Sinai Awarded 2014 Abel Prize The Norwegian Academy of Sci- Sinai’s first remarkable contribution, inspired ence and Letters has awarded by Kolmogorov, was to develop an invariant of the Abel Prize for 2014 to dynamical systems. This invariant has become Yakov Sinai of Princeton Uni- known as the Kolmogorov-Sinai entropy, and it versity and the Landau Insti- has become a central notion for studying the com- tute for Theoretical Physics plexity of a system through a measure-theoretical of the Russian Academy of description of its trajectories. It has led to very Sciences “for his fundamen- important advances in the classification of dynami- tal contributions to dynamical cal systems. systems, ergodic theory, and Sinai has been at the forefront of ergodic theory. mathematical physics.” The He proved the first ergodicity theorems for scat- Photo courtesy of Princeton University Mathematics Department. Abel Prize recognizes contribu- tering billiards in the style of Boltzmann, work tions of extraordinary depth he continued with Bunimovich and Chernov. He Yakov Sinai and influence in the mathemat- constructed Markov partitions for systems defined ical sciences and has been awarded annually since by iterations of Anosov diffeomorphisms, which 2003. The prize carries a cash award of approxi- led to a series of outstanding works showing the mately US$1 million. Sinai received the Abel Prize power of symbolic dynamics to describe various at a ceremony in Oslo, Norway, on May 20, 2014. classes of mixing systems. With Ruelle and Bowen, Sinai discovered the Citation notion of SRB measures: a rather general and Ever since the time of Newton, differential equa- distinguished invariant measure for dissipative tions have been used by mathematicians, scientists, systems with chaotic behavior.
    [Show full text]
  • “Generalized Complex and Holomorphic Poisson Geometry”
    “Generalized complex and holomorphic Poisson geometry” Marco Gualtieri (University of Toronto), Ruxandra Moraru (University of Waterloo), Nigel Hitchin (Oxford University), Jacques Hurtubise (McGill University), Henrique Bursztyn (IMPA), Gil Cavalcanti (Utrecht University) Sunday, 11-04-2010 to Friday, 16-04-2010 1 Overview of the Field Generalized complex geometry is a relatively new subject in differential geometry, originating in 2001 with the work of Hitchin on geometries defined by differential forms of mixed degree. It has the particularly inter- esting feature that it interpolates between two very classical areas in geometry: complex algebraic geometry on the one hand, and symplectic geometry on the other hand. As such, it has bearing on some of the most intriguing geometrical problems of the last few decades, namely the suggestion by physicists that a duality of quantum field theories leads to a ”mirror symmetry” between complex and symplectic geometry. Examples of generalized complex manifolds include complex and symplectic manifolds; these are at op- posite extremes of the spectrum of possibilities. Because of this fact, there are many connections between the subject and existing work on complex and symplectic geometry. More intriguing is the fact that complex and symplectic methods often apply, with subtle modifications, to the study of the intermediate cases. Un- like symplectic or complex geometry, the local behaviour of a generalized complex manifold is not uniform. Indeed, its local structure is characterized by a Poisson bracket, whose rank at any given point characterizes the local geometry. For this reason, the study of Poisson structures is central to the understanding of gen- eralized complex manifolds which are neither complex nor symplectic.
    [Show full text]
  • Tate Receives 2010 Abel Prize
    Tate Receives 2010 Abel Prize The Norwegian Academy of Science and Letters John Tate is a prime architect of this has awarded the Abel Prize for 2010 to John development. Torrence Tate, University of Texas at Austin, Tate’s 1950 thesis on Fourier analy- for “his vast and lasting impact on the theory of sis in number fields paved the way numbers.” The Abel Prize recognizes contributions for the modern theory of automor- of extraordinary depth and influence to the math- phic forms and their L-functions. ematical sciences and has been awarded annually He revolutionized global class field since 2003. It carries a cash award of 6,000,000 theory with Emil Artin, using novel Norwegian kroner (approximately US$1 million). techniques of group cohomology. John Tate received the Abel Prize from His Majesty With Jonathan Lubin, he recast local King Harald at an award ceremony in Oslo, Norway, class field theory by the ingenious on May 25, 2010. use of formal groups. Tate’s invention of rigid analytic spaces spawned the John Tate Biographical Sketch whole field of rigid analytic geometry. John Torrence Tate was born on March 13, 1925, He found a p-adic analogue of Hodge theory, now in Minneapolis, Minnesota. He received his B.A. in called Hodge-Tate theory, which has blossomed mathematics from Harvard University in 1946 and into another central technique of modern algebraic his Ph.D. in 1950 from Princeton University under number theory. the direction of Emil Artin. He was affiliated with A wealth of further essential mathematical ideas Princeton University from 1950 to 1953 and with and constructions were initiated by Tate, includ- Columbia University from 1953 to 1954.
