Of Malassezia Furfur

Total Page:16

File Type:pdf, Size:1020Kb

Of Malassezia Furfur Cent. Eur. J. Biol. • 7(2) • 2012 • 241-249 DOI: 10.2478/s11535-012-0018-3 Central European Journal of Biology Atypical non-lipid-dependent strains of Malassezia furfur Research Article Aukse Zinkeviciene1,2,*, Vilmantas Norkunas1, Donaldas Citavicius1 1Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Vilnius University, LT-03101 Vilnius, Lithuania 2Centre of Diagnosis and Treatment of Allergic Diseases, LT-08109 Vilnius, Lithuania Received 15 August 2011; Accepted 26 January 2012 Abstract: Members of the yeast genus Malassezia, including atypical strains, are lipophilic except for Malassezia pachydermatis. New physiological features that characterize atypical Malassezia strains are mainly associated with alteration in Tween assimilation pattern – such isolates still require lipids for growth. We isolated three non-lipid-dependent strains of Malassezia from patients with diagnosed atopic dermatitis (AD). These isolates could not be identified to the species levelvia their physiological properties. Phylogenetic trees, based on the D1/D2 regions of the 26S rDNA gene sequences and nucleotide sequences of the ITS1-5.8S-ITS2 rRNA region, showed the isolates to belong to Malassezia furfur. Three non-lipid dependent isolates from AD skin were conspecific, and sequences analysis proved them to beM. furfur. Keywords: Malassezia furfur • Atypical isolates • Atopic dermatitis © Versita Sp. z o.o. 1. Introduction Physiological systems based on lipid assimilation, b-glucosidase activity, catalase reaction and pigment The genus Malassezia belongs to anamorphic production employing tryptophan as the single nitrogen basidiomycetous yeasts [1]. At present, fourteen source are widely used for identifying Malassezia Malassezia species are reported (M. furfur, M. globosa, species. In practice some individual strains can show M. restricta, M. sympodialis, M. slooffiae, M. obtusa, unrepresentative physiological features, and such M. pachydermatis [2], M. dermatis [3], M. japonica [4], atypical isolates of Malassezia species are reported with M. yamatoensis [5], M. nana [6], M. equina, M. caprae increasing frequency. These strains differ from the most [7], and M. cuniculi [8]). Malassezia yeasts comprise typical Malassezia strains in their expression of one or a part of the microbial flora of normal skin, but under more phenotypes, and they are often difficult to identify certain conditions they can cause superficial skin to the species level by routine methods [16-21]. infections, such as seborrheic dermatitis, pityriasis Atopic dermatitis skin is very susceptible to versicolor, folliculitis, atopic dermatitis, and other cutaneous bacterial, viral, and fungal infections. disorders [9-14]. The role of these opportunistic Evidence that the Malassezia species represent microorganisms in the development of diseases, and a contributing factor in AD is increasing. Because the mechanism triggering these commensal yeasts to Malassezia is a fastidious microorganism to culture, become pathogenic and induce infections in the skin, no reliable method to confirm its overgrowth during is not clear. Adaptation to the skin environment and clinical practice outside the research setting exists the associated pathogenicity may be due to metabolic [13,14]. In this study the isolates were obtained then limitations and capabilities, as these species are samples were taken from patients by physicians recognized as lipid-dependent [15]. during clinical treatments. We isolated three * E-mail: [email protected] 241 Atypical non-lipid-dependent strains of Malassezia furfur Malassezia strains that could not be identified by 2.3 Molecular analysis of Malassezia routine methods. This paper presents a biochemical Colonies grown on mLNA agar at 32oC for five days were and physiological characterization of these isolates collected by scraping them from the surface of the agar as well as their taxonomic identification by rDNA and plate. DNA was extracted by the modified glass beads ITS1-5.8S-ITS2 rRNA sequences analysis. protocol of Vogelstein and Gillespie (DNA Extraction Kit, Fermentas, Lithuania). The samples were dissolved in sterile distilled water and used for PCR amplification. 2. Experimental Procedures Primer pair for D1/D2 26S rDNA amplification was based on the previously reported sequences [26]. 2.1 Collection and cultivation of the samples Forward primer F63: 5’-GCA TAT CAA TAA GCG GAG Atypical M. furfur strains were isolated from the face GAA AAG-3’; reverse primer LR3: 5’-GGT CCG TGT and trunk of patients with a clinical diagnosis of atopic TTC AAG ACG-3’. Primer pair for internal transcribed dermatitis (from one patient each). The samples were spacer (ITS) regions of the rRNA gene was based on collected by scraping affected areas with a disposable the previously reported sequences [27]. Forward primer scalpel and collecting the scrapings in between sterile pITS-F: 5’-GTC GTA ACA AGG TTA ACC TGC GG-3’; slides sealed with tape. After transportation to the reverse primer pITS-R: 5’-TCC TCC GCT TAT TGA laboratory the specimens were cultured qualitatively TAT GC-3’. Amplification reactions were performed in on modified Leeming and Notman agar (mLNA; 10 g an Eppendorf PCR system using the following cycling glucose, 10 g peptone, 8 g bile salts, 2 g yeast extract, parameters: 95oC for two minutes; followed by 29 cycles 0.5 g glycerol monostearate, 10 ml glycerol, 5 ml Tween at 95oC for one minute, 50oC for two minutes, and 60, 20 ml olive oil, 15 g agar, 50 mg chloramphenicol and 72oC for three minutes; followed by a final extension 50 mg cycloheximide per liter), as recommended by the at 72oC for seven minutes. To confirm the absence of Centraalbureau voor Schimmelcultures (Utrecht, The false positive reactions the PCR products were inserted Netherland). Incubation was performed at 32oC for two into the plasmid vector pTZ57R/T (InsTAcloneTMPCR weeks. Written consent was obtained from each patient. Cloning Kit, Fermentas, Lithuania) according to the manufacturer’s instructions. Plasmids were extracted 2.2 Morphological and physiological from an overnight culture of Escherichia coli using the identification lysis by alkali method, dissolved in sterile distilled water, Morphology of the colonies was examined on mLNA and used for PCR amplification. The PCR products were after incubation at 32oC for five days. Isolated colonies purified. The protocol BigDye Terminator v3.1 Cycle were used for the identification. The ability to grow on Sequencing kit (Applied Biosystems, Nieuwerkerk aan Tween 20, 40, 60, and 80 utilization tests, diazonium de IJsel, The Netherlands) was used for sequencing blue B reactions, and catalase reactions [2,22] were with genetic analyzer 3130xl (Applied Biosystems). performed in order to confirm the Malassezia genus Phylogenetic and molecular evolutionary analyses were and species. Tween assimilation tests were performed conducted using MEGA version 4 program [28]. The following the Tween dilution test protocol [2] and the genetic distances were calculated using the Maximum Tween diffusion test protocol [22]. Selective growth Composite Likelihood method [29], and the phylogenetic with cremophor EL, the presence of β-glucosidase as trees were constructed using the neighbor-joining revealed by the splitting of esculin [23], the ability to method [30]. Bootstrap analysis of the data (using 1000 produce pigments on p-medium [24,25] and temperature replicates) was carried out to evaluate the validity and requirements were also tested. The ability to grow on reliability of the tree topology [31]. Sabouraud agar (SGA; 20 g glucose, 10 g peptone, 15 g agar per liter) was verified by multiple (four) transfers on SGA with intervals of five days incubations at 32oC. The 3. Results ability to grow in Sabouraud broth (SGB; 20 g glucose, 10 g peptone) was analysed by incubating the flasks We studied physiological features of three Malassezia of inoculated media (50 ml of SGB in 150 ml flask isolates. The sequencing of the 26S and ITS-5.8S rRNA was inoculated with 2 ml of a suspension containing regions supported our findings that these were atypical 105 cells/ml) on a rotary shaker at 32oC. After five days, variants of M. furfur with new physiological properties. suspensions of each strain were smeared on the SGA by means of a swab. The plates were incubated for five 3.1 Taxonomic characteristics days at 32oC and inspected for growth daily. All tests After five days of incubation on mLNA at 32oC, colonies were performed four times. of three atypical M. furfur isolates developed white 242 A. Zinkeviciene et al. to cream in color, smooth, butyrous and umbonate. Cells were globose, 2.2–4 μm in diameter, with monopolar budding on a more or less broad base (Figure 1). Growth was recorded in the presence of cremophor EL and Tweens 20, 40, 60, 80 as sole lipid sources. Catalase reaction was positive. The isolates showed β-glucosidase activity, which was revealed by the splitting of esculin. The atypical strains were characterized by active synthesis of fluorochromes and pigments from tryptophan. M. furfur is the only member of the genus able to produce brown to greenish yellow pigments from tryptophan as a sole nitrogen source [24,25]. Active growth was recorded at 37oC and 40oC. Although the atypical isolates were in many ways similar to M. furfur, biochemical identification was not possible because of their ability to grow on Sabouraud glucose agar without lipid supplementation. The growth on SGA differed from the growth on mLNA (Figures 2 and 3): colonies were very small (~0.3 mm in diameter Figure 1. Vegetative cells of M. furfur strain M47 grown on mLNA for compared with 2-3 mm colonies developing on five days at 32oC. Bar, 2 μm. mLNA), but growth was recorded on the second day of cultivation. In order to check the ability of the yeasts to survive without lipid supplementation for longer periods of time, four repeated transfers from SGA on SGA with five days intervals were performed. In addition, the growth in Sabouraud glucose broth (SGB) without any lipid supplementation was also recorded: after five days incubation in SGB at 32oC and transfer on SGA these isolates developed small (~0.3 mm in diameter) colonies.
Recommended publications
  • Cronicon OPEN ACCESS MICROBIOLOGY Editorial from Head to Toe: Mapping Fungi Across Human Skin
    Cronicon OPEN ACCESS MICROBIOLOGY Editorial From Head to Toe: Mapping Fungi across Human Skin Tim Sandle* Head of Microbiology, Bio Products Laboratory Limited, United Kingdom *Corresponding Author: Tim Sandle, Head of Microbiology, Bio Products Laboratory Limited, 68 Alexander Road, London Colony, St. Albans, Hertfordshire, United Kingdom. Received: July 09, 2015; Published: July 14, 2015 Introduction The human microbiota refers to the complex aggregate of fungi, bacteria and archaea, found on the surface of the skin, within saliva and oral mucosa, the conjunctiva, the gastrointestinal. When microbial genomes are accounted for, the term mirobiome is deployed. In recent years the first in-depth analysis, using sophisticated DNA sequencing, of the human microbiome has taken place through the U.S. National Institutes of Health led Human Microbiome Project [1]. This required sophisticated analysis and representative sampling, given thatThe a single collected square of centimeter data from theof human Human skin Microbiome can contain Project up to hasone enabledbillion microorganisms. microbiologists to develop an ecological map of the human relationship between humans and microorganisms. One of the most interesting areas related to fungi, especially in advancing our under body, both inside and outside. Many of the findings have extended, or even turned upside down, what was previously known about the - not correlate; some parts of the body have a greater prevalence of bacteria (such as the arms) whereas fungi are found in closer associa standing about fungal types, locations and numbers and how this affects health and disease [2]. With this fungal and bacteria diversity do tion with feet. This article reviews some of the more recent literature.
    [Show full text]
  • Diagnosis and Treatment of Tinea Versicolor Ronald Savin, MD New Haven, Connecticut
    ■ CLINICAL REVIEW Diagnosis and Treatment of Tinea Versicolor Ronald Savin, MD New Haven, Connecticut Tinea versicolor (pityriasis versicolor) is a common imidazole, has been used for years both orally and top­ superficial fungal infection of the stratum corneum. ically with great success, although it has not been Caused by the fungus Malassezia furfur, this chronical­ approved by the Food and Drug Administration for the ly recurring disease is most prevalent in the tropics but indication of tinea versicolor. Newer derivatives, such is also common in temperate climates. Treatments are as fluconazole and itraconazole, have recently been available and cure rates are high, although recurrences introduced. Side effects associated with these triazoles are common. Traditional topical agents such as seleni­ tend to be minor and low in incidence. Except for keto­ um sulfide are effective, but recurrence following treat­ conazole, oral antifungals carry a low risk of hepato- ment with these agents is likely and often rapid. toxicity. Currently, therapeutic interest is focused on synthetic Key Words: Tinea versicolor; pityriasis versicolor; anti­ “-azole” antifungal drugs, which interfere with the sterol fungal agents. metabolism of the infectious agent. Ketoconazole, an (J Fam Pract 1996; 43:127-132) ormal skin flora includes two morpho­ than formerly thought. In one study, children under logically discrete lipophilic yeasts: a age 14 represented nearly 5% of confirmed cases spherical form, Pityrosporum orbicu- of the disease.3 In many of these cases, the face lare, and an ovoid form, Pityrosporum was involved, a rare manifestation of the disease in ovale. Whether these are separate enti­ adults.1 The condition is most prevalent in tropical tiesN or different morphologic forms in the cell and semitropical areas, where up to 40% of some cycle of the same organism remains unclear.: In the populations are affected.
    [Show full text]
  • Malassezia Species Associated with Dermatitis in Dogs and Their Antifungal Susceptibility
    Int.J.Curr.Microbiol.App.Sci (2018) 7(6): 1994-2007 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 06 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.706.236 Malassezia Species Associated With Dermatitis in Dogs and Their Antifungal Susceptibility Uday Seetha, Sumanth Kumar, Raghavan Madhusoodanan Pillai, Mouttou Vivek Srinivas*, Prabhakar Xavier Antony and Hirak Kumar Mukhopadhyay Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Pondicherry-605 009, India *Corresponding author ABSTRACT The present study was taken with the objective of isolation, characterization, molecular detection and antifungal sensitivity of Malassezia species from dermatitis cases from dogs in and around Pondicherry state. A total of 100 skin swabs were collected from the dogs K e yw or ds showing dermatological problems suggestive of Malassezia. Out of 100 swabs, 41 Malassezia isolates were successfully isolated and had good growth on Sabouraud’s Malassezia pachydermatis, Dextrose Agar (SDA) during the primary isolation from the skin swabs. Biochemical tests Sabouraud’s dextrose agar, Modified Dixon’s agar, for catalase, β- glucosidase activities and the capability to grow with three water soluble Polymerase chain reaction, lipid supplements, namely Tween 20, Tween 80 and Cremophor EL concluded that the M. Antifungal Susceptibility testing pachydermatis was the sole species isolated from the cases of canine dermatitis in Pondicherry state. Cytological examination revealed that direct skin swab smear was more Article Info sensitive than adhesive tape technique and impression smear. The frequency of isolation of Accepted: M. pachydermatis was higher in neck region (8) followed by other regions in canine.
    [Show full text]
  • Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ
    REVIEWS Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ Institute for Lung Health, Department of Infection, Immunity & Inflammation, University of Leicester and Department of Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK J Investig Allergol Clin Immunol 2016; Vol. 26(6): 344-354 doi: 10.18176/jiaci.0122 Abstract Fungi are ubiquitous and form their own kingdom. Up to 80 genera of fungi have been linked to type I allergic disease, and yet, commercial reagents to test for sensitization are available for relatively few species. In terms of asthma, it is important to distinguish between species unable to grow at body temperature and those that can (thermotolerant) and thereby have the potential to colonize the respiratory tract. The former, which include the commonly studied Alternaria and Cladosporium genera, can act as aeroallergens whose clinical effects are predictably related to exposure levels. In contrast, thermotolerant species, which include fungi from the Candida, Aspergillus, and Penicillium genera, can cause a persistent allergenic stimulus independent of their airborne concentrations. Moreover, their ability to germinate in the airways provides a more diverse allergenic stimulus, and may result in noninvasive infection, which enhances inflammation. The close association between IgE sensitization to thermotolerant filamentous fungi and fixed airflow obstruction, bronchiectasis, and lung fibrosis suggests a much more tissue-damaging process than that seen with aeroallergens. This review provides an overview of fungal allergens and the patterns of clinical disease associated with exposure. It clarifies the various terminologies associated with fungal allergy in asthma and makes the case for a new term (allergic fungal airway disease) to include all people with asthma at risk of developing lung damage as a result of their fungal allergy.
    [Show full text]
  • Trichosporon Beigelii Infection Presenting As White Piedra and Onychomycosis in the Same Patient
    Trichosporon beigelii Infection Presenting as White Piedra and Onychomycosis in the Same Patient Lt Col Kathleen B. Elmer, USAF; COL Dirk M. Elston, MC, USA; COL Lester F. Libow, MC, USA Trichosporon beigelii is a fungal organism that causes white piedra and has occasionally been implicated as a nail pathogen. We describe a patient with both hair and nail changes associated with T beigelii. richosporon beigelii is a basidiomycetous yeast, phylogenetically similar to Cryptococcus.1 T T beigelii has been found on a variety of mammals and is present in soil, water, decaying plants, and animals.2 T beigelii is known to colonize normal human skin, as well as the respiratory, gas- trointestinal, and urinary tracts.3 It is the causative agent of white piedra, a superficial fungal infection of the hair shaft and also has been described as a rare cause of onychomycosis.4 T beigelii can cause endo- carditis and septicemia in immunocompromised hosts.5 We describe a healthy patient with both white piedra and T beigelii–induced onychomycosis. Case Report A 62-year-old healthy man who worked as a pool maintenance employee was evaluated for thickened, discolored thumb nails (Figure 1). He had been aware of progressive brown-to-black discoloration of the involved nails for 8 months. In addition, soft, light yellow-brown nodules were noted along the shafts of several axillary hairs (Figure 2). Microscopic analysis of the hairs revealed nodal concretions along the shafts (Figure 3). No pubic, scalp, eyebrow, eyelash, Figure 1. Onychomycotic thumb nail. or beard hair involvement was present. Cultures of thumb nail clippings on Sabouraud dextrose agar grew T beigelii and Candida parapsilosis.
    [Show full text]
  • Comparison of Three Skin Sampling Methods and Two Media for Culturing Malassezia Yeast
    Journal of Fungi Communication Comparison of Three Skin Sampling Methods and Two Media for Culturing Malassezia Yeast Abdourahim Abdillah 1,2, Saber Khelaifia 2, Didier Raoult 2,3, Fadi Bittar 2,3 and Stéphane Ranque 1,2,* 1 Institut de Recherche pour le Développement, Aix Marseille Université, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs—Infections Tropicales et Méditerranéennes, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; [email protected] 2 IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005 Marseille, France; khelaifi[email protected] (S.K.); [email protected] (D.R.); [email protected] (F.B.) 3 Institut de Recherche pour le Développement, Aix Marseille Université, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, MEPHI: Microbes, Evolution, Phylogénie et Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France * Correspondence: [email protected] Received: 5 October 2020; Accepted: 27 November 2020; Published: 9 December 2020 Abstract: Malassezia is a lipid-dependent commensal yeast of the human skin. The different culture media and skin sampling methods used to grow these fastidious yeasts are a source of heterogeneity in culture-based epidemiological study results. This study aimed to compare the performances of three methods of skin sampling, and two culture media for the detection of Malassezia yeasts by culture from the human skin. Three skin sampling methods, namely sterile gauze, dry swab, and TranswabTM with transport medium, were applied on 10 healthy volunteers at 5 distinct body sites. Each sample was further inoculated onto either the novel FastFung medium or the reference Dixon agar for the detection of Malassezia spp.
    [Show full text]
  • Downloaded from by IP: 199.133.24.106 On: Mon, 18 Sep 2017 10:43:32 Spatafora Et Al
    UC Riverside UC Riverside Previously Published Works Title The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Permalink https://escholarship.org/uc/item/4485m01m Journal Microbiology spectrum, 5(5) ISSN 2165-0497 Authors Spatafora, Joseph W Aime, M Catherine Grigoriev, Igor V et al. Publication Date 2017-09-01 DOI 10.1128/microbiolspec.funk-0053-2016 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies JOSEPH W. SPATAFORA,1 M. CATHERINE AIME,2 IGOR V. GRIGORIEV,3 FRANCIS MARTIN,4 JASON E. STAJICH,5 and MEREDITH BLACKWELL6 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; 2Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907; 3U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; 4Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d’Excellence Recherches Avancés sur la Biologie de l’Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France; 5Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California–Riverside, Riverside, CA 92521; 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 ABSTRACT The kingdom Fungi is one of the more diverse INTRODUCTION clades of eukaryotes in terrestrial ecosystems, where they In 1996 the genome of Saccharomyces cerevisiae was provide numerous ecological services ranging from published and marked the beginning of a new era in decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and fungal biology (1).
