The Tits Alternative
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gromov Receives 2009 Abel Prize
Gromov Receives 2009 Abel Prize . The Norwegian Academy of Science Medal (1997), and the Wolf Prize (1993). He is a and Letters has decided to award the foreign member of the U.S. National Academy of Abel Prize for 2009 to the Russian- Sciences and of the American Academy of Arts French mathematician Mikhail L. and Sciences, and a member of the Académie des Gromov for “his revolutionary con- Sciences of France. tributions to geometry”. The Abel Prize recognizes contributions of Citation http://www.abelprisen.no/en/ extraordinary depth and influence Geometry is one of the oldest fields of mathemat- to the mathematical sciences and ics; it has engaged the attention of great mathema- has been awarded annually since ticians through the centuries but has undergone Photo from from Photo 2003. It carries a cash award of revolutionary change during the last fifty years. Mikhail L. Gromov 6,000,000 Norwegian kroner (ap- Mikhail Gromov has led some of the most impor- proximately US$950,000). Gromov tant developments, producing profoundly original will receive the Abel Prize from His Majesty King general ideas, which have resulted in new perspec- Harald at an award ceremony in Oslo, Norway, on tives on geometry and other areas of mathematics. May 19, 2009. Riemannian geometry developed from the study Biographical Sketch of curved surfaces and their higher-dimensional analogues and has found applications, for in- Mikhail Leonidovich Gromov was born on Decem- stance, in the theory of general relativity. Gromov ber 23, 1943, in Boksitogorsk, USSR. He obtained played a decisive role in the creation of modern his master’s degree (1965) and his doctorate (1969) global Riemannian geometry. -
Group Theory
Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk. -
The Frattini Module and P -Automorphisms of Free Pro-P Groups
Publ. RIMS, Kyoto Univ. (), The Frattini module and p!-automorphisms of free pro-p groups. By Darren Semmen ∗ Abstract If a non-trivial subgroup A of the group of continuous automorphisms of a non- cyclic free pro-p group F has finite order, not divisible by p, then the group of fixed points FixF (A) has infinite rank. The semi-direct product F >!A is the universal p-Frattini cover of a finite group G, and so is the projective limit of a sequence of finite groups starting with G, each a canonical group extension of its predecessor by the Frattini module. Examining appearances of the trivial simple module 1 in the Frattini module’s Jordan-H¨older series arose in investigations ([FK97], [BaFr02] and [Sem02]) of modular towers. The number of these appearances prevents FixF (A) from having finite rank. For any group A of automorphisms of a group Γ, the set of fixed points FixΓ(A) := {g ∈ Γ | α(g) = g, ∀α ∈ A} of Γ under the action of A is a subgroup of Γ. Nielsen [N21] and, for the infinite rank case, Schreier [Schr27] showed that any subgroup of a free discrete group will be free. Tate (cf. [Ser02, I.§4.2, Cor. 3a]) extended this to free pro-p groups. In light of this, it is natural to ask for a free group F , what is the rank of FixF (A)? When F is a free discrete group and A is finite, Dyer and Scott [DS75] demonstrated that FixF (A) is a free factor of F , i.e. -
Algorithmic Constructions of Relative Train Track Maps and Cts Arxiv
Algorithmic constructions of relative train track maps and CTs Mark Feighn∗ Michael Handely June 30, 2018 Abstract Building on [BH92, BFH00], we proved in [FH11] that every element of the outer automorphism group of a finite rank free group is represented by a particularly useful relative train track map. In the case that is rotationless (every outer automorphism has a rotationless power), we showed that there is a type of relative train track map, called a CT, satisfying additional properties. The main result of this paper is that the constructions of these relative train tracks can be made algorithmic. A key step in our argument is proving that it 0 is algorithmic to check if an inclusion F @ F of φ-invariant free factor systems is reduced. We also give applications of the main result. Contents 1 Introduction 2 2 Relative train track maps in the general case 5 2.1 Some standard notation and definitions . .6 arXiv:1411.6302v4 [math.GR] 6 Jun 2017 2.2 Algorithmic proofs . .9 3 Rotationless iterates 13 3.1 More on markings . 13 3.2 Principal automorphisms and principal points . 14 3.3 A sufficient condition to be rotationless and a uniform bound . 16 3.4 Algorithmic Proof of Theorem 2.12 . 20 ∗This material is based upon work supported by the National Science Foundation under Grant No. DMS-1406167 and also under Grant No. DMS-14401040 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2016 semester. yThis material is based upon work supported by the National Science Foundation under Grant No. -
