Blood Levels of Adenine Nucleotides

Total Page:16

File Type:pdf, Size:1020Kb

Blood Levels of Adenine Nucleotides BLOOD LEVELS OF ADENINE NUCLEOTIDES Harry G. Albaum, … , Theodore Cayle, Arthur Shapiro J Clin Invest. 1951;30(5):525-530. https://doi.org/10.1172/JCI102468. Research Article Find the latest version: https://jci.me/102468/pdf BLOOD LEVELS OF ADENINE NUCLEOTIDES 1 BY HARRY G. ALBAUM, THEODORE CAYLE, AND ARTHUR SHAPIRO (From the Biology Research Laboratory, Brooklyn College, Brooklyn, N. Y.) (Submitted for publication December 23, 1950; accepted, March 17, 1951) INTRODUCTION The procedure used in our work is a spectro- photometric assay on perchloric acid filtrates, using The metabolic significance of the adenine nucleo- in modified form the enzyme techniques of Kalckar tides (1, 2) and the reports of the therapeutic ac- (15-17). tion of muscle adenylic acid and adenosine triphos- In addition to presenting observations on the phate in various pathological states (3-12) has on a stimulated interest in the possible mechanism of ac- concentration of the various nucleotides group of four normal subjects (three men and one tion in these compounds. woman) over a period of about eight months, data Recently a rapid reliable method was developed will be presented on the effects of intramuscular by one of us (13) for measuring total adenine, injections of muscle adenylic acid, adenosine tri- adenylic acid (AMP), adenosine diphosphate and yeast acid on the levels of (ADP) and adenosine triphosphate (ATP). We phosphate adenylic have applied this method to the study of blood since the above compounds. it is the only human tissue which can be con- ANALYTICAL PROCEDURE veniently studied. Before studies could be undertaken on pathologic a) Estimation of total adenine bloods, we felt that normal bloods should be ex- Total adenine nucleotide was assayed by drawing blood, initially under oxalate, and immediately deproteinizing 1 amined for total nucleotide content as well as for ml. with 4 volumes of cold 2% perchloric acid. The pro- possible content of adenylic acid, adenosine diphos- tein precipitate was washed with an additional volume of phate and adenosine triphosphate. That adenine cold 2% perchloric acid. The combined supernatant solu- nucleotides are present in blood has been known tions collected after centrifugation were adjusted to pH since 1914. The first completely adequate quanti- 7.0 and made to a final volume of 10 ml. One ml. of fil- trate was added to a tube containing 3.5 ml. H20 and 0.5 tative data are those of Buell in 1935 (14) who es- ml. M/10 phosphate buffer at pH 7.4. The resulting solu- timated total nucleotide nephelometrically after tion when read in the spectrophotometer shows an ab- precipitating with uranium and then silver, from sorption maximum at 258 ms, corresponding to the ab- a neutralized trichloracetic acid filtrate. Apart sorption maximum of adenine nucleotides in perchloric from describing the procedure itself, Buell reported acid. Total nucleotide was calculated as adenine using that the nucleotides are present principally in the muscle adenylic acid as a standard. red cells (indeed the value varies with the hemato- b) Estimation of AMP, ADP and ATP crit); that the level for any one individual over a Adenylic acid, adenosine diphosphate and adenosine period of several months is fairly constant, and triphosphate were assayed in the same filtrates according that the average value for males is about 11.5 to the procedure described by Albaum and Lipshitz (13), mgm.%b and for females 10.0 mgm.%o (expressed in the following way: One ml. aliquots of the filtrate were placed in three separate tubes. Into the first tube 0.5 ml. as adenine). 0.1 M malonate buffer pH 5.9, 0.03 ml. of adenylic acid de- Our interest, as indicated above, was not only in .minase (containing 15 /Agm. protein N) and water to make the total nucleotide, but also in the constitution of a final volume of 5.0 ml. were pipetted and the change in the nucleotide. We also felt that the Buell pro- density in the spectrophotometer at 265 ms recorded at cedure for nucleotides was much too the end of 10 minutes. The second tube received buffer, estimating water, 0.1 ml. MgCl, (10 mgm./ml.), 0.01 ml. myokinase cumbersome. We, therefore, concentrated our at- (containing 4 ugm. protein N) and deaminase and again tention on the preparation of filtrates which could the change in density at 265 mnu was recorded at the end of be assayed directly. 10 minutes. To the third tube was added buffer, water, MgCl2, myokinase, 0.1 ml. 0.5 M glucose, 0.01 ml. hex- 1 This work was supported by a grant to Brooklyn Col- okinase (containing 7 sugm. protein N) and the deaminase lege from the Ernst Bischoff Company, Ivoryton, Conn. and once more the change in density determined. Any 525 5265HARRY G. ALBAUM, THEODORE CAYLE, AND ARTHUR SHAPIRO change in tube 2 over that occurring in tube 1 is due to TABLE II the presence of ADP. Since only 1 mole of AMP is Effect of standing on adenine nuceotides in blood formed from 2 moles of ADP, the difference between tubes 1 and 2 is multiplied by a factor of 2. The third % of total purine as tube records the change in density due to AMP, ADP and Temper- Time ature ATP. Since the concentration of AMP and ADP are ATP AMP ADP now known (by reading the adenine due to these com- pounds from a standard curve derived from the change in density of known concentrations of these Oxalated blood 0 68 0 0 nucleotides) 90 15 28 25 and the total adenine is known from tube 3, the difference Room between the AMP and ADP adenine and the total adenine Heparinized blood 0 58 0 0 gives the value for the ATP adenine. 90 59 0 4 The reactions discussed above are represented by the Oxalated blood 0 40 0 5 following equations: 90 12 20 7 370 C. adenylic acid deaminase Heparinized blood 0 39 0 5 (1) AMP - Inosinic Acid 90 44 0 0 myokinase (2) 2ADP -4 ATP + AMP hexokinase prepared according to the method of Kalckar (15); myo- (3) ATP + glucose - > ADP + glucose-6- phosphate kinase, according to Colowick and Kalckar (18); hexo- kinase was prepared in partially pure form according to Before experiments were undertaken on the distribution the method of Berger, Slein, Colowick and Cori (19) of the compounds, several preliminary runs were carried through step No. 3 (fractionation with ethanol at 00 C.) out to see whether the method as described was reliable, of the isolation procