Snps in Genes Coding for ROS Metabolism and Signalling in Association with Docetaxel Clearance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anti-Inflammatory Effects of V-3 Polyunsaturated Fatty Acids And
ORIGINAL ARTICLE Anti-inflammatory Effects of v-3 Polyunsaturated Fatty Acids and Soluble Epoxide Hydrolase Inhibitors in Angiotensin-II–Dependent Hypertension Arzu Ulu, MSc,* Todd R. Harris, PhD,* Christophe Morisseau, PhD,* Christina Miyabe, BS,* Hiromi Inoue, DVM,† Gertrud Schuster, PhD,‡ Hua Dong, PhD,* Ana-Maria Iosif, PhD,§ Jun-Yan Liu, PhD,* Robert H. Weiss, MD,†¶ Nipavan Chiamvimonvat, MD,k¶ John D. Imig, PhD,** and Bruce D. Hammock, PhD* renal markers of inflammation (ie, prostaglandins and MCP-1), Abstract: The mechanisms underlying the anti-inflammatory and downregulated an epithelial sodium channel, and upregulated angioten- antihypertensive effects of long-chain v-3 polyunsaturated fatty acids sin-converting enzyme-2 message and significantly modulated cyclo- (v-3 PUFAs) are still unclear. The epoxides of an v-6 fatty acid, oxygenase and lipoxygenase metabolic pathways. Overall, our findings arachidonic acid epoxyeicosatrienoic acids also exhibit antihyperten- suggest that epoxides of the v-3 PUFAs contribute to lowering systolic sive and anti-inflammatory effects. Thus, we hypothesized that the blood pressure and attenuating inflammation in part by reduced pros- major v-3 PUFAs, including eicosapentaenoic acid (EPA) and doco- taglandinsandMCP-1andbyupregulation of angiotensin-converting sahexaenoic acid (DHA), may lower the blood pressure and attenuate enzyme-2 in angiotensin-II–dependent hypertension. renal markers of inflammation through their epoxide metabolites. v Here, we supplemented mice with an v-3 rich diet for 3 weeks in Key Words: -3 polyunsaturated fatty acids, EPA, DHA, soluble – a murine model of angiotensin-II–dependent hypertension. Also, epoxide hydrolase inhibitors, angiotensin-II dependent hypertension because EPA and DHA epoxides are metabolized by soluble epoxide (J Cardiovasc PharmacolÔ 2013;62:285–297) hydrolase (sEH), we tested the combination of an sEH inhibitor and the v-3 rich diet. -
Systems and Chemical Biology Approaches to Study Cell Function and Response to Toxins
Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented by MSc. Yingying Jiang born in Shandong, China Oral-examination: Systems and chemical biology approaches to study cell function and response to toxins Referees: Prof. Dr. Rob Russell Prof. Dr. Stefan Wölfl CONTRIBUTIONS The chapter III of this thesis was submitted for publishing under the title “Drug mechanism predominates over toxicity mechanisms in drug induced gene expression” by Yingying Jiang, Tobias C. Fuchs, Kristina Erdeljan, Bojana Lazerevic, Philip Hewitt, Gordana Apic & Robert B. Russell. For chapter III, text phrases, selected tables, figures are based on this submitted manuscript that has been originally written by myself. i ABSTRACT Toxicity is one of the main causes of failure during drug discovery, and of withdrawal once drugs reached the market. Prediction of potential toxicities in the early stage of drug development has thus become of great interest to reduce such costly failures. Since toxicity results from chemical perturbation of biological systems, we combined biological and chemical strategies to help understand and ultimately predict drug toxicities. First, we proposed a systematic strategy to predict and understand the mechanistic interpretation of drug toxicities based on chemical fragments. Fragments frequently found in chemicals with certain toxicities were defined as structural alerts for use in prediction. Some of the predictions were supported with mechanistic interpretation by integrating fragment- chemical, chemical-protein, protein-protein interactions and gene expression data. Next, we systematically deciphered the mechanisms of drug actions and toxicities by analyzing the associations of drugs’ chemical features, biological features and their gene expression profiles from the TG-GATEs database. -
Evidence for Differential Alternative Splicing in Blood of Young Boys With
Stamova et al. Molecular Autism 2013, 4:30 http://www.molecularautism.com/content/4/1/30 RESEARCH Open Access Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders Boryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2 Abstract Background: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods: RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. -
