%

%

%

%

%

%

%

%

%%

%%

%%

%%

%%

%%

%%

% GEOLOGIC HISTORY %

%%

%%

% % Legend

%%

%% %% %% %% %%

%% % % %

%

%

% HOLOCENE: %% % Pl-mv Pka

%%% Sediments Mt Margaret U. Kerichwa Tuffs

%

% %

%

%%

%%

%

Longonot (0.2 - 400 ka): and associated deposits. Materials exposed in this map % %%

%%

%%

%%

%%

%%

%

section are comprised of the Longonot Ash Member (3.3 ka) and Lower Trachyte (5.6-3.3 ka). The % Pka' % % %

%

% % L. Kerichwa

% % %

%

% % Alluvial fan : Calabrian

%

% %

% % %

%

Geo% lo% gy of the Region, %

trachyte were related to cone building, and the airfall tuffs were produced by summit crater formation % %

%

%

% % %

% %

%

% %

%

% %

% % Pna

%

%

% %

%%

%

(Clarke et al. 1990). %

% % % %

% Pl-tb

%

%

%

% %

%

% Kedong Lake Sediments Tepesi %

%

% % %

% % %

% %

%

% %

%

% %

%% %

% % 37.0 °E

%

% %

%

36.5 °E %

%

% % For area to North see: Geology of the Area, KGS Report 67 %%

%

% % Pnt

%%

%

PLEISTOCENE: % %

%%

% % % Pl-kl

%%

%

% Nairobi Trachyte %

%%

%

-1.0 ° % % %

% -1.0 ° Lacustrine Sediments

%

% %

%

%

% %

% Pleistocene: Gelasian

%

% %

%

% Kedong Valley Tuff (20-40 ka): trachytic ignimbrites and associated fall deposits created by %

0 % 1800

%

%

? % %

% 0 0 %

% % 0

% % % %

% 0 % 0 8 % % % % % 4 % 4 Pkt

% formation at Longonot. There are at least 5 ignimbrite units, each with a red-brown weathered top. In 1 % % % % 2 % 2

% % Trachyte

% Pl-lv

% % % %

% % %

%

% % %% %

% Pantellerite

%

% % %

some regions the pyroclastic glass and has been replaced by calcite (Clarke et al. 1990). %

% % % Volcanics

% % %

% % % 1 P-Kta-s %

% %

% % % 8

%

% % %

% 0 % % %

% % 1 Pnp %

% 0

%

% % % 6

%

% % % 2 0 Nairobi % % % % % 4 0 Pl-lt %% % % % % % 0 % Limuru Trachyte % %

Barajai Trachyte: (0.37-0.41 Ma) five aphyric trachyte flows distinguished from the Plateau by % % % 0 % % % Holocene % % %

% % %

% % % %% % % 1

Pl-kva % % % 6

Baker et. al (1988) based on element ratios; otherwise they are indistinguishable. May be earliest eruptive % % % 00

% % %

% %

%

% % %

% % %

% % Pl-tt %

% % % Miocene %

% % % 2000 Pl-ltv Tigoni Trachyte

%

products from Suswa. Mapped areas are tentative and based on written description of extent in Baker et. Lt-a % %% % %

% % % Longonot lower trachyte % % %

% %

%%

% % % % % % % %

%% %%

% % % % % % %%

%% % % % % % %

%

% % 2 % Kedong %% %

al (1988). % % 4

! % % Mev

% % Pl-ket % 0 0 % % % Pl-kat % % % Esayeti % 0 0 % %

% % Pl-lta Karura Trachyte

% % %

% 4 1

% %

%

% % Pl-kva 8 Longonot ashes % %

% % DDDDD

% 2 0

% %

%

% %% % 0 %

%

% % %

%

% % %

% % % %

% % %

% %% %

% %

Mt. Margaret: welded and unwelded trachyte tuffs erupted from a small cone that rises 120m above the rift % !

%% %

% %

% DDMDknDp D %% %

% %

%

%%

% % %

%

% % %

%

% % Pl-ket

%

% % Kandizi Phonolite % % %

% % %

%

% %

%

% Trachyte %

% %

valley floor (Clarke et al. 1990). %

%

% % DDDDD

%%

% % %

%% %

%% % % % %%%% %%%%%% Pleistocene: Upper DDDDD %%% %%%% Mva %%% %%%% 160 Pl-ngv ! %% %%% 0 Athi Tuffs Ol Tepesi (1.4-1.65 Ma): alkaline basalts with sparse and phenocrysts (Baker %%% %%%% 0 Ngong Hills %%% %% 0 Pl-kvt % %% 2 Kedong Valley Tuff DDDDD %% 0 % % 2 et al. 1977), distinguished by Baker and Mitchell (1976). % 0 %

%%% %%

% 2 % Mmt

% % 0 DDDDD

% 2 %

% % 0 Mbagathi Trachyte

%

% % %

%

% 0

% 2 %

% %

% % 0 %

% % % 2

% % 0 % DDDDD % % % % % 2 %

%%% 2 Pleistocene: Ionian

Limuru Trachyte (1.94 - 2.64 Ma): contains characteristically clustered groups of K-feldspar phenocrysts, 2 %

% %% %

% %% 18 DDDMkDp D %

%% % 0 0 %

% % 0 P-Kta-s % % % 0

%

%% % Kapiti Phonolite

%

tends to form bouldery outcrops, and grades upwards into pantellerite. These were erupted as a series of % % P-Kta-s %

%% % DDDDD %

% % Kinangop Tuff soils %

% % S1

%

%% %

% % %

%

%% % Suswa shield trachytes % conformable flows with reverse polarity, that overtopped the escarpment in this area. A thickness of 400m % % DDDDD %%%% % %%% %%% is exposed in the eastern rift escarpments (Baker et al. 1988). %%%% %%% Limuru P-Kta Metamorphics %%%% %%% ! Pl-bt Kinangop Tuff %%%% %%% Barajai Trachyte, %%%% %%% % %% %% % Pka % % % % X Tigoni Trachyte: very fine grained trachyte exposed in rivers and where it has been quarried for building %% % % % 2 %% % 00 Undifferentiated % % 0 0 % % %% % 0 % % stone. Originally named the “Karura Trachyte”, Saggerson (1991) renamed the formation to avoid %% %

% % 8 %%%%%%%%%%%%%%%%% ! % %

% % City Road-major %% 1 faults-large confusion with the Karura Trachyte described below. %%% 18 %%% 00 %%% A' !

%%%% Town Road-minor

%

% % faults-small

% %%

%%

%%

%%

% Karura Trachyte: fine grained grey trachyte between the Tigoni and Kabete trachytes. Similar to the %

%

A % %

Pl-lt %

%

! % ! %

Pl-lt % %%

%

% ! Village Road-track %

Nairobi Trachyte but is stratigraphically higher and weathers to a spotted appearance (Saggerson 1991). % rivers %

% 1800 %%

%% %

% % Pl-tt %%%% %%%% 200m-contour rail Kabete/Ruiru Dam Trachyte: grey-green porphyritic trachyte that reaches 30m thick in boreholes. The %%%%

%%% Kiambu

% % %

% Ruiru Dam and Kabete trachytes are indistinguishable, though the Ruiru Dam trachyte may be thicker %%

%

% !

%%

%%

%%

%% %

(approx. 60m). Saggerson (1991) suggested these trachytes were equivalent in age. % %

