Geology of the Magadi Area, Kenya %

Total Page:16

File Type:pdf, Size:1020Kb

Geology of the Magadi Area, Kenya % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % % % % % % % % % % % % %% % % % % % % % % % % %% % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % GEOLOGIC HISTORY % % % % % % % % % % % % % % % % % % % % % % % Legend % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % % % % % % % % % % % % HOLOCENE % % % % % % % % % Pleistocene Pleistocene: Gelasian % % % % % % % % %% %% %% % % % % %% % % Sediments % % % % %% % Evaporite Series (0-9 ka): trona with interbedded clays. The Magadi Soda Company at Lake Magadi % % % % %% %% % % % % % % % % % % % % % % % % % % % % % Pl-cv % currently mines the trona. % % Cinder cones Pl-let Leshuta Trachyte % % % % % % % % % % % % % % % % % % % % Holocene % % % % % Geology of the Magadi Area, Kenya % %% % % % % % % % % % % % % % % %% % %% % % %% % % % % % % % % % % PLEISTOCENE % % % Pl-kjb Kordjya Basalt % % % % % % % % % % % Nyokie % % %% % Trona % % % % % % % % % % % % High Magadi Beds (9-23.7 ka): yellow-brown silts over laminated clays with fish remains. Deposited during % % % % % % % % % % For area to North see: Geology of the Suswa Area, KGS Report 97; Digital version by A. Guth % % % % 36.5 °E % % % 36.0 °E % % % % % % % % % % % a period of higher lake levels in both lakes Natron and Magadi. % % % Pl-mt % % % % Mosiro Trachyte satellite lava % % % % % -1.5 ° % % % % % -1.5 ° % Alluvial fan % 0 % % % % % % % % 0 % % % % % % % Pl-tv % % % % 2 % % % % % % % % % 1 % % % % % % % % % % % % % Chert Series/Green Beds (40-96 ka): lacustrine chert and associated sediments up to 30 meters thick % % % Pl-et Ewaso Ngiro Trachyte % % % % satellite % % % Pl-mt % % % % Lacustrine Sediments % %% % Pl-mt % % % %% % above Oloronga beds. Cherts are typically surrounded by a green matrix of erionite tuffs and pyroclastic %% %% 0 % % 0 %% %% % %% 0 % 1 % silts, and may rise diapirically through the High Magadi Beds (Behr & Rhricht 2000, Behr 2002). %% % % 1 6 % % % 0 Pl-sb Singaraini Basalt % % ash flow 0 % 0 %% % 0 % 2 %% % Pleistocene % % 1 % % 1 % % % % 4 % % 0 % % 0 % % 0 Kedong Flood (100 ka): sand and fine gravel covering the Ol Tepesi plain. Evidence for a flood is given by % % 0 % 0 Pl-na welded tuffs %% %% % %% 0 1 Plio-Miocene % % % Pl-ml' High Magadi Pebble Beds % % % 0 % % % % % Baker & Mitchell (1976), and the source was likely the sudden emptying of Kedong Lake to the north. % % % Pl-et % %% %% % 0 % % 1 % % % % Mlt % % % % % Pl-kf These deposits are distinctive in satellite imagery, but can be quite thin. For example, south of the Magadi- % % % Pl-nv % % % Popn % % % % Ol Doinyo Nyokie Olorgesailie Nephelinite % % % % % % % % % % % % % % % % % % % Pl-ml High Magadi Beds % % % % % % % % Nairobi road, most exposures would be dominated by the lake beds of the Olorgesailie basin. % % % % % % % % % % 1 % % % % % % 6 % % % % %% % % 0 % % % % % % % % % Pl-kjb Pov % 0 % % % Olorgesailie % % % % % % % % % % Pleistocene: Calabrian % % % % % 0 Ol Tepesi Pl-c Magadi Green Beds % % % % % % % % % Orkaramatian Beds: white clayey lake sediments containing the remains of fish and gastropods. 0 % % % % ! % % % % % % % % 2 % % % % % % % %% % % % % % % % 1 Pl-okl %% % % % % %% % % % % % Deposition occurred near the Kirikiti fault, and sediments in the scarp rim suggest that the scarp was less % % % Mlt % % Pkb %% % % % % Pl-pt Kirikiti Basalt %% % % % % Magadi Trachyte %% % % % % %% % % % % % % Kedong Flood % % % % Pl-kf %% % % % % % % % than 20m high at the time of deposition (Crossley 1979). % % % % % % % % % % % %% % % %% %% % % % % % % % % % % % % % %% %% % % % % %% %% % % % % %% %% % % % % %% %% % % Pl-tv Mlt % % % % % Lengitoto Trachyte % % Tepesi Benmoreite % %% %% % % % 0 %% %% % % Pl-ogl % % % Oloronga Lake Beds % % Pl-ob % % % 0 %% % Oloronga Beds (300-800 ka): yellow water-lain tuffs are the remnants of a larger and fresher lake % % %% %% %% % 1 % % 4 0 % 0 % % % 0 % % % % % DDDD % % % % % 1 %% % % % % % 0 %% %% % % % % % 0 %% % % % % % %% % (Crossley 1979). About 45 m in outcrop, these sediments overlie the Magadi Trachytes, and contain chert, % %% %% % % 0 %% %% % % Pl-kt 1 %% % % % Mmn %% % % 1 1 Pl-tb DDDD %% % % Melanephelinites %% % % % %% % % 0 Tepesi Basalt %% % % % 8 % % % % % % 0 % % % % % Pl-ol % % 0 % % % % % Orkaramatian Lake Beds 0 % %% % % % % % % % kunkar limestone, and layers of carbonate boxwork (Baker 1958, Potts et al. 1988). % % % 0 % % % % DDDD % % % % % % % % % % % % % % % % % % %% %% % % % % % Ensonorua %% %% %% %% % % % %% % % 0 %% %% % % % ! %% % % % %% % % 0 % % %% % % % Pl-ob % % % Ol Keju Nero Basalt % 0 %% % % 0 % %% % 0 % % % % % % 0 %% % % 1 1 % %% %% %% % % % %% % Ol Doinyo Nyokie (0.66 - 1 Ma): trachytic ashes and obsidian erupted from a small cone. Chemical % %% % % Pleistocene: Calabrian %% %% %% % % Metamorphics %% %% %% %% %% %% %% %% %% %% %% % % 1 %% %% %% %% %% %% %% % compositions indicate Nyokie may be related to the Magadi trachytes (Baker 1975), and may also be the % % % 2 %% %% %% %% %% %% %% %% % % 0 Pl-kt %% % % North Kordjya Trachyte %% % % 0 % % % % % % % % % Pl-okl % % % Olorgesailie Lake Beds % % % % source for the Olorgesailie tephra (Deino & Potts 1990). % % % % % % % % % % % Xq Quartzites % % % % % % % %% % % % % %% % % % % %% % % % % % % % % %% % % % % %% %% % % %% %% %% % % % %% % % % %% % % Pl-tv % % % %% %% % % % %% %% % % % % % %% % Olorgesailie Lake Beds (0.2-1.2 Ma): diatomaceous, tuff and gravel beds of the Olorgesailie basin. The % % % %% % % % Xmg % % % % % % Muscovite schists % % % 1 % % % % % % % % % % % % 8 % % % Pl-cv % % % Volcanics % % % % % % Olorgesailie Formation has been divided into 14 Members (0.5-1Ma). The youngest lake deposits from 0 % % % % % % % % % % Pl-pt % % % % % % 0 % % % % % % % % % % 0 % % % % Mlt % % % % % % % % % % % 0 F % % % % % % % %% % 0.22 Ma (Deino & Potts 1990) were designated part of the Olkesiteti Formation (not distinguished here) by % % % % % % 2 %% % % Pl-cv % o % %% %% % % % % % % 1 %% % % % % r %% %% % % % %% %% % % % %% %% % % % % a %% % % %% %% % % % % Brooks et al. (2007). % % %% % % %% % 0 % % 0 % % 0 r % 80 % % %% % % % % % % e % % % % % % 0 % 0 % % % % % %% % % % %% % % % % %% % % 6 a % % % % 8 % % %% % % % %% % % % Pov 1 %% %% % % 1 % 2 % % % 0 1 % % 0 % % %%%%%%%%%%%%%%% ! % % % % % % t % % % % % % o % % % %% % % % % Pl-kjb % % % % faults-large City Road-major salt-ponds % 1 % % % % % % % % %% % % % % % % % % % % % 8 % E % % % % % % % Plateau/Magadi Trachyte (0.8-1.4 Ma): fine grained, peralkaline flood trachyte with a medium green to % % % % %% % % % % 0 % % %% % % % % a % 1 % % % % % % % % % 0 % %% % % % % s % % 0 %% % % % % % % % % % % % t % % % ! % brown-grey matrix, and feldspar phenocrysts up to 0.5cm. This prominent trachyte is found between Lake % 0 % % % % % % % % % % % % % % s % % 0 % % % faults-small Lake, ephemeral % % % % Town Road-minor % % % % % e % % % % % % % % % % % % % % e % % % % % Natron and Suswa, and is one of the several expansive "flood trachytes" that cover the rift floor. % % % % % % % % % % : % % % % % % % % 0 % % % % % % % % % % G % % % % % % % 0 % % % % % ! % % % % Mlt% % 0 % 6 e % % % % % % 0 % % % rivers % 8 % % % 1 Springs % % o % Village Road-track % % % % %% % % % % % % % % %% % % Pon l % % % % % o % % 0 % % % % % % %% % Ol Tepesi Basalts (1.4-1.65 Ma) and Benmoreites (1.42Ma): these two formations were distinguished by . % % % % % %% % % % g % 0 14 % % 0 % 0 % % % % 1 % % % % % % % % % % 8 y % %% % % % % % 7 % % %% %% % %% % % % % % % %% %% % % o % % % % % t %% % Baker & Mitchell (1976) from the Ol Keju Nero and Singaraini basalts based on age. The benmoreite flow % 1 % % % % 200m-contour % % % % Kamukuru % r % % % % % % % f % % rail Swamp % % % % 6 % % % % % %% % % ! 1 % % o 6 % % % % %% % % 0 t % % 0 % 0 % % % %% % % % % h %% % % % % Xq % p % % % % %% %% % 0 % % is at least 150m thick and features distinctive tabular and rhombic feldspar phenocrysts in a granular % % % % % % e %% %% %% % % % e % % % %% %% %% % % % % 1 % %% %% %% % % % %% % 0 % %% % % K % R % % 8 % %% % % % %% %% % % % % % % %% % 0 % % % 0 % PALEONTOLOGY % % % % a % % % % matrix. % % % % % % %% % % % S % 0 8 % % %% %% % % % j % % % % % i %% % 1 % % % % % % % a % G % % Pov %% % % % % % % % The lake beds at Olorgesailie host an impressive accumulation of stone hand axes, and Potts et al. (2004) announced the % % % 0 % % % %% % % %% %% % % d % % % %% % % %% % % % Pov 0 K %% % % % % % %% %% %% % % % %% % % % % 2 o % % % % % % , % %% %% % % % 1 % % %% % % discovery of a partial hominin skull from this locality. Early, Middle, and Later Stone Age artifacts are known from the Oloronga % % %% % a % % A 1 %% % % % %% % % % N. Kordjya Trachyte: (1.45-1.7 Ma): trachytes with abundant phenocrysts up to 2 cm in size, that were e GSU training ground 2 % r %% % r % % % % % % e % ! 0 beds, the Olkesiteti sediments (Olorgesailie Basin), and High Magadi beds respectively (Shipman et al. 1983, Potts and Deino %% % % % % A % % 0 a % % % 1 % % % % 0 2 previously mapped by Baker (1958) as "Orthophyre trachyte". These trachytes are intercalated with upper % 0 , s % 1 Pkb % % 0 l % % % % % % 0 1995, Barthelme et al. 2003). Pov K l % % % 6 % % i % % % % 0 % %% % % % % % G % 0 % %% % % % 1 H % %% % %% % % % members of the Kordjya basalt and have similar thickness and surface textures as the Ewaso Ngiro % 0 %% % % S %% %% % %% % % a % %% %% % t % %% %% % i % R %% %% %% % % STRUCTURE
Recommended publications
  • Geology of the Nairobi Region, Kenya
    % % % % % % % % %% %% %% %% %% %% %% % GEOLOGIC HISTORY % %% %% % % Legend %% %% %% %% %% %% %% % % % % % % HOLOCENE: %% % Pl-mv Pka %%% Sediments Mt Margaret U. Kerichwa Tuffs % % % % %% %% % Longonot (0.2 - 400 ka): trachyte stratovolcano and associated deposits. Materials exposed in this map % %% %% %% %% %% %% % section are comprised of the Longonot Ash Member (3.3 ka) and Lower Trachyte (5.6-3.3 ka). The % Pka' % % % % % % L. Kerichwa Tuff % % % % % % Alluvial fan Pleistocene: Calabrian % % % % % % % Geo% lo% gy of the Nairobi Region, Kenya % trachyte lavas were related to cone building, and the airfall tuffs were produced by summit crater formation % % % % % % % % % % % % % % % % % Pna % % % % %% % (Clarke et al. 1990). % % % % % % Pl-tb % % Narok Agglomerate % % % % % Kedong Lake Sediments Tepesi Basalt % % % % % % % % % % % % % % % % %% % % % 37.0 °E % % % % 36.5 °E % % % % For area to North see: Geology of the Kijabe Area, KGS Report 67 %% % % % Pnt %% % PLEISTOCENE: % % %% % % % Pl-kl %% % % Nairobi Trachyte % %% % -1.0 ° % % % % -1.0 ° Lacustrine Sediments % % % % % % % % Pleistocene: Gelasian % % % % % Kedong Valley Tuff (20-40 ka): trachytic ignimbrites and associated fall deposits created by caldera % 0 % 1800 % % ? % % % 0 0 % % % 0 % % % % % 0 % 0 8 % % % % % 4 % 4 Pkt % formation at Longonot. There are at least 5 ignimbrite units, each with a red-brown weathered top. In 1 % % % % 2 % 2 % % Kiambu Trachyte % Pl-lv % % % % % % % % % % %% % % Limuru Pantellerite % % % % some regions the pyroclastic glass and pumice has been
    [Show full text]
  • Source to Surface Model of Monogenetic Volcanism: a Critical Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres.
    [Show full text]
  • 1843 KMS Kenya Past and Present Issue 43
    Kenya Past and Present Issue 43 Kenya Past and Present Editor Peta Meyer Editorial Board Marla Stone Patricia Jentz Kathy Vaughan Kenya Past and Present is a publication of the Kenya Museum Society, a not-for-profit organisation founded in 1971 to support and raise funds for the National Museums of Kenya. Correspondence should be addressed to: Kenya Museum Society, PO Box 40658, Nairobi 00100, Kenya. Email: [email protected] Website: www.KenyaMuseumSociety.org Statements of fact and opinion appearing in Kenya Past and Present are made on the responsibility of the author alone and do not imply the endorsement of the editor or publishers. Reproduction of the contents is permitted with acknowledgement given to its source. We encourage the contribution of articles, which may be sent to the editor at [email protected]. No category exists for subscription to Kenya Past and Present; it is a benefit of membership in the Kenya Museum Society. Available back issues are for sale at the Society’s offices in the Nairobi National Museum. Any organisation wishing to exchange journals should write to the Resource Centre Manager, National Museums of Kenya, PO Box 40658, Nairobi 00100, Kenya, or send an email to [email protected] Designed by Tara Consultants Ltd ©Kenya Museum Society Nairobi, April 2016 Kenya Past and Present Issue 43, 2016 Contents KMS highlights 2015 ..................................................................................... 3 Patricia Jentz To conserve Kenya’s natural and cultural heritage ........................................ 9 Marla Stone Museum highlights 2015 ............................................................................. 11 Juliana Jebet and Hellen Njagi Beauty and the bead: Ostrich eggshell beads through prehistory .................................................. 17 Angela W.