Parental Balanced Chromosomal Rearrangement Leading to Major Genomic Imbalance and an Autosomal Trisomy Resulting in Consecutive Pregnancy Loss: a Case Report
Journal of Genetics (2021)100:54 Ó Indian Academy of Sciences https://doi.org/10.1007/s12041-021-01304-3 (0123456789().,-volV)(0123456789().,-volV) RESEARCH NOTE Parental balanced chromosomal rearrangement leading to major genomic imbalance and an autosomal trisomy resulting in consecutive pregnancy loss: a case report ANUSHKA SHRIVASTAVA1,2, SEEMA THAKUR3, TARA NATH2, ABHIPSA V. F. DEBNATH1 and SONAL R. BAKSHI1* 1Institute of Science, Nirma University, Ahmedabad 382 481, India 2Advanced Genomic Institute and Laboratory Medicine (Labassure), New Delhi 110 003, India 3Department of Clinical Genetics and Fetal Medicine, Fortis Hospital, New Delhi 110 088, India *For correspondence. E-mail: [email protected]. Received 8 November 2020; revised 9 February 2021; accepted 23 March 2021 Abstract. Chromosomal aberrations such as parental balanced translocation contribute to a significant proportion of recurrent pregnancy losses. These have extreme genetic implications on the foetus which can either cause physical and/or mental retardation or early death. In this study, we report a unique clinical case of a couple with three consecutive pregnancy losses and we aim to determine the genetic abnormalities causing the miscarriages. Conventional cytogenetic and molecular genetic analysis were performed on the products of conception as well as for the parents. Chromosomal analysis was performed based on the ISCN 2016 guidelines. This was followed by Chromosomal microarray analysis carried out using ISCA consortium probe set (8X60K). Genetic testing for the 1st product of conception was not performed. However, the 2nd and 3rd products of conception indicated an autosomal trisomy 22 and a 3.7 Mb deletion of 2p (cytoband p25.3) along with 13.6 Mb duplication of 16p (cytoband p13.3p13.12), respectively. -
Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database. -
Predicting Gene Ontology Biological Process from Temporal Gene Expression Patterns Astrid Lægreid,1,4 Torgeir R
Methods Predicting Gene Ontology Biological Process From Temporal Gene Expression Patterns Astrid Lægreid,1,4 Torgeir R. Hvidsten,2 Herman Midelfart,2 Jan Komorowski,2,3,4 and Arne K. Sandvik1 1Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; 2Department of Information and Computer Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; 3The Linnaeus Centre for Bioinformatics, Uppsala University, SE-751 24 Uppsala, Sweden The aim of the present study was to generate hypotheses on the involvement of uncharacterized genes in biological processes. To this end,supervised learning was used to analyz e microarray-derived time-series gene expression data. Our method was objectively evaluated on known genes using cross-validation and provided high-precision Gene Ontology biological process classifications for 211 of the 213 uncharacterized genes in the data set used. In addition,new roles in biological process were hypothesi zed for known genes. Our method uses biological knowledge expressed by Gene Ontology and generates a rule model associating this knowledge with minimal characteristic features of temporal gene expression profiles. This model allows learning and classification of multiple biological process roles for each gene and can predict participation of genes in a biological process even though the genes of this class exhibit a wide variety of gene expression profiles including inverse coregulation. A considerable number of the hypothesized new roles for known genes were confirmed by literature search. In addition,many biological process roles hypothesi zed for uncharacterized genes were found to agree with assumptions based on homology information. -
Chromosome Abnormalities in Neonates with Congenital Heart Defects
