Granulomatous Skin Infection Caused by Malassezia Pachydermatis in a Dog Owner

Total Page:16

File Type:pdf, Size:1020Kb

Granulomatous Skin Infection Caused by Malassezia Pachydermatis in a Dog Owner OBSERVATION Granulomatous Skin Infection Caused by Malassezia pachydermatis in a Dog Owner Yi-Ming Fan, MD; Wen-Ming Huang; Shun-Fan Li; Guo-Feng Wu, MM; Kuan Lai, MM; Rong-Yi Chen, MM Background: Malassezia pachydermatis is part of the nor- flammatory granuloma, numerous purple-red round or mal cutaneous microflora of dogs and many other mam- ovoid spores in the superficial necrotic tissue, and sparse mals. M pachydermatis has not yet been reported as an red spores in the dermis. The skin lesions healed after agent that causes skin infection in humans, although it oral fluconazole and cryotherapy. has been found to cause fungemia and other nosoco- mial infections in preterm newborns and immunocom- Conclusions: Definite diagnosis of M pachydermatis– promised adults. induced skin infection principally depends on the results of fungal culture and histologic examination, Observations: Malassezia pachydermatis was isolated and the combination of oral fluconazole and adjunc- from the facial granuloma of a healthy woman and her tive cryotherapy seems to be an effective therapeutic dog’s skin scrapings and cerumen. The yeast identity was regimen. established by standard methods and scanning electron microscopy. A skin biopsy specimen showed chronic in- Arch Dermatol. 2006;142:1181-1184 HE GENUS MALASSEZIA, M pachydermatis is frequent in wild and comprising 10 distinct domestic carnivores, including dogs, species, is principally cats, bears, ferrets, and foxes; less fre- recovered from the skin of quent in rhinoceros, pigs, primates, pin- mammals and birds but nipeds, horses, and birds; and undetec- Tseldom from the environment.1,2 Mal- ted in rodents and lagomorphs.1,2 Human assezia pachydermatis, Malassezia furfur, skin is commonly colonized by lipid- Malassezia globosa, and Malassezia sym- dependent Malassezia yeasts but rarely podialis are generally considered to be by M pachydermatis.3 Malassezia pachy- the main species associated with clinical dermatis has not yet been reported as an diseases.1 Malassezia pachydermatis, the agent that causes skin infection, al- only non–lipid-dependent species of the though it has been found to cause funge- genus Malassezia, was first isolated from mia and other nosocomial infections in the scales of an Indian rhinoceros (Rhi- preterm newborns and immunocompro- 2,4-7 noceros unicornis) with exfoliative der- mised adults. We isolated a strain of matitis by F. D. Weidman in 1925 and M pachydermatis from an immunocom- named Pityrosporum pachydermatis. With petent woman with facial granuloma in the synonymy of Malassezia (proposed April 2004. To our knowledge, this is the by H. Baillon in 1889) and Pityrosporum first report of M pachydermatis–induced (proposed by R. Sabouraud in 1904) skin infection in humans. being increasingly recognized and accepted in 1984 with anteriority for the REPORT OF A CASE generic Malassezia, P pachydermatis was then adopted as M pachydermatis, a name first introduced by C. W. Dodge in 1935 A 46-year-old woman presented with an Author Affiliations: 2 Department of Dermatology, and accepted by M. A. Gordon in 1976. asymptomatic papule on her face in Affiliated Hospital of The importance of M pachydermatis has January 2004. The lesion enlarged gradu- Guangdong Medical College, been recognized in both veterinary and ally and appeared erosive and exudative Zhanjiang, Guangdong, China. human medicine.2 Skin colonization by after self-treatment with topical applica- (REPRINTED) ARCH DERMATOL/ VOL 142, SEP 2006 WWW.ARCHDERMATOL.COM 1181 ©2006 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 A B Figure 1. Patient before and after treatment. A, A verrucous plaque on the right side of the face and a hemispheroid nodule on the left ala nasi. B, After treatment, hypopigmented scar on the right side of the face. Figure 2. Secretion smear showing numerous gram-positive, yeastlike Figure 3. Biopsy specimen showing purple-red round or ovoid spores in the polymorphous spores (gram stain; original magnification ϫ1000). superficial necrotic tissue (periodic acid–Schiff stain; original magnification ϫ1000). tion of medicinal herbs. A similar lesion occurred on the left ala nasi 2 months later. She came to the Depart- purple-red round or ovoid spores in the superficial ment of Dermatology at the Affiliated Hospital of necrotic tissue and sparse red spores in the dermis Guangdong Medical College in April 2004. She had no (Figure 3). The lesional secretions and the dog’s skin history of local trauma and had kept a pet dog for 9 scrapings and cerumen were cultured using Sabouraud months. At examination, there was a painless verrucous dextrose agar (SDA) at 27°C, and yeastlike milky colo- plaque (5.2ϫ3.1 cm) on the right side of her face that nies grew on SDA supplemented with olive oil at 2 weeks was covered with black and greasy crusts and sur- and on SDA without lipid supplement