% STRUCTURE

%%

%%

%%

%%

%%

%%

% % The metamorphic rocks have been subjected to several stages of deformation (descriptions in Warden & % % % % % Ngong Hills (2.53-2.58 Ma): remnants of an old which had an estimated original diameter of % Pkt Horkel 1984), but the recent rift volcanics are relatively undeformed. Many low magnitude tremors have been % % % % % % 11km prior to being cut by the rift boundary faults. Composed of , tephrite, and some , % recorded, but the January 6, 1928 quake (Ms 6.9) near indicates the modern potential for large % % % Pnt % % % some lavas are noted by Saggerson (1991) to contain megascopic fragments of gneiss. Oldest associated % Pl-kat earthquakes associated with the rift boundary faults (Zielke & Strecker 2009). % % % % Mva % % 180 lavas are likely Miocene in age (see Kandizi Phonolite). % 0 % % % % % % % PALEONTOLOGY % % % % h % PLIOCENE t % Bones and plant remains were found in the sediments of the Kandizi river valley, as well as the teeth/tusks of u %%%% G %% F % . Kinangop & Kerichwa Valley Tuffs (3.34-3.70 Ma): trachytic tuffs that are often welded, and overlie the %%% o gorgops. Handaxes have also been reported from the area around the Gicheru diatomite beds.

% r A % Pl-lt %% % a y %% Pl-ket Nairobi Trachyte. Ages are from the Kinangop Tuff, with which the Kerichwa tuffs have been correlated % Mva r Chert flakes and tools have also been found in (Saggerson 1991). b % e %%% Pl-kl a e %%%

% (Baker et al. 1988). Ages presented by Saggerson (1991) are considered too old due to presence of n %%% %%% t % o o %%%%%%

% d % 2 E

% feldspars that formed before tuff eruption. Bleaching and clay alteration are common, likely representing %%% 0 ECONOMIC DEPOSITS n %%% 0 a

o % % 0 s i % Kikuyu % 0 % t s

% 0 weathering prior to the eruption of the Limuru Trachytes (Saggerson 1991). % 0 r

! s Many of the volcanic rocks are quarried as building stones, especially the Kerichwa Valley Tuff which provides %% 2 % 0 0 Pka' % e % 0 2 % 0 2 00

v e % 0 %% 0 e

%% 2 l

% : %% 0 the "Nairobi Stone". Diatomite from the Munyu wa Gicheru lake deposits, 1.65-1.96 Ma (not shown, Trauth et %

a % %% G t %% i %%% % e Narok Agglomerate: light brown agglomerate with numerous lithic clasts, including blocks of trachyte and g % %% i %% % al. 2007) and ferricrete are also excavated in this region. %% o l D % Mva o

%

. % phonolite. These occupy the same horizon as the Kerichiwa Valley Tuffs (Matheson 1966). %% g 7 % y % 2 0 9 %

% 0 0 % o t % 6 0 r

% f WATER RESOURCES 2 1

1 0 o

% t % 0 %% 8 h p % % 0

% 0 0 % e Nairobi Trachyte (3.17-3.45 Ma): greenish-grey trachyte, occasionally with tabular feldspar phenocrysts. A e % % 0 The rivers draining the Kikuyu highlands are perennial, and a good aquifer exists between the Kerichwa Valley

% 0 0 %% % N % R % 8

%%

% o

% 1 %

% %

number of thin flows reach a cumulative thickness of 90m. At a quarry in Nairobi this trachyte is separated S %

%% % Tuffs and the underlying phonolite. However, the fluoride content tends to be high (Saggerson 1991).

r

%

%% %

%

%% % t G

%

%% % h %

% % Nairobi

%

%% %

K

%

%% %

from the Nairobi Phonolite by a thin tuff (Saggerson 1991). M %

%% %

%

%% , %

%

%% % !

% % a

%% a

%

%% %

%

% % c e

%

%% %

r

% % % GEOTHERMAL PHENOMENA

% h %%

%

A %

a %

% 0

%

% 0

%

% 6 k a

%

Kiambu Trachyte: light grey trachyte with numerous feldspar phenocrysts. In some regions is % % % 1 Elevated carbon dioxide soil gas and an active fumarole (89°C), are associated with Mt. Margaret. Silicified o

% w

% s

% s % % % -

u % vesicular with green chalcedony amygdules. Likely a single flow of limited extent, maximum thickness is % pyroclastic material suggests more vigorous geothermal activity in the past (Clarke et al. 1990). % % % T % 0