    [Show full text]
  • MM 0839 REV0 0918 Idweek 2018 Mucor Abstract Poster FINAL
    Invasive Mucormycosis Management: Mucorales PCR Provides Important, Novel Diagnostic Information Kyle Wilgers,1 Joel Waddell,2 Aaron Tyler,1 J. Allyson Hays,2,3 Mark C. Wissel,1 Michelle L. Altrich,1 Steve Kleiboeker,1 Dwight E. Yin2,3 1 Viracor Eurofins Clinical Diagnostics, Lee’s Summit, MO 2 Children’s Mercy, Kansas City, MO 3 University of Missouri-Kansas City School of Medicine, Kansas City, MO INTRODUCTION RESULTS Early diagnosis and treatment of invasive mucormycosis (IM) affects patient MUC PCR results of BAL submitted for Aspergillus testing. The proportions of Case study of IM confirmed by MUC PCR. A 12 year-old boy with multiply relapsed pre- outcomes. In immunocompromised patients, timely diagnosis and initiation of appropriate samples positive for Mucorales and Aspergillus in BAL specimens submitted for IA testing B cell acute lymphoblastic leukemia, despite extensive chemotherapy, two allogeneic antifungal therapy are critical to improving survival and reducing morbidity (Chamilos et al., are compared in Table 2. Out of 869 cases, 12 (1.4%) had POS MUC PCR, of which only hematopoietic stem cell transplants, and CAR T-cell therapy, presented with febrile 2008; Kontoyiannis et al., 2014; Walsh et al., 2012). two had been ordered for MUC PCR. Aspergillus was positive in 56/869 (6.4%) of neutropenia (0 cells/mm3), cough, and right shoulder pain while on fluconazole patients, with 5/869 (0.6%) positive for Aspergillus fumigatus and 50/869 (5.8%) positive prophylaxis. Chest CT revealed a right lung cavity, which ultimately became 5.6 x 6.2 x 5.9 Differentiating diagnosis between IM and invasive aspergillosis (IA) affects patient for Aspergillus terreus.
    [Show full text]
  • Malassezia Baillon, Emerging Clinical Yeasts
    FEMS Yeast Research 5 (2005) 1101–1113 www.fems-microbiology.org MiniReview Malassezia Baillon, emerging clinical yeasts Roma Batra a,1, Teun Boekhout b,*, Eveline Gue´ho c, F. Javier Caban˜es d, Thomas L. Dawson Jr. e, Aditya K. Gupta a,f a Mediprobe Research, London, Ont., Canada b Centraalbureau voor Schimmelcultures, Uppsalalaan 8, 85167 Utrecht, The Netherlands c 5 rue de la Huchette, F-61400 Mauves sur Huisne, France d Departament de Sanitat i dÕ Anatomia Animals, Universitat Auto`noma de Barcelona, Bellaterra, Barcelona E-08193, Spain e Beauty Care Technology Division, Procter & Gamble Company, Cincinnati, USA f Division of Dermatology, Department of Medicine, Sunnybrook and WomenÕs College Health Science Center (Sunnybrook site) and the University of Toronto, Toronto, Ont., Canada Received 1 November 2004; received in revised form 11 May 2005; accepted 18 May 2005 First published online 12 July 2005 Abstract The human and animal pathogenic yeast genus Malassezia has received considerable attention in recent years from dermatolo- gists, other clinicians, veterinarians and mycologists. Some points highlighted in this review include recent advances in the techno- logical developments related to detection, identification, and classification of Malassezia species. The clinical association of Malassezia species with a number of mammalian dermatological diseases including dandruff, seborrhoeic dermatitis, pityriasis ver- sicolor, psoriasis, folliculitis and otitis is also discussed. Ó 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Malassezia; Yeast; Identification; Animals; Disease 1. Introduction a positive staining reaction with Diazonium Blue B (DBB) [3]. The genus was named in 1889 by Baillon Members of the genus Malassezia are opportunistic [6] with the species M.
    [Show full text]
  • Biotyping of Malassezia Pachyderma-Tis Strains Using the Killer System
    Original Rev Iberoam Micol 1998; 15: 85-87 85 Biotyping of Malassezia pachyderma- tis strains using the killer system Selene Dall’Acqua Coutinho and Claudete Rodrigues Paula Microbiology Department of the Biomedical Sciences Institute of the Universidade de São Paulo, Brazil Summary The killer phenomenon has been used as epidemiological marker for Candida albicans, where hundreds of biotypes can be obtained. The objective of this study is to observe the behaviour of 30 strains of Malassezia pachydermatis iso- lated from dogs with otitis (15) or dermatitis (15) against 9 killer yeasts, which, when grouped in triplets produced a 3 digit code (biotype). The growth inhibition of the 30 strains of M. pachydermatis due to the effect of the killer yeasts used permitted the determination of the following biotypes: 888 (33.3%), 212 (26.7%), 111 (16.7%), 312 (6.7%), 512 (6.7%), 242 (3.3%), 311 (3.3%) and 411 (3.3%). Biotypes 888, 212 and 111 occurred most frequently in both ear canal and skin samples. Key words Malassezia pachydermatis, Dogs, Killer system, Otomycosis, Dermatomycosis Biotipificación de cepas de Malassezia pachydermatis por el sistema “killer” Resumen El fenómeno “killer” ha sido empleado para Candida albicans como marcador epidemiológico habiéndose obtenido cientos de biotipos. El objetivo de este tra- bajo fue estudiar el comportamiento de 30 muestras de Malassezia pachyder- matis, provenientes de 15 perros con otitis y 15 con dermatitis, frente a 9 levaduras “killer”, que agrupadas en tripletes generan un código de tres números (biotipos). La inhibición del crecimiento de las 30 cepas de M. pachydermatis por las levaduras “killer”empleadas, propició la obtención de 8 biotipos: 888 (33,3%), 212 (26,7%), 111 (16,7%), 312 (6,7%), 512 (6,7%), 242 (3,3%), 311 (3,3%) y 411 (3,3%).