at 3 weeks. The rounded by 2 nodules, and a yellowish hemispheroid colony surface was matte, convex, and wrinkled, and the nodule (0.5 cm in diameter) on the left ala nasi undersurface was flat. The surface color was ivory at first (Figure 1A). Local lymphadenopathy was absent. and darkened from yellow to brown with age. A direct Potassium hydroxide preparation from skin lesions smear showed small and less refractive yeast cells and showed no fungal elements, but gram staining revealed spores. The fungus grew well on oily SDA at 27°C and numerous gram-positive, yeastlike polymorphous 37°C, grew poorly at 41°C, and did not grow at 4°C or spores (Figure 2). A biopsy specimen showed chronic 8°C. Catalase test results were negative. inflammatory granuloma. Epidermal hyperkeratosis, Scanning electron microscopy (Philips XL30; Philips acanthosis, and obvious follicular dilation were appar- Holland Eindhoven, the Netherlands) revealed that the ent, with microabscesses composed of neutrophils in cells were globose, ovoid, ellipsoidal, or cylindrical in some of the hair follicles. The dermal inflammation was shape and 2.35 to 2.6 µmϫ2.07 to 2.1 µm in size. Uni- characterized by diffuse infiltration of primarily lym- polar blastic development was observed (eg, the daugh- phocytes, plasmocytes, and histiocytes, with occasional ter cell was separating from the cell wall of the mother eosinophils, neutrophils, and multinucleated giant cells. cell at one end). The bud body was 1.39ϫ1.37 µm in Periodic acid–Schiff (PAS) staining revealed numerous size, the collarette was 1.3 µm in breadth, and the base (REPRINTED) ARCH DERMATOL/ VOL 142, SEP 2006 WWW.ARCHDERMATOL.COM 1182 ©2006 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 was circular and 0.36 µm thick. The characteristics of these neonatal intensive care unit (NICU), M pachydermatis in- colonies were compatible with those of M pachyderma- fection and colonization appeared in 8 infants with very tis. Purified tuberculin test results were strongly posi- low birth weights who had various underlying diseases tive (ie, vesiculation at the inoculation site at 72 hours). during a 6-month period.7 In addition, the source of the Other laboratory investigations did not reveal extracu- outbreak caused by M pachydermatis and its prophylac- taneous disease or immunosuppression. tic measures have been investigated. The clinical iso- The patient received 4 antituberculotics (isoniazid, rif- lates of M pachydermatis in an NICU were nosocomial ampicin, pyrazinamide, and streptomycin sulfate) for 2 for all strains isolated, with both patients and incubator months because the results of direct examination and fun- surfaces being genetically indistinguishable; regular hy- gal culture using SDA without lipids were negative and gienic measures cannot adequately remove or kill the the skin lesions were still augmented. According to posi- yeasts, which may persist on glass surfaces for at least 2 tive findings of fungal culture and PAS staining, she was months despite regular cleaning of the incubators.9 How- then treated with itraconazole (0.2 g/d), 10% potassium ever, M pachydermatis was likely introduced into the NICU iodide solution (30 mL/d), and ciprofloxacin (0.4 g/d) from health care workers’ hands after being colonized from for 2 weeks. Although the lesions stopped enlarging, the pet dogs at home; careful hand washing by health care results of direct examination and fungal culture were still workers before and after contact with patients can effec- positive. Finally, she received fluconazole (0.2 g/d) for tively prevent the introduction and nosocomial trans- 10 weeks, ciprofloxacin (0.4 g/d) for 1 week, and liquid mission of the pet-associated yeast, since all cultures from nitrogen cryotherapy 5 times. The skin lesions com- the nursing staff and attending physicians were nega- pletely disappeared, leaving hypopigmented scars tive for the organism after hand-washing practices had (Figure 1B). No relapse has occurred at 15 months of fol- been improved.6 low-up. Lipid supplementation is not an absolute require- ment for the growth of M pachydermatis, but the addi- tion of lipid material to the culture medium can COMMENT enhance its growth.1,2 It grows at temperatures from 25°C to 41°C and seems to be sensitive to the cold.2 Malassezia pachydermatis is part of the normal cutane- Malassezia pachydermatis is characterized by cream- ous microflora of dogs and many other mammals.1 Mal- colored colonies with dry and smooth surfaces and assezia pachydermatis was first believed to be the patho- short ovoid to ellipsoidal cells.2 The mode of conidium gen of otitis externa in the dog by B. A. Gustafson in ontogeny was unipolar budding on a broad base, with 1955 and the cause of canine chronic dermatitis by R. a collarette.10 Malassazia pachydermatis is easily identi- Dufait in 1983.2 In view of its importance as a canine fied by the colonies’ morphologic and growth features pathogen, the carriage of M pachydermatis in dogs has and by microscopic examination, but our patient was been widely surveyed.