S % % 0

% 6 % % 1 h % %

e % % 0 46m, and it is overlain by the Nairobi Trachyte (Saggerson 1991). 0 i % % 8 1 k h %% % t % a % % % % f % % % % A o %% % % % r % % e

y % % % %

% a

g % Nairobi Phonolite (5.20 Ma): black to blue phonolite erupted as a number of flows. Upper flow sections are % %

% % , o % %

l % % % % 0 K % o % % % 0 G % % 8 vesicular, but amygdules are rare. Can be distinguished from the Kapiti by the lack of large e % % 1 1 % %

% Pnt Pnp S %

G 6 % %

% % %

% : 0 % %

% R % % phenocrysts (Saggerson 1991). % 0 % e % % % % % % % e e % % %

% % % p s % % %

% 0

% % 80 Pka' o %

t 1

% %

%

% % %

% %

r

%%

s % %

% %

%%

t

%

% %

%%

% %

e %

%%

%

% % 5

%% %

% %

%%

% MIOCENE %

%

9

%% %

W % %

%% %

% % % % %

% % %

% %

% % %%

%

o %

%%

%

t %

%%

%

% %

Esayeti (5.64-5.85 Ma): volcanic center comprised of phonolite, tephrite and trachyte flows which partially % % % %%

% % %%

%%

%

% %%

%

a %

%

% %%

%%

%%

%%

%%

%

e % %%

%%

%%

%%

% r %

%%

%

overlie early Ngong eruptives. Maximum elevation is 2085m, but the cone is highly eroded. % %%

%%

%%

%

a % Ngong

%% %% %

%

%%

%

1 %

%% %

r % !

%%

%

6 %

%%

%

o %

%%

%

% Pka'

% 0 %

%%

%

F % %%

%%

%

0 %

%%

%%

%%

%%

%% %%

%

Kandizi Phonolite: black to dark blue with outcrops exhibiting spheroidal weathering. Flow structures % % % %

%

% % Langata

%

% %

%

% %

%

% %

% % !

%

%

1 % %

%

indicating an origin to the west, and comparable mineralogy, led Saggerson (1991) to suggest Ngong as a %

0 %

%

6 % % %

% % % 0 % % % 0 % % 6

% 0

0 % Mknp %%

source for this phonolite. % %

1 % 0

% %%

%

%

% 0

% %%

%

%

% 2

%

%%

%

%%

%

%%

% 0

%

% 1

% 6

% % 0 00

% 0

% 0 % 2 6

%

Mbagathi Trachyte: grey-brown phonolitic trachytes with abundant, flow-oriented, feldspar laths of up to % ! 1 2

% Pka'

%

%

0 %

%

0 %

1cm. The formation is comprised of 2-3 flows with a minimum total thickness of 60m (Saggerson 1991). %

4 %

%

1 %

%

%

%

%

%

%

%

% X % Athi Tuffs: trachytic tuffs that are sometimes welded, with materials deposited both subaerially and in % % Pl-ngv % Pka' % % Pka' % Mknp % lacustrine settings. Correlation and mapping of this formation has been noted to have difficulties, and % % 0 % % 0 % % 4

%

% 2

% more detailed field studies would be needed to discern the true extent of these tuffs (Saggerson 1991). % 0

%

%

% %

%

% 0 %

%

% %

%

% Mva

%

6 % % %%

%

% %%

%%

%

% 2

% 1 %

%% %

% ! %%

%

% 0

%%

%%

%%

%

% 0

%%

%%

%%

%

% 0 %%

%

Kapiti Phonolite (12.9-13.4 Ma): dark green to black groundmass. Large (<76 mm) white feldspar and %

%%

%%

% % 0

%%

%%

%%

%

% 0

%%

%%

%

% Mmt

%%

%%

%

% 6

%% %%

%% % phenocrysts make this phonolite quite distinctive. These phonolites were erupted onto the %

1

%%

%%

%%

%%

%% %%

%%

%% %%

%% %%

%%

%%

%%

% % Colored DEM with hillshade for the mapped region.

% % X

%%

%

eroded, irregular, surface of the underlaying metamorphic rocks (Saggerson 1991). % Mkp

%%

%%

%%

%% %

%

%% %

% Elevation range from 1120 - 2430m (cyan - red).