    [Show full text]
  • Emerging Invasive Fungal Infections in Critically Ill Patients: Incidence, Outcomes and Prognosis Factors, a Case-Control Study
    Journal of Fungi Article Emerging Invasive Fungal Infections in Critically Ill Patients: Incidence, Outcomes and Prognosis Factors, a Case-Control Study Romaric Larcher 1,2,* , Laura Platon 1, Matthieu Amalric 1, Vincent Brunot 1, Noemie Besnard 1, Racim Benomar 1, Delphine Daubin 1, Patrice Ceballos 3, Philippe Rispail 4, Laurence Lachaud 4,5, Nathalie Bourgeois 4,5 and Kada Klouche 1,2 1 Intensive Care Medicine Department, Lapeyronie Hospital, Montpellier University Hospital, 371, Avenue du Doyen Gaston Giraud, 34090 Montpellier, France; [email protected] (L.P.); [email protected] (M.A.); [email protected] (V.B.); [email protected] (N.B.); [email protected] (R.B.); [email protected] (D.D.); [email protected] (K.K.) 2 PhyMedExp, INSERM (French Institute of Health and Medical Research), CNRS (French National Centre for Scientific Research), University of Montpellier, 34090 Montpellier, France 3 Hematology Department, Saint Eloi Hospital, Montpellier University Hospital, 34090 Montpellier, France; [email protected] 4 Mycology and Parasitology Laboratory, Lapeyronie Hospital, Montpellier University Hospital, 34090 Montpellier, France; [email protected] (P.R.); [email protected] (L.L.); [email protected] (N.B.) 5 MiVEGEC (Infectious Diseases and Vectors: Ecology, Genetic, Evolution and Control), IRD (Research and Citation: Larcher, R.; Platon, L.; Development Institute), CNRS, University of Montpellier, 911 Avenue Agropolis, 34394 Montpellier, France Amalric, M.; Brunot, V.; Besnard, N.; * Correspondence: [email protected] Benomar, R.; Daubin, D.; Ceballos, P.; Rispail, P.; Lachaud, L.; et al. Abstract: Comprehensive data on emerging invasive fungal infections (EIFIs) in the critically ill are Emerging Invasive Fungal Infections scarce.
    [Show full text]
  • Fungal-Bacterial Interactions in Health and Disease
    pathogens Review Fungal-Bacterial Interactions in Health and Disease 1, 1, 1,2 1,2,3 Wibke Krüger y, Sarah Vielreicher y, Mario Kapitan , Ilse D. Jacobsen and Maria Joanna Niemiec 1,2,* 1 Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena 07745, Germany; [email protected] (W.K.); [email protected] (S.V.); [email protected] (M.K.); [email protected] (I.D.J.) 2 Center for Sepsis Control and Care, Jena 07747, Germany 3 Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany * Correspondence: [email protected]; Tel.: +49-3641-532-1454 These authors contributed equally to this work. y Received: 22 February 2019; Accepted: 16 May 2019; Published: 21 May 2019 Abstract: Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host. Keywords: mycobiome; microbiome; cross-kingdom interactions; polymicrobial; commensals; synergism; antagonism; mixed infections 1. Introduction 1.1. Origins of Microbiota Research Fungi and bacteria are found on all mucosal epithelial surfaces of the human body. After their discovery in the 19th century, for a long time the presence of microbes was thought to be associated mostly with disease.
    [Show full text]