Recommended publications
  • Malassezia Species Associated with Dermatitis in Dogs and Their Antifungal Susceptibility
    Int.J.Curr.Microbiol.App.Sci (2018) 7(6): 1994-2007 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 06 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.706.236 Malassezia Species Associated With Dermatitis in Dogs and Their Antifungal Susceptibility Uday Seetha, Sumanth Kumar, Raghavan Madhusoodanan Pillai, Mouttou Vivek Srinivas*, Prabhakar Xavier Antony and Hirak Kumar Mukhopadhyay Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Pondicherry-605 009, India *Corresponding author ABSTRACT The present study was taken with the objective of isolation, characterization, molecular detection and antifungal sensitivity of Malassezia species from dermatitis cases from dogs in and around Pondicherry state. A total of 100 skin swabs were collected from the dogs K e yw or ds showing dermatological problems suggestive of Malassezia. Out of 100 swabs, 41 Malassezia isolates were successfully isolated and had good growth on Sabouraud’s Malassezia pachydermatis, Dextrose Agar (SDA) during the primary isolation from the skin swabs. Biochemical tests Sabouraud’s dextrose agar, Modified Dixon’s agar, for catalase, β- glucosidase activities and the capability to grow with three water soluble Polymerase chain reaction, lipid supplements, namely Tween 20, Tween 80 and Cremophor EL concluded that the M. Antifungal Susceptibility testing pachydermatis was the sole species isolated from the cases of canine dermatitis in Pondicherry state. Cytological examination revealed that direct skin swab smear was more Article Info sensitive than adhesive tape technique and impression smear. The frequency of isolation of Accepted: M. pachydermatis was higher in neck region (8) followed by other regions in canine.
    [Show full text]
  • Malassezia Baillon, Emerging Clinical Yeasts
    FEMS Yeast Research 5 (2005) 1101–1113 www.fems-microbiology.org MiniReview Malassezia Baillon, emerging clinical yeasts Roma Batra a,1, Teun Boekhout b,*, Eveline Gue´ho c, F. Javier Caban˜es d, Thomas L. Dawson Jr. e, Aditya K. Gupta a,f a Mediprobe Research, London, Ont., Canada b Centraalbureau voor Schimmelcultures, Uppsalalaan 8, 85167 Utrecht, The Netherlands c 5 rue de la Huchette, F-61400 Mauves sur Huisne, France d Departament de Sanitat i dÕ Anatomia Animals, Universitat Auto`noma de Barcelona, Bellaterra, Barcelona E-08193, Spain e Beauty Care Technology Division, Procter & Gamble Company, Cincinnati, USA f Division of Dermatology, Department of Medicine, Sunnybrook and WomenÕs College Health Science Center (Sunnybrook site) and the University of Toronto, Toronto, Ont., Canada Received 1 November 2004; received in revised form 11 May 2005; accepted 18 May 2005 First published online 12 July 2005 Abstract The human and animal pathogenic yeast genus Malassezia has received considerable attention in recent years from dermatolo- gists, other clinicians, veterinarians and mycologists. Some points highlighted in this review include recent advances in the techno- logical developments related to detection, identification, and classification of Malassezia species. The clinical association of Malassezia species with a number of mammalian dermatological diseases including dandruff, seborrhoeic dermatitis, pityriasis ver- sicolor, psoriasis, folliculitis and otitis is also discussed. Ó 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Malassezia; Yeast; Identification; Animals; Disease 1. Introduction a positive staining reaction with Diazonium Blue B (DBB) [3]. The genus was named in 1889 by Baillon Members of the genus Malassezia are opportunistic [6] with the species M.
    [Show full text]
  • Biotyping of Malassezia Pachyderma-Tis Strains Using the Killer System
    Original Rev Iberoam Micol 1998; 15: 85-87 85 Biotyping of Malassezia pachyderma- tis strains using the killer system Selene Dall’Acqua Coutinho and Claudete Rodrigues Paula Microbiology Department of the Biomedical Sciences Institute of the Universidade de São Paulo, Brazil Summary The killer phenomenon has been used as epidemiological marker for Candida albicans, where hundreds of biotypes can be obtained. The objective of this study is to observe the behaviour of 30 strains of Malassezia pachydermatis iso- lated from dogs with otitis (15) or dermatitis (15) against 9 killer yeasts, which, when grouped in triplets produced a 3 digit code (biotype). The growth inhibition of the 30 strains of M. pachydermatis due to the effect of the killer yeasts used permitted the determination of the following biotypes: 888 (33.3%), 212 (26.7%), 111 (16.7%), 312 (6.7%), 512 (6.7%), 242 (3.3%), 311 (3.3%) and 411 (3.3%). Biotypes 888, 212 and 111 occurred most frequently in both ear canal and skin samples. Key words Malassezia pachydermatis, Dogs, Killer system, Otomycosis, Dermatomycosis Biotipificación de cepas de Malassezia pachydermatis por el sistema “killer” Resumen El fenómeno “killer” ha sido empleado para Candida albicans como marcador epidemiológico habiéndose obtenido cientos de biotipos. El objetivo de este tra- bajo fue estudiar el comportamiento de 30 muestras de Malassezia pachyder- matis, provenientes de 15 perros con otitis y 15 con dermatitis, frente a 9 levaduras “killer”, que agrupadas en tripletes generan un código de tres números (biotipos). La inhibición del crecimiento de las 30 cepas de M. pachydermatis por las levaduras “killer”empleadas, propició la obtención de 8 biotipos: 888 (33,3%), 212 (26,7%), 111 (16,7%), 312 (6,7%), 512 (6,7%), 242 (3,3%), 311 (3,3%) y 411 (3,3%).
    [Show full text]
  • Oral Colonization of Malassezia Species Anibal Cardenas [email protected]
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 7-5-2018 Oral Colonization of Malassezia species Anibal Cardenas [email protected] Recommended Citation Cardenas, Anibal, "Oral Colonization of Malassezia species" (2018). Master's Theses. 1249. https://opencommons.uconn.edu/gs_theses/1249 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. Oral Colonization of Malassezia species Anibal Cardenas D.D.S., University of San Martin de Porres, 2006 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Dental Science At the University of Connecticut 2018 Copyright by Anibal Cardenas 2018 ii APPROVAL PAGE Master of Dental Science Thesis Oral Colonization of Malassezia species Presented by Anibal Cardenas, D.D.S. Major Advisor________________________________________________________ Dr. Patricia I. Diaz, D.D.S., M.Sc., Ph.D. Associate Advisor_____________________________________________________ Dr. Anna Dongari-Bagtzoglou, D.D.S., M.S., Ph.D. Associate Advisor_____________________________________________________ Dr. Upendra Hegde M.D. University of Connecticut 2018 iii OUTLINE 1. Introduction 1.1. Oral microbiome 1.2. Oral mycobiome 1.3. Association of oral mycobiome and disease 1.4. Biology of the genus Malassezia 1.5. Rationale for this study 1.6. Hypothesis 2. Objectives 2.1 Specific aims 3. Study design and population 3.1. Inclusion and exclusion criteria 3.1.1. Inclusion criteria 3.1.2. Exclusion criteria 3.2. Clinical study procedures and sample collection 3.2.1.
    [Show full text]
  • Mycologic Disorders of the Skin Catherine A
    Mycologic Disorders of the Skin Catherine A. Outerbridge, DVM, MVSc, DACVIM, DACVD Cutaneous tissue can become infected when fungal organisms contaminate or colonize the epidermal surface or hair follicles. The skin can be a portal of entry for fungal infection when the epithelial barrier is breached or it can be a site for disseminated, systemic fungal disease. The two most common cutaneous fungal infections in small animals are dermato- phytosis and Malassezia dermatitis. Dermatophytosis is a superficial cutaneous infection with one or more of the fungal species in the keratinophilic genera Microsporum, Tricho- phyton,orEpidermophyton. Malassezia pachydermatis is a nonlipid dependent fungal species that is a normal commensal inhabitant of the skin and external ear canal in dogs and cats. Malassezia pachydermatis is the most common cause of Malassezia dermatitis. The diagnosis and treatment of these cutaneous fungal infections will be discussed. Clin Tech Small Anim Pract 21:128-134 © 2006 Elsevier Inc. All rights reserved. KEYWORDS dermatophytosis, Malassezia dermatitis, dogs, cats, Microsporum, Trichophyton, Malassezia pachydermatis ver 300 species of fungi have been reported toDermatophytosis be animal O pathogens.1 Cutaneous tissue can become infected when fungal organisms contaminate or colonize the epider- Etiology mal surface or hair follicles. The skin can be a portal of entry Dermatophytosis is a superficial cutaneous infection with for fungal infection when the epithelial barrier is breached or one or more of the fungal species in the keratinophilic genera it can be a site for disseminated, systemic fungal disease. Microsporum, Trichophyton,orEpidermophyton. Dermato- Canine and feline skin and hair coats can be transiently con- phyte genera that infect animals are divided into 3 or 4 taminated with a large variety of saprophytic fungi from the groups based on their natural habitat.
    [Show full text]
  • Importance of Malassezia Pachydermatis in Dogs
    Dipartimento di Scienze Medico-Veterinarie Corso di laurea magistrale in Medicina Veterinaria Importance of Malassezia pachydermatis in dogs L’importanza di Malassezia pachydermatis nel cane Relatore: Fausto Quintavalla Correlatore: Sergio Álvarez-Pérez Candidata: Maria Sole Bandini Anno accademico 2019/2020 Abstract The genus Malassezia belongs to Basidiomycota and currently includes 16 species, of which M. pachydermatis is the most commonly isolated from dogs. Actually, M. pachydermatis is a member of the normal microbiota of the skin and mucosal sites of dogs. Under certain conditions, these yeasts can act as opportunistic pathogens causing skin and ear infections of these animals. Topical and oral antifungal agents are frequently used for the therapy of Malassezia dermatitis and otitis, which are among the most frequently reported skin disorders in dogs. However, with the expanding use of antifungal agents, resistant strains of Malassezia are being increasingly detected. The development of resistance to these antifungals and other antimicrobials among veterinary pathogens also poses a potential threat to human health, particularly among zoonotic multidrug-resistant strains with potential to cause severe, life-threatening infections, which may be the case of M. pachydermatis. Restricting the use of critically important antimicrobials to safeguard their future effectiveness, a fundamental element of antimicrobial stewardship, is essential and it is driving a search for alternative treatments for these infections. The emergence of antimicrobial resistance represents a serious human and animal health risk. Therefore, good antimicrobial stewardship is essential to prolong the lifespan of existing therapies and new strategies are required to fight the infections caused by Malassezia yeasts in humans and animals.
    [Show full text]
  • Superficial Mycoses in Dogs and Cats 16
    Superficial Mycoses 2 in Dogs and Cats ESCCAP Guideline 02 Fourth Edition – February 2019 1 ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ, United Kingdom First Edition Published by ESCCAP in March 2008 © ESCCAP 2008–2019 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-73-9 2 TABLE OF CONTENTS INTRODUCTION 5 1. CONSIDERATION OF PET HEALTH AND LIFESTYLE FACTORS 6 2. CONTROL OF DERMATOPHYTOSIS IN DOGS AND CATS 8 2.1. Diagnosis 8 2.2. Treatment Procedures 10 2.3. Prevention 11 3. ENVIRONMENTAL CONTROL OF DERMATOPHYTE TRANSMISSION 12 4. CONTROL OF MALASSEZIA DERMATITIS IN DOGS AND CATS 12 4.1 Diagnosis 12 4.2. Treatment Procedures 13 5. OWNER CONSIDERATIONS IN PREVENTING ZOONOTIC DISEASES 14 6. STAFF, PET OWNER AND COMMUNITY EDUCATION 14 APPENDIX 1 – BACKGROUND 17 Superficial Mycoses 2 in Dogs and Cats ESCCAP Guideline 02 Fourth Edition – February 2019 3 TABLES Table 1: Characteristics of major dermatophyte species infecting dogs and cats in Europe 14 Table 2: Characteristics of Malassezia species recovered from the skin of animals
    [Show full text]
  • Concurrent Session Presentations (Pdf)
    CONCURRENT SESSION PRESENTATIONS ZINC-ASSOCIATED DERMATOSES OF THE DOG Crow DW1 1Animal Dermatology Referral Clinic, Dallas, TX, USA BACKGROUND Zinc is an essential dietary element and is incorporated into enzymes where it plays a key role in regulating various aspects of cellular metabolism.1 If zinc levels are low due to insufficient dietary intake, decreased dietary absorption, competition between hormones such as estrogen and zinc for serum protein, or an inherent defect of zinc utilization or uptake at the cellular level, a disease state will likely result. 1-2 Four basic groups of zinc-associated dermatoses have been reported to date in the dog. The first (Syndrome I) may occur in any age of dog fed balanced diets and Siberian Huskies appear to be over represented as a breed. 1 The second (Syndrome II) has been reported in young dogs fed unbalanced diets low in zinc or high in plant protein (phytate) or calcium, which binds zinc and prevents absorption. Cereal or soy based diets have also been linked to this syndrome. 2 The third is lethal acrodermatitis in Bull Terriers that appears to be an inherited autosomal recessive trait that produces a lethal syndrome. These patients’ serum zinc levels are low, however, they do not respond to oral or parenteral zinc supplementation. 3 The last group reported was a litter of Pharaoh hound puppies that were severely clinically affected, exhibited low serum zinc levels and did respond favorably to intravenous but not oral zinc supplementation. 4 PHYSICAL FINDINGS The clinical hallmarks of zinc-associated dermatoses in the dog are crusting, alopecia and erythema with variable amounts of focal pruritus.
    [Show full text]
  • 2017 Proceedings Book
    2017 30TH PROCEEDINGS OF NAVDF April 26-29, 2017 ORLANDO, FLORIDA 2 (orfenicol, terbinane, mometasone furoate) Otic Solution Antibacterial, antifungal, and anti-inammatory For Otic Use in Dogs Only The following information is a summary of the complete product information and is not comprehensive. Please refer to the approved product label for complete product information prior to use. CAUTION: Federal (U.S.A.) law restricts this drug to use by or on the order of a licensed veterinarian. PRODUCT DESCRIPTION: CLARO® contains 16.6 mg/mL orfenicol, 14.8 mg/mL terbinane (equivalent to 16.6 mg/mL terbinane hydrochloride) and 2.2 mg/mL mometasone furoate. Inactive ingredients include puried water, propylene carbonate, propylene glycol, ethyl alcohol, and polyethylene glycol. INDICATIONS: CLARO® is indicated for the treatment of otitis externa in dogs associated with susceptible strains of yeast (Malassezia pachydermatis) and bacteria (Staphylococcus pseudintermedius). DOSAGE AND ADMINISTRATION: CLARO® should be administered by veterinary personnel. Administration is one dose (1 dropperette) per aected ear. The duration of eect should last 30 days. Clean and dry the external ear canal before administering the product. Verify the tympanic membrane is intact prior to administration. Cleaning the ear after dosing may aect product eectiveness. Refer to product label for complete directions for use. CONTRAINDICATIONS: Do not use in dogs with known tympanic membrane perforation (see PRECAUTIONS). CLARO® is contraindicated in dogs with known or suspected hypersensitivity to orfenicol, terbinane hydrochloride, or mometasone furoate, the inactive ingredients listed above, or similar drugs, or any ingredient in these medicines. WARNINGS: Human Warnings: Not for use in humans.