% % Reference map showing the source maps and their geographic coverage

%%

% % !

%

%

% %

%

% %

%

% % X

%

% 0 %

%

% %

%

% 0 %

%

% 0 % %

% % %% %

BASEMENT SYSTEM: % 2

% % %

%

% %

%

% %

%

% % %

% 2

%

% % 0 X %

% 0

%

% % 0

% %

Exposures are described by Saggerson (1991) as highly weathered, layered schists and gneisses of %

%

% 0 % %

% % %% %% % % % % % 0 % % % %% %%

%

% % % % 8

%

various composition. The metamorphic rocks are thought to represent sediments that were altered during 1 % %

% Pna

%

%

% % %

% %

%

% % %%

% % %

%

% % 20

% % 0

the closure of the ancient Mozambique ocean (Nyamai et al. 2003). K-Ar dates on biotite place the cooling % 0

%

% %

%

% % %

%

% %

% X %%

%

Mev % % %%

%%

% % %

%%

%

% % Mev %%

%

and uplifting of these rocks in the . % 0 % %%

%

% % Mva %%

%%

%

% 0 % %%

%

% %

% % Mva

%

% 0 0 Mev % %%

%%

% % % %

2 0 % % % %

%%

%

% %

%

1 % Mev

%

% 80 % %

1 8 0 % %

% % %% % % %

%%

%

2 % % 1

% Mkp

%

1 % %

% %

%

%%

%

0 % % Mkp %

8 % %

%

% % % %%

% % % %

0 0 % % % 2 %% %

% % % 0

%%

%

0 % %

%

% % 0

%

% %

%

% % 0

%

% Mva

%

% % %

%

% %

% % %

%

% % %

% %

-1.5 ° % % % -1.5 °

%

% % % %

%

% % % %

% % % % %

%

% % % %

% %

%

% % %

%

% % % %

%

Cross Section Legend % % % %

%

36.5 °E % % % % For area to South see: Geology of the Area, KGS Report 70, Digital version done by A. Guth 37.0 °E

%

% % % %

%

% % %

%

% % %

%

% % %

%

% % %

%

% % %

%

% % %

% % %% %% % %% 0 % % 5 10 20 30 % % % % % % Pleistocene Neogene % % % % % % % % % % % %

% Kilometers %

% %

%

%% % % %

%% %%

%% %%

%% %%

%%

%

Lacustrine Sediments Nairobi Trachyte %

%% %%

%% %%

%% %%

%% %%

%% %%

%%

%%

%%

%%

%%

%%

%%

%%

%

% %

%

% %

%

% %

%

Suswa U. Kerichwa Tuffs %

%

%

% %

%

% %

%

% %

%

% % %%

% % %

% % %

%%

%%

%%

%%

%%

%%

%%

%%

%%

%%

%

Magadi Trachyte L. Kerichwa Tuff % %% %%

%% %%

%% %%

%% %%

%%

%%

%

% Diagrammatic cross section from A to A'. Vertical exaggeration = 2X ²

%%

%%

%%

%%

%%

%

A % %%

%%

%

% A'

%%

%%

%%

%

Limuru Trachyte % %%

%

Miocene % %% % % Geological Map of the Tigoni Trachyte Athi Tuffs Karura Trachyte Kinangop Tuff Southern Kenya Rift DDDD contour interval 200m Kabete Trachyte DDDD Phonolites DDDD Location: Nairobi, Kenya 36.5 E - 37.0 E, 1.0 S - 1.5 S A. Guth, J. Wood (2013) Metamorphic

Above: Map showing featured quadrangle location (grey-square) as Coordinate System: Geographic WGS84 Michigan Technological University well as major rift bounding faults and . Undiff.

DIGITAL MAP AND CHART SERIES DMCH016 DOI: 10.1130/2014.DMCH016.S2 Published by The Geological Society of America, Inc., 3300 Penrose Place • P.O. Box 9140, Boulder, Colorado 80301-9140 © 2014 The Geological Society of America. All rights reserved.