Jacques Tits
Jacques Tits Jacques Tits was born in Uccle, in the southern outskirts of Brussels, Belgium, on August 12, 1930. He retired from his professorship at the Collège de France in Paris in 2000 and has since then been Professor Emeritus. His father a mathematician, Jacques’s mathematical talent showed early. At the age of three he was able to do all the operations of arithmetic. He skipped several years at school. His father died when Jacques was only 13 years old. Since the family had very little to live on, Jacques started tutoring students four years older to contribute to the household expenses. He passed the entrance exam at the Free University of Brussels at the age of 14, and received his doctorate in 1950 at 20 years of age. Tits was promoted to professor at the Free University of Brussels in 1962 and remained in this position for two years before accepting a professorship at the University of Bonn in 1964. In 1973 he moved to Paris, taking up a position as Chair of Group Theory in the Collège de France. Shortly after, in 1974, he became a naturalised French subject. Tits held this chair until he retired in 2000. Jacques Tits has been a member of the French Académie des Sciences since 1974. In 1992 he was elected a Foreign Member of the US National Academy of Sciences and the American Academy of Arts and Sciences. In addition he holds memberships of science academies in Holland and Belgium. He has been awarded honorary doctorates from the Universities of Utrecht, Ghent, Bonn and Leuven. -
Arxiv:1704.05304V2 [Math.GR] 24 Aug 2017 Iergop,Rltvl Yeblcgroups
LINEAR GROUPS, CONJUGACY GROWTH, AND CLASSIFYING SPACES FOR FAMILIES OF SUBGROUPS TIMM VON PUTTKAMER AND XIAOLEI WU Abstract. Given a group G and a family of subgroups F , we consider its classifying space EF G with respect to F . When F = VCyc is the family of virtually cyclic subgroups, Juan- Pineda and Leary conjectured that a group admits a finite model for this classifying space if and only if it is virtually cyclic. By establishing a connection to conjugacy growth we can show that this conjecture holds for linear groups. We investigate a similar question that was asked by L¨uck–Reich–Rognes–Varisco for the family of cyclic subgroups. Finally, we construct finitely generated groups that exhibit wild inner automorphims but which admit a model for EVCyc(G) whose 0-skeleton is finite. Introduction Given a group G, a family F of subgroups of G is a set of subgroups of G which is closed under conjugation and taking subgroups. We denote by EF (G)a G-CW-model for the classifying space for the family F . The space EF (G) is characterized by the property H that the fixed point set EF (G) is contractible for any H ∈F and empty otherwise. Recall that a G-CW-complex X is said to be finite if it has finitely many orbits of cells. Similarly, X is said to be of finite type if it has finitely many orbits of cells of dimension n for any n. We abbreviate EF (G) by EG for F = VCyc the family of virtually cyclic subgroups, EG for F = F in the family of finite subgroups and EG for F the family consisting only of the trivial subgroup. -
New York Journal of Mathematics Periodic Points on Shifts of Finite Type and Commensurability Invariants of Groups
New York Journal of Mathematics New York J. Math. 21 (2015) 811{822. Periodic points on shifts of finite type and commensurability invariants of groups David Carroll and Andrew Penland Abstract. We explore the relationship between subgroups and the pos- sible shifts of finite type (SFTs) which can be defined on a group. In particular, we investigate two group invariants, weak periodicity and strong periodicity, defined via symbolic dynamics on the group. We show that these properties are invariants of commensurability. Thus, many known results about periodic points in SFTs defined over groups are actually results about entire commensurability classes. Additionally, we show that the property of being not strongly periodic (i.e., the prop- erty of having a weakly aperiodic SFT) is preserved under extensions with finitely generated kernels. We