    [Show full text]
  • Alcolapia Grahami ERSS
    Lake Magadi Tilapia (Alcolapia grahami) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, March 2015 Revised, August 2017, October 2017 Web Version, 8/21/2018 1 Native Range and Status in the United States Native Range From Bayona and Akinyi (2006): “The natural range of this species is restricted to a single location: Lake Magadi [Kenya].” Status in the United States No records of Alcolapia grahami in the wild or in trade in the United States were found. The Florida Fish and Wildlife Conservation Commission has listed the tilapia Alcolapia grahami as a prohibited species. Prohibited nonnative species (FFWCC 2018), “are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities.” Means of Introductions in the United States No records of Alcolapia grahami in the United States were found. 1 Remarks From Bayona and Akinyi (2006): “Vulnerable D2 ver 3.1” Various sources use Alcolapia grahami (Eschmeyer et al. 2017) or Oreochromis grahami (ITIS 2017) as the accepted name for this species. Information searches were conducted under both names to ensure completeness of the data gathered. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2017), Alcolapia grahami (Boulenger 1912) is the current valid name for this species. It was originally described as Tilapia grahami; it has also been known as Oreoghromis grahami, and as a synonym, but valid subspecies, of
    [Show full text]
  • 1646 KMS Kenya Past and Present Issue 46.Pdf
    Kenya Past and Present ISSUE 46, 2019 CONTENTS KMS HIGHLIGHTS, 2018 3 Pat Jentz NMK HIGHLIGHTS, 2018 7 Juliana Jebet NEW ARCHAEOLOGICAL EXCAVATIONS 13 AT MT. ELGON CAVES, WESTERN KENYA Emmanuel K. Ndiema, Purity Kiura, Rahab Kinyanjui RAS SERANI: AN HISTORICAL COMPLEX 22 Hans-Martin Sommer COCKATOOS AND CROCODILES: 32 SEARCHING FOR WORDS OF AUSTRONESIAN ORIGIN IN SWAHILI Martin Walsh PURI, PAROTHA, PICKLES AND PAPADAM 41 Saryoo Shah ZANZIBAR PLATES: MAASTRICHT AND OTHER PLATES 45 ON THE EAST AFRICAN COAST Villoo Nowrojee and Pheroze Nowrojee EXCEPTIONAL OBJECTS FROM KENYA’S 53 ARCHAEOLOGICAL SITES Angela W. Kabiru FRONT COVER ‘They speak to us of warm welcomes and traditional hospitality, of large offerings of richly flavoured rice, of meat cooked in coconut milk, of sweets as generous in quantity as the meals they followed.’ See Villoo and Pheroze Nowrojee. ‘Zanzibar Plates’ p. 45 1 KMS COUNCIL 2018 - 2019 KENYA MUSEUM SOCIETY Officers The Kenya Museum Society (KMS) is a non-profit Chairperson Pat Jentz members’ organisation formed in 1971 to support Vice Chairperson Jill Ghai and promote the work of the National Museums of Honorary Secretary Dr Marla Stone Kenya (NMK). You are invited to join the Society and Honorary Treasurer Peter Brice receive Kenya Past and Present. Privileges to members include regular newsletters, free entrance to all Council Members national museums, prehistoric sites and monuments PR and Marketing Coordinator Kari Mutu under the jurisdiction of the National Museums of Weekend Outings Coordinator Narinder Heyer Kenya, entry to the Oloolua Nature Trail at half price Day Outings Coordinator Catalina Osorio and 5% discount on books in the KMS shop.