    [Show full text]
  • The Abel Prize Laureate 2017
    The Abel Prize Laureate 2017 Yves Meyer École normale supérieure Paris-Saclay, France www.abelprize.no Yves Meyer receives the Abel Prize for 2017 “for his pivotal role in the development of the mathematical theory of wavelets.” Citation The Abel Committee The Norwegian Academy of Science and or “wavelets”, obtained by both dilating infinite sequence of nested subspaces Meyer’s expertise in the mathematics Letters has decided to award the Abel and translating a fixed function. of L2(R) that satisfy a few additional of the Calderón-Zygmund school that Prize for 2017 to In the spring of 1985, Yves Meyer invariance properties. This work paved opened the way for the development of recognised that a recovery formula the way for the construction by Ingrid wavelet theory, providing a remarkably Yves Meyer, École normale supérieure found by Morlet and Alex Grossmann Daubechies of orthonormal bases of fruitful link between a problem set Paris-Saclay, France was an identity previously discovered compactly supported wavelets. squarely in pure mathematics and a theory by Alberto Calderón. At that time, Yves In the following decades, wavelet with wide applicability in the real world. “for his pivotal role in the Meyer was already a leading figure analysis has been applied in a wide development of the mathematical in the Calderón-Zygmund theory of variety of arenas as diverse as applied theory of wavelets.” singular integral operators. Thus began and computational harmonic analysis, Meyer’s study of wavelets, which in less data compression, noise reduction, Fourier analysis provides a useful way than ten years would develop into a medical imaging, archiving, digital cinema, of decomposing a signal or function into coherent and widely applicable theory.
    [Show full text]
  • Hamiltonian and Symplectic Symmetries: an Introduction
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54, Number 3, July 2017, Pages 383–436 http://dx.doi.org/10.1090/bull/1572 Article electronically published on March 6, 2017 HAMILTONIAN AND SYMPLECTIC SYMMETRIES: AN INTRODUCTION ALVARO´ PELAYO In memory of Professor J.J. Duistermaat (1942–2010) Abstract. Classical mechanical systems are modeled by a symplectic mani- fold (M,ω), and their symmetries are encoded in the action of a Lie group G on M by diffeomorphisms which preserve ω. These actions, which are called sym- plectic, have been studied in the past forty years, following the works of Atiyah, Delzant, Duistermaat, Guillemin, Heckman, Kostant, Souriau, and Sternberg in the 1970s and 1980s on symplectic actions of compact Abelian Lie groups that are, in addition, of Hamiltonian type, i.e., they also satisfy Hamilton’s equations. Since then a number of connections with combinatorics, finite- dimensional integrable Hamiltonian systems, more general symplectic actions, and topology have flourished. In this paper we review classical and recent re- sults on Hamiltonian and non-Hamiltonian symplectic group actions roughly starting from the results of these authors. This paper also serves as a quick introduction to the basics of symplectic geometry. 1. Introduction Symplectic geometry is concerned with the study of a notion of signed area, rather than length, distance, or volume. It can be, as we will see, less intuitive than Euclidean or metric geometry and it is taking mathematicians many years to understand its intricacies (which is work in progress). The word “symplectic” goes back to the 1946 book [164] by Hermann Weyl (1885–1955) on classical groups.
    [Show full text]
  • The Tits Alternative
    The Tits Alternative Matthew Tointon April 2009 0 Introduction In 1972 Jacques Tits published his paper Free Subgroups in Linear Groups [Tits] in the Journal of Algebra. Its key achievement was to prove a conjecture of H. Bass and J.-P. Serre, now known as the Tits Alternative for linear groups, namely that a finitely-generated linear group over an arbitrary field possesses either a solvable subgroup of finite index or a non-abelian free subgroup. The aim of this essay is to present this result in such a way that it will be clear to a general mathematical audience. The greatest challenge in reading Tits's original paper is perhaps that the range of mathematics required to understand the theorem's proof is far greater than that required to understand its statement. Whilst this essay is not intended as a platform in which to regurgitate theory it is very much intended to overcome this challenge by presenting sufficient background detail to allow the reader, without too much effort, to enjoy a proof that is pleasing in both its variety and its ingenuity. Large parts of the prime-characteristic proof follow basically the same lines as the characteristic-zero proof; however, certain elements of the proof, particularly where it is necessary to introduce field theory or number theory, can be made more concrete or intuitive by restricting to characteristic zero. Therefore, for the sake of clarity this exposition will present the proof over the complex numbers, although where clarity and brevity are not impaired by considering a step in the general case we will do so.
    [Show full text]
  • On Some Recent Developments in the Theory of Buildings
    On some recent developments in the theory of buildings Bertrand REMY∗ Abstract. Buildings are cell complexes with so remarkable symmetry properties that many groups from important families act on them. We present some examples of results in Lie theory and geometric group theory obtained thanks to these highly transitive actions. The chosen examples are related to classical and less classical (often non-linear) group-theoretic situations. Mathematics Subject Classification (2010). 51E24, 20E42, 20E32, 20F65, 22E65, 14G22, 20F20. Keywords. Algebraic, discrete, profinite group, rigidity, linearity, simplicity, building, Bruhat-Tits' theory, Kac-Moody theory. Introduction Buildings are cell complexes with distinguished subcomplexes, called apartments, requested to satisfy strong incidence properties. The notion was invented by J. Tits about 50 years ago and quickly became useful in many group-theoretic situations [75]. By their very definition, buildings are expected to have many symmetries, and this is indeed the case quite often. Buildings are relevant to Lie theory since the geometry of apartments is described by means of Coxeter groups: apartments are so to speak generalized tilings, where a usual (spherical, Euclidean or hyper- bolic) reflection group may be replaced by a more general Coxeter group. One consequence of the existence of sufficiently large automorphism groups is the fact that many buildings admit group actions with very strong transitivity properties, leading to a better understanding of the groups under consideration. The beginning of the development of the theory is closely related to the theory of algebraic groups, more precisely to Borel-Tits' theory of isotropic reductive groups over arbitrary fields and to Bruhat-Tits' theory of reductive groups over non-archimedean valued fields.
    [Show full text]