conclude by raising questions and conjectures about the relationship of these invariants to the geometric notions of quasi-isometry and growth. Contents 1. Introduction 811 2. Background 814 2.1. Symbolic dynamics on groups 814 2.2. Quasi-isometry and commensurability of groups 815 3. Some special SFTs on groups 816 3.1. Higher block shift 816 3.2. Products of shifts 817 3.3. Locked shift 818 4. Commensurability and periodicity 818 4.1. SFTs and quotient groups 820 References 821 1. Introduction Given a group G and a finite alphabet A, a shift (over G) is a nonempty compact, G-equivariant subset of the full shift AG, where AG is a topological space regarded as a product of discrete spaces. A shift of finite type (SFT) Received April 6, 2015. -
A Splitting Theorem for Linear Polycyclic Groups
New York Journal of Mathematics New York J. Math. 15 (2009) 211–217. A splitting theorem for linear polycyclic groups Herbert Abels and Roger C. Alperin Abstract. We prove that an arbitrary polycyclic by finite subgroup of GL(n, Q) is up to conjugation virtually contained in a direct product of a triangular arithmetic group and a finitely generated diagonal group. Contents 1. Introduction 211 2. Restatement and proof 212 References 216 1. Introduction A linear algebraic group defined over a number field K is a subgroup G of GL(n, C),n ∈ N, which is also an affine algebraic set defined by polyno- mials with coefficients in K in the natural coordinates of GL(n, C). For a subring R of C put G(R)=GL(n, R) ∩ G.LetB(n, C)andT (n, C)bethe (Q-defined linear algebraic) subgroups of GL(n, C) of upper triangular or diagonal matrices in GL(n, C) respectively. Recall that a group Γ is called polycyclic if it has a composition series with cyclic factors. Let Q be the field of algebraic numbers in C.Every discrete solvable subgroup of GL(n, C) is polycyclic (see, e.g., [R]). 1.1. Let o denote the ring of integers in the number field K.IfH is a solvable K-defined algebraic group then H(o) is polycyclic (see [S]). Hence every subgroup of a group H(o)×Δ is polycyclic, if Δ is a finitely generated abelian group. Received November 15, 2007. Mathematics Subject Classification. 20H20, 20G20. Key words and phrases. Polycyclic group, arithmetic group, linear group. -
Pierre Deligne
www.abelprize.no Pierre Deligne Pierre Deligne was born on 3 October 1944 as a hobby for his own personal enjoyment. in Etterbeek, Brussels, Belgium. He is Profes- There, as a student of Jacques Tits, Deligne sor Emeritus in the School of Mathematics at was pleased to discover that, as he says, the Institute for Advanced Study in Princeton, “one could earn one’s living by playing, i.e. by New Jersey, USA. Deligne came to Prince- doing research in mathematics.” ton in 1984 from Institut des Hautes Études After a year at École Normal Supériure in Scientifiques (IHÉS) at Bures-sur-Yvette near Paris as auditeur libre, Deligne was concur- Paris, France, where he was appointed its rently a junior scientist at the Belgian National youngest ever permanent member in 1970. Fund for Scientific Research and a guest at When Deligne was around 12 years of the Institut des Hautes Études Scientifiques age, he started to read his brother’s university (IHÉS). Deligne was a visiting member at math books and to demand explanations. IHÉS from 1968-70, at which time he was His interest prompted a high-school math appointed a permanent member. teacher, J. Nijs, to lend him several volumes Concurrently, he was a Member (1972– of “Elements of Mathematics” by Nicolas 73, 1977) and Visitor (1981) in the School of Bourbaki, the pseudonymous grey eminence Mathematics at the Institute for Advanced that called for a renovation of French mathe- Study. He was appointed to a faculty position matics. This was not the kind of reading mat- there in 1984. -
The Abel Prize Laureate 2017
The Abel Prize Laureate 2017 Yves Meyer École normale supérieure Paris-Saclay, France www.abelprize.no Yves Meyer receives the Abel Prize for 2017 “for his pivotal role in the development of the mathematical theory of wavelets.” Citation The Abel Committee The Norwegian Academy of Science and or “wavelets”, obtained by both dilating infinite sequence of nested subspaces Meyer’s expertise in the mathematics Letters has decided to award the Abel and translating a fixed function. of L2(R) that satisfy a few additional of the Calderón-Zygmund school that Prize for 2017 to In the spring of 1985, Yves Meyer invariance properties. This work paved opened the way for the development of recognised that a recovery formula the way for the construction by Ingrid wavelet theory, providing a remarkably Yves Meyer, École normale supérieure found by Morlet and Alex Grossmann Daubechies of orthonormal bases of fruitful link between a problem set Paris-Saclay, France was an identity previously discovered compactly supported wavelets. squarely in pure mathematics and a theory by Alberto Calderón. At that time, Yves In the following decades, wavelet with wide applicability in the real world. “for his pivotal role in the Meyer was already a leading figure analysis has been applied in a wide development of the mathematical in the Calderón-Zygmund theory of variety of arenas as diverse as applied theory of wavelets.” singular integral operators. Thus began and computational harmonic analysis, Meyer’s study of wavelets, which in less data compression, noise reduction, Fourier analysis provides a useful way than ten years would develop into a medical imaging, archiving, digital cinema, of decomposing a signal or function into coherent and widely applicable theory. -
No Tits Alternative for Cellular Automata
No Tits alternative for cellular automata Ville Salo∗ University of Turku January 30, 2019 Abstract We show that the automorphism group of a one-dimensional full shift (the group of reversible cellular automata) does not satisfy the Tits alter- native. That is, we construct a finitely-generated subgroup which is not virtually solvable yet does not contain a free group on two generators. We give constructions both in the two-sided case (spatially acting group Z) and the one-sided case (spatially acting monoid N, alphabet size at least eight). Lack of Tits alternative follows for several groups of symbolic (dynamical) origin: automorphism groups of two-sided one-dimensional uncountable sofic shifts, automorphism groups of multidimensional sub- shifts of finite type with positive entropy and dense minimal points, auto- morphism groups of full shifts over non-periodic groups, and the mapping class groups of two-sided one-dimensional transitive SFTs. We also show that the classical Tits alternative applies to one-dimensional (multi-track) reversible linear cellular automata over a finite field. 1 Introduction In [52] Jacques Tits proved that if F is a field (with no restrictions on charac- teristic), then a finitely-generated subgroup of GL(n, F ) either contains a free group on two generators or contains a solvable subgroup of finite index. We say that a group G satisfies the Tits alternative if whenever H is a finitely-generated subgroup of G, either H is virtually solvable or H contains a free group with two generators. Whether an infinite group satisfies the Tits alternative is one of the natural questions to ask. -
Detecting Fully Irreducible Automorphisms: a Polynomial Time Algorithm
DETECTING FULLY IRREDUCIBLE AUTOMORPHISMS: A POLYNOMIAL TIME ALGORITHM. WITH AN APPENDIX BY MARK C. BELL. ILYA KAPOVICH Abstract. In [30] we produced an algorithm for deciding whether or not an element ' 2 Out(FN ) is an iwip (\fully irreducible") automorphism. At several points that algorithm was rather inefficient as it involved some general enumeration procedures as well as running several abstract processes in parallel. In this paper we refine the algorithm from [30] by eliminating these inefficient features, and also by eliminating any use of mapping class groups algorithms. Our main result is to produce, for any fixed N ≥ 3, an algorithm which, given a topological representative f of an element ' of Out(FN ), decides in polynomial time in terms of the \size" of f, whether or not ' is fully irreducible. In addition, we provide a train track criterion of being fully irreducible which covers all fully irreducible elements of Out(FN ), including both atoroidal and non-atoroidal ones. We also give an algorithm, alternative to that of Turner, for finding all the indivisible Nielsen paths in an expanding train track map, and estimate the complexity of this algorithm. An appendix by Mark Bell provides a polynomial upper bound, in terms of the size of the topological representative, on the complexity of the Bestvina-Handel algorithm[3] for finding either an irreducible train track representative or a topological reduction. 1. Introduction For an integer N ≥ 2 an outer automorphism ' 2 Out(FN ) is called fully irreducible if there no positive power of ' preserves the conjugacy class of any proper free factor of FN .