    [Show full text]
  • Phytolith Analysed to Compare Changes in Vegetation Structure of Koobi Fora and Olorgesailie Basins Through the Mid- Pleistocene-Holocene Periods
    Phytolith analysed to Compare Changes in Vegetation Structure of Koobi Fora and Olorgesailie Basins through the Mid- Pleistocene-Holocene Periods. By KINYANJUI, Rahab N. Student number: 712138 Submitted on 28th February, 2017 Submitted the revised version on 22nd February, 2018 Declaration A thesis submitted to the Faculty of Science in fulfilment of the requirements for PhD degree. At School of Geosciences, Evolutionary Studies Institute (ESI) University of Witwatersrand, Johannesburg South Africa. I declare that this is my own unaided work and has not been submitted elsewhere for degree purposes KINYANJUI, Rahab N. Student No. 712138 ii Abstract Phytolith analyses to compare changes in vegetation structure of Koobi Fora and Olorgesailie Basins through Mid-Pleistocene-Holocene Periods. By Rahab N Kinyanjui (Student No: 712138) Doctor of Philosophy in Palaeontology University of Witwatersrand, South Africa School of Geological Sciences, Evolutionary Science Institute (GEOS/ESI) Supervisor: Prof Marion Bamford. The Koobi Fora and Olorgesailie Basins are renowned Hominin sites in the Rift Valley of northern and central Kenya, respectively with fluvial, lacustrine and tuffaceous sediments spanning the Pleistocene and Holocene. Much research has been done on the fossil fauna, hominins and flora with the aim of trying to understand when and how the hominins evolved, and how the environment impacted on their behaviour, land-use and distribution over time. One of the most important factors in trying to understand the hominin-environment relationship is firstly to reconstruct the environment. Important environmental factors are the climate, rate or degree of climate change, vegetation structure and resources, floral and faunal resources. Vegetation structure/composition is a key component of the environments and, it has been hypothesized the openness and/or closeness of vegetation structure played a key role in shaping the evolutionary history not only of man but also other mammals.
    [Show full text]
  • Nd, Pb and Sr Isotopic Data from the Napak Carbonatite-Nephelinite Centre, Eastern Uganda: an Example of Open-System Crystal Fractionation
    Contrib Mineral Petrol (1994) 115:356-366 Contributions tO Mineralogy and Petrology Springer-Verlag 1994 Nd, Pb and Sr isotopic data from the Napak carbonatite-nephelinite centre, eastern Uganda: an example of open-system crystal fractionation Antonio Simonetti and Keith Bell Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario K1S 5B6, Canada Received June 30, 1992 / Accepted May 25, 1993 Abstract. Nd, Pb and Sr isotopic data from nephelinite magmas cannot be in equilibrium with a lherzolitic mantle lavas from the Tertiary nephelinite-carbonatite complex source (Bultitude and Green 1968, 1971; Allen et al. 1975; of Napak, eastern Uganda, show large isotopic variations Merrill and Wyllie 1975), but are probably the products of that can only be attributed to open-system behaviour. small ( < 5%) degrees of partial melting of a carbonated Possible explanations of the data include mixing between (high C02/H20 ratio) peridotite or pyrolite at high pres- nephelinitic melts derived from an isotopically heterogen- sures (Brey and Green 1977; Brey 1978; Olafsson and eous mantle, or interaction between a HIMU melt and Eggler 1983; Wallace and Green 1988). Experimental re- mafic granulites. In both models crystal fractionation, sults are consistent with derivation of a primary involving olivine and clinopyroxene, played an important nephelinitic liquid from an amphibole peridotite at pres- role. Major element chemistry, textural evidence and iso- sures of 20 to 25 kbar (Olafsson and Eggler 1983; Eggler topic data from clinopyroxene phenocrysts from the ol- 1989). ivine-bearing nephelinites, suggest that the pyroxenes did The eastern branch of the East African Rift Valley not crystallize from their host liquids.