    [Show full text]
  • The Spectrum of Malassezia Infections in the Bone Marrow Transplant Population
    Bone Marrow Transplantation (2000) 26, 645–648 2000 Macmillan Publishers Ltd All rights reserved 0268–3369/00 $15.00 www.nature.com/bmt The spectrum of Malassezia infections in the bone marrow transplant population VA Morrison1,2 and DJ Weisdorf1 1Bone Marrow Transplant Unit, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA Summary: Malassezia consists of seven species, most human infec- tions are caused by Malassezia furfur, which includes the A consecutive series of 3044 patients who underwent species previously known as Pityrosporum ovale and BMT at the University of Minnesota over a 25 year per- Pityrosporum orbicularae.6–9 Sporadic cases of fungemia, iod were reviewed for the post-transplant occurrence of meningitis, urinary tract infection, and cutaneous infection infection caused by the yeast Malassezia furfur. Six caused by Malassezia pachydermatis have been patients, ranging in age from 1 to 54 years, developed reported.10,11 Malassezia sympodialis is an unusual cause Malassezia infections at a median of 59 days post trans- of human infection.12 These dimorphic saprophytic yeast plant. Five patients were allogeneic transplant recipi- isolates are known to have unusual lipophilic growth ents; the remaining patient had undergone autologous requirements, in that growth occurs on standard fungal transplantation. A spectrum of clinical manifestations media such as Sabouraud dextrose agar only when the cul- of Malassezia infection was seen in these patients, ture medium is supplemented with a source of including infections of mucosal surfaces and the skin, in medium/long-chain fatty acids. Although a variety of Mal- addition to catheter-related fungemia.
    [Show full text]
  • Unraveling Lipid Metabolism in Lipid-Dependent Pathogenic Malassezia Yeasts
    Unraveling lipid metabolism in lipid-dependent pathogenic Malassezia yeasts Adriana Marcela Celis Ramírez Unraveling lipid metabolism in lipid-dependent pathogenic Malassezia yeasts A.M.Celis Ramirez ISBN: 978-90-393-6874-9 The research described in this report was performed within the Microbiology group of Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. It was supported by the Netherlands fellowship program NFP-phd.14/99 and the Colciencias grant No. 120465741393. Copyright © 2017 by A.M.Celis Ramirez. All rights reserved. Printed by: Proefschrift-aio.nl Cover design and Layout: Soledad R. Ordoñez Unraveling lipid metabolism in lipid-dependent pathogenic Malassezia yeasts Ontrafeling van het lipide metabolisme in lipide- afhankelijke pathogene Malassezia gisten (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op woensdag 22 november 2017 des middags te 2.30 uur door Adriana Marcela Celis Ramírez geboren op 26 november 1974 te Neiva, Colombia Promotor: Prof. dr. H.A.B. Wösten Copromotor: Dr. J.J.P.A. de Cock Porque los sueños se hacen realidad Contents Chapter 1 General Introduction 9 Chapter 2 Malassezia pachydermatis: Genome and 33 physiological characterization of lipid assimilation 2A Draft Genome Sequence of the animal and 34 human pathogen Malassezia pachydermatis CBS 1879 2B Physiological characterization of lipid 41 assimilation in M. pachydermatis Chapter 3 Metabolic reconstruction and 53 characterization of the lipid metabolism of Malassezia spp.
    [Show full text]
  • Veterinary Mycology - Jalpa P
    VETERINARY SCIENCE - Veterinary Mycology - Jalpa P. Tewari VETERINARY MYCOLOGY Jalpa P. Tewari Department of Agricultural, Food, and Nutritional Science, University of Alberta, Canada Keywords: Anamorph, animal mycoses, animal pathogenic fungi, Ascomycota, aspergillosis, Basidiomycota, blastomycosis, candidiasis, chytridiomycosis, Chytridiomycota, coccidioidomycosis, cryptococcosis, dermatophytosis, emerging fungal diseases, Eumycota, histoplasmosis, Malassezia dermatitis and otis externa, mycotoxicosis, paracoccidioidomycosis, penicilliosis, sporotrichosis, teleomorph, zoonosis, zygomycosis, Zygomycota. Contents 1. Introduction 2. Characteristics and Classification of Fungi 3. Dermatophytosis 4. Malassezia Dermatitis and Otis Externa 5. Blastomycosis 6. Histoplasmosis 7. Cryptococcosis 8. Coccidioidomycosis 9. Paracoccidioidomycosis 10. Sporotrichosis 11. Aspergillosis 12. Penicilliosis 13. Candidiasis 14. Zygomycosis 15. Mycotoxicosis 16. Conclusions Acknowledgments Glossary Bibliography Biographical sketch SummaryUNESCO – EOLSS Animals are hosts to numerous fungal pathogens most of which can also infect humans. In some cases,SAMPLE these diseases can be transmitted CHAPTERS from animals to humans or vice versa. Many wild, agricultural, and domestic animals constitute reservoirs of human fungal pathogens. There has been synergy in technological developments between the human and animal systems. Understanding of animal diseases has benefited from basic scientific and therapeutic understanding of human diseases whereas understanding of
    [Show full text]