CHROMOSOME ABNORMALITIES IN NEONATES WITH CONGENITAL HEART DEFECTS by Kristine Kay Bachman B.A. Biology and Spanish, Bucknell University, 2010 Submitted to the Graduate Faculty of Human Genetics, Genetic Counseling Graduate School of Public Health in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2012 UNIVERSITY OF PITTSBURGH Graduate School of Public Health This thesis was presented by Kristine Kay Bachman It was defended on April 11, 2012 and approved by Thesis Advisor: Suneeta Madan-Khetarpal, MD Associate Professor of Pediatrics Division of Medical Genetics School of Medicine University of Pittsburgh Committee Member: Robin Grubs, MS, PhD, CGC Assistant Professor of Human Genetics Co-Director, Genetic Counseling Program Department of Human Genetics Graduate School of Public Health University of Pittsburgh Committee Member: Susanne Gollin, PhD Professor of Human Genetics Department of Human Genetics Graduate School of Public Health University of Pittsburgh Committee Member: Stephanie DeWard, MS, CGC Division of Medical Genetics School of Medicine University of Pittsburgh ii Kristine Kay Bachman 2012 iii Thesis Advisor: Suneeta Madan-Khetarpal, MD CHROMOSOME ABNORMALITIES IN NEONATES WITH CONGENITAL HEART DEFECTS Kristine Kay Bachman, M.S. University of Pittsburgh, 2012 Congenital heart disease (CHD) contributes to the rate of birth defects in the population with an incidence of nearly 1% of all live births (1). CHD has significant Public Health importance due to its high incidence, clinical severity, and complexity of medical management. In some cases, efficiently diagnosing the underlying cause of CHD is essential to providing optimal clinical care. The etiology of CHD is hypothesized to be largely multifactorial in nature, but chromosome abnormalities account for 8-13% of all CHD (2, 3). -
GSTM4 Is a Microsatellite-Containing EWS&Sol;FLI Target Involved in Ewing&Apos;S Sarcoma Oncogenesis and Therapeutic
Oncogene (2009) 28, 4126–4132 & 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 $32.00 www.nature.com/onc SHORT COMMUNICATION GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing’s sarcoma oncogenesis and therapeutic resistance W Luo1,2, K Gangwal1,2, S Sankar1,2, KM Boucher1, D Thomas3 and SL Lessnick1,2,4 1Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; 2The Center for Children’s Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; 3Department of Pathology, University of Michigan, Ann Arbor, MI, USA and 4Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA Ewing’s sarcoma is a malignant bone-associated tumor of Most cases of Ewing’s sarcoma harbor recurrent children and young adults. Most cases of Ewing’s sarcoma chromosomal translocations, the most common express the EWS/FLI fusion protein. EWS/FLI functions of which encodes the EWS/FLI fusion oncoprotein as an aberrant ETS-type transcription factor and serves (Delattre et al., 1992). EWS/FLI requires both its strong as the master regulator of Ewing’s sarcoma-transformed transcriptional activation domain (derived from EWS) phenotype. We recently showed that EWS/FLI regulates and its ETS-type DNA-binding domain (derived from one of its key targets, NR0B1, through a GGAA- FLI) for oncogenic function (May et al., 1993a, b). A microsatellite in its promoter. Whether other critical variety of studies have identified a large number of EWS/FLI targets are also regulated by GGAA-micro- EWS/FLI-regulated genes (Prieur et al., 2004; Smith satellites was unknown. -
Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition
Published OnlineFirst February 21, 2013; DOI: 10.1158/2159-8290.CD-12-0418 RESEARCH ARTICLE Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition Alexandre Puissant1,3, Stacey M. Frumm1,3, Gabriela Alexe1,3,5,6, Christopher F. Bassil1,3, Jun Qi2, Yvan H. Chanthery8, Erin A. Nekritz8, Rhamy Zeid2, William Clay Gustafson8, Patricia Greninger7, Matthew J. Garnett10, Ultan McDermott10, Cyril H. Benes7, Andrew L. Kung1,3, William A. Weiss8,9, James E. Bradner2,4, and Kimberly Stegmaier1,3,6 Downloaded from cancerdiscovery.aacrjournals.org on October 2, 2021. © 2013 American Association for Cancer Research. 15-CD-12-0418_p308-323.indd 1 22/02/13 12:15 AM Published OnlineFirst February 21, 2013; DOI: 10.1158/2159-8290.CD-12-0418 A BSTRACT Bromodomain inhibition comprises a promising therapeutic strategy in cancer, particularly for hematologic malignancies. To date, however, genomic biomarkers to direct clinical translation have been lacking. We conducted a cell-based screen of genetically defined cancer cell lines using a prototypical inhibitor of BET bromodomains. Integration of genetic features with chemosensitivity data revealed a robust correlation between MYCN amplification and sensitivity to bromodomain inhibition. We characterized the mechanistic and translational significance of this finding in neuroblastoma, a childhood cancer with frequent amplification of MYCN. Genome-wide expression analysis showed downregulation of the MYCN transcriptional program accompanied by suppression of MYCN transcription. Functionally, bromodomain-mediated inhibition of MYCN impaired growth and induced apoptosis in neuroblastoma. BRD4 knockdown phenocopied these effects, establishing BET bromodomains as transcriptional regulators of MYCN. BET inhibition conferred a significant survival advantage in 3 in vivo neuroblastoma models, providing a compelling rationale for developing BET bro- modomain inhibitors in patients with neuroblastoma. -
WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT (51) International Patent Classification: achusetts 021 15 (US). THE BROAD INSTITUTE, A61K 51/10 (2006.01) G01N 33/574 (2006.01) INC. [US/US]; 415 Main Street, Cambridge, Massachu C07K 14/705 (2006.01) A61K 47/68 (2017.01) setts 02142 (US). MASSACHUSETTS INSTITUTE OF G01N 33/53 (2006.01) TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (US). (21) International Application Number: PCT/US2017/055625 (72) Inventors; and (71) Applicants: KUCHROO, Vijay K. [IN/US]; 30 Fairhaven (22) International Filing Date: Road, Newton, Massachusetts 02149 (US). ANDERSON, 06 October 2017 (06.10.2017) Ana Carrizosa [US/US]; 110 Cypress Street, Brookline, (25) Filing Language: English Massachusetts 02445 (US). MADI, Asaf [US/US]; c/o The Brigham and Women's Hospital, Inc., 75 Francis (26) Publication Language: English Street, Boston, Massachusetts 021 15 (US). CHIHARA, (30) Priority Data: Norio [US/US]; c/o The Brigham and Women's Hospital, 62/405,835 07 October 2016 (07.10.2016) US Inc., 75 Francis Street, Boston, Massachusetts 021 15 (US). REGEV, Aviv [US/US]; 15a Ellsworth Ave, Cambridge, (71) Applicants: THE BRIGHAM AND WOMEN'S HOSPI¬ Massachusetts 02139 (US). SINGER, Meromit [US/US]; TAL, INC. [US/US]; 75 Francis Street, Boston, Mass c/o The Broad Institute, Inc., 415 Main Street, Cambridge, (54) Title: MODULATION OF NOVEL IMMUNE CHECKPOINT TARGETS CD4 FIG. -
Inhibition of Mitochondrial Complex II in Neuronal Cells Triggers Unique
www.nature.com/scientificreports OPEN Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration Sathyanarayanan Ranganayaki1, Neema Jamshidi2, Mohamad Aiyaz3, Santhosh‑Kumar Rashmi4, Narayanappa Gayathri4, Pulleri Kandi Harsha5, Balasundaram Padmanabhan6 & Muchukunte Mukunda Srinivas Bharath7* Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1‑methyl‑4‑phenylpyridinium (MPP+) and 3‑nitropropionic acid (3‑NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down‑stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome‑wide transcriptomics of N27 neuronal cells exposed to 3‑NPA, compared with MPP+ and Mn revealed varied transcriptomic profle. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway diferentially regulated in the 3‑NPA model with implications for neuronal survival. This pathway was unique to 3‑NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3‑NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor -
Inhibiting the Soluble Epoxide Hydrolase Increases the Epfas and ERK1/2 Expression in the Hippocampus of Licl-Pilocarpine Post-Status Epilepticus Rat Model
Inhibiting the soluble epoxide hydrolase increases the EpFAs and ERK1/2 expression in the hippocampus of LiCl-pilocarpine post-status epilepticus rat model Weifeng Peng Zhongshan Hospital Fudan University https://orcid.org/0000-0002-6225-1409 Yijun Shen Zhongshan Hospital Fudan University Qiang Wang Zhongshan Hospital Fudan University Jing Ding ( [email protected] ) Zhongshan Hospital Fudan University Xin Wang ( [email protected] ) Zhongshan Hospital Fudan University Research Article Keywords: epilepsy, soluble epoxide hydrolase, epoxygenated fatty acids (EpFAs), extracellular signal- activated protein kinase 1/2 (ERK1/2) Posted Date: April 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-385335/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Purpose This study aimed to investigate the enzyme activity of soluble epoxide hydrolase (sEH) and quantify metabolic substrates i.e. epoxygenated fatty acids (EpFAs) and products of sEH in the hippocampus after administering TPPU [1-triuoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea], the inhibitor of sEH, and further explored whether the extracellular signal-activated protein kinase 1/2 (ERK1/2) was involved in the anti-seizure effect of TPPU in the lithium chloride (LiCl)-pilocarpine induced post-status epilepticus (SE) rat model. Methods The rats were intraperitoneally (I.P.) injected with LiCl and pilocarpine to induce SE and then spontaneous recurrent seizures (SRS) were observed. Rats were randomly assigned into SRS + 0.1 TPPU group (intragastrically administering 0.1 mg/kg/d TPPU), SRS + PEG 400 group (administering the vehicle instead), and Control group.