    [Show full text]
  • Ar Geochronology of Igneous Intrusions from Uvalde County, Texas: Defining a More Precise Eruption History for the Southern Balcones Volcanic Province
    Preliminary 40Ar/39Ar geochronology of igneous intrusions from Uvalde County, Texas: Defining a more precise eruption history for the southern Balcones Volcanic Province By Daniel P. Miggins, Charles D. Blome, and David V. Smith This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic code. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. Geological Survey Open-File Report 2004-1031 U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Table of Contents Introduction ........................................................................................................................................................ 1 Figure 1. Showing location of igneous intrusions in Uvalde County ................................................................ 1 Figure 2a Aeromagnetic map ............................................................................................................................. 2 Figure 2b Geologic map showing inferred igneous outcrops and subcrops set against a regional geologic map for the Uvlade intrusions .......................................... 2 Methodology ...................................................................................................................................................... 3 Results ..............................................................................................................................................................
    [Show full text]
  • On the Conservation of the Cultural Heritage in the Kenyan Coast
    THE IMPACT OF TOURISM ON THE CONSERVATION OF THE CULTURAL HERITAGE IN THE KENYAN COAST BY PHILEMON OCHIENG’ NYAMANGA - * • > University ol NAIROBI Library "X0546368 2 A THESIS SUBMITTED TO THE INSTITUTE OF ANTHROPOLOGY, GENDER AND AFRICAN STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN ANTHROPOLOGY OF THE UNIVERSITY OF NAIROBI NOVEMBER 2008 DECLARATION This thesis is my original work. It has not been presented for a Degree in any other University. ;o§ Philemon Ochieng’ Nyamanga This thesis has been submitted with my approval as a university supervisor D ate..... J . l U ■ — • C*- imiyu Wandibba DEDICATION This work is dedicated to all heritage lovers and caregivers in memory of my late parents, whose inspiration, care and love motivated my earnest quest for knowledge and committed service to society. It is also dedicated to my beloved daughter. Leticia Anvango TABLE OF CONTENTS List of Tables----------------------------------------------------------------------------------------------------------------- v List of Figures----------------------------------------------------------------------------------------------------------------v List of P la tes---------------------------------------------------------------------------------------------------------------- vi Abbreviations/Acronvms----------------------------------------------------------------------------------------------- vii Acknowledgements-------------------------------------------------------------------------------------------------------viii
    [Show full text]
  • The Characteristics and Chronology of the Earliest Acheulean at Konso, Ethiopia
    The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia Yonas Beyenea,b, Shigehiro Katohc, Giday WoldeGabrield, William K. Harte, Kozo Utof, Masafumi Sudog, Megumi Kondoh, Masayuki Hyodoi, Paul R. Rennej,k, Gen Suwal,1, and Berhane Asfawm,1 aAssociation for Research and Conservation of Culture (A.R.C.C.), Awassa, Ethiopia; bFrench Center for Ethiopian Studies, Addis Ababa, Ethiopia; cDivision of Natural History, Hyogo Museum of Nature and Human Activities, Yayoigaoka 6, Sanda 669-1546, Japan; dEES-6/D462, Los Alamos National Laboratory, Los Alamos, NM 87545; eDepartment of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056; fNational Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8567, Japan; gInstitute of Earth and Environmental Science, University of Potsdam, 14476 Golm, Germany; hLaboratory of Physical Anthropology, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan; iResearch Center for Inland Seas, Kobe University, Kobe 657-8501, Japan; jBerkeley Geochronology Center, Berkeley, CA 94709; kDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; lUniversity Museum, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; and mRift Valley Research Service, Addis Ababa, Ethiopia This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2008. Contributed by Berhane Asfaw, December 8, 2012 (sent for review November 30, 2012) The Acheulean technological tradition, characterized by a large carcass processing (13, 14), usually interpreted as a part of an (>10 cm) flake-based component, represents a significant techno- advanced subsistence strategy coincident with or postdating the logical advance over the Oldowan.
    [Show full text]
  • Kenyan Stone Age: the Louis Leakey Collection
    World Archaeology at the Pitt Rivers Museum: A Characterization edited by Dan Hicks and Alice Stevenson, Archaeopress 2013, pages 35-21 3 Kenyan Stone Age: the Louis Leakey Collection Ceri Shipton Access 3.1 Introduction Louis Seymour Bazett Leakey is considered to be the founding father of palaeoanthropology, and his donation of some 6,747 artefacts from several Kenyan sites to the Pitt Rivers Museum (PRM) make his one of the largest collections in the Museum. Leakey was passionate aboutopen human evolution and Africa, and was able to prove that the deep roots of human ancestry lay in his native east Africa. At Olduvai Gorge, Tanzania he excavated an extraordinary sequence of Pleistocene human evolution, discovering several hominin species and naming the earliest known human culture: the Oldowan. At Olorgesailie, Kenya, he excavated an Acheulean site that is still influential in our understanding of Lower Pleistocene human behaviour. On Rusinga Island in Lake Victoria, Kenya he found the Miocene ape ancestor Proconsul. He obtained funding to establish three of the most influential primatologists in their field, dubbed Leakey’s ‘ape women’; Jane Goodall, Dian Fossey and Birute Galdikas, who pioneered the study of chimpanzee, gorilla and orangutan behaviour respectively. His second wife Mary Leakey, whom he first hired as an artefact illustrator, went on to be a great researcher in her own right, surpassing Louis’ work with her own excavations at Olduvai Gorge. Mary and Louis’ son Richard followed his parents’ career path initially, discovering many of the most important hominin fossils including KNM WT 15000 (the Nariokotome boy, a near complete Homo ergaster skeleton), KNM WT 17000 (the type specimen for Paranthropus aethiopicus), and KNM ER 1470 (the type specimen for Homo rudolfensis with an extremely well preserved Archaeopressendocranium).
    [Show full text]
  • Direct Utilization of Geothermal Resources in Kenya
    Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Direct Utilization of Geothermal Resources in Kenya John Lagat Kenya Electricity Generating Company Ltd, P. O. Box 785 Naivasha 20117 E-mail: [email protected] Keywords: Geothermal, direct use, balneology, space 38oE heating, greenhouses, agriculture, aquaculture, industrial North Island processes 4oN L. Turkana ETHIOPIA ABSTRACT Central Island Geothermal resources in Kenya are mainly located along the Kenyan Rift, which is part of the eastern arm of the South Island African Rift. The primary forms of utilization of Cenozoic Barrier Volcano geothermal energy in Kenya currently are mainly electric volcanics power generation (168 MWe) and direct uses (~18 MWt) to UGANDA Namarunu a small extent. Though about 99% of geothermal utilization in the country is generation of electricity, direct uses are Emuruangogolak gaining momentum in various parts of the country. Farmers Mt. Elgon Silali have for decades, used geothermal heat to dry pyrethrum Paka KENYA Korosi flowers and condense steam for drinking at Eburru while L. Baringo Nyambeni the Oserian Development Company in Naivasha is using Arus-Bogoria geothermal energy to heat 50 hectares of greenhouses of cut Kisumu Oo roses for export. A tourist hotel at Lake Bogoria is utilizing Menengai Mt. Kenya spring water at 38°C to heat a spa pool. Despite the Eburru availability and enormous potential in direct use L. Naivasha applications, little use has been made of low enthalpy fluids Olkaria Longonot in Kenya. This paper therefore discusses direct use Suswa applications and available opportunities in swimming, Ol'Esakut Nairobi bathing, balneology, agricultural, aquiculture and in Olorgesaille o residential and industrial sectors L.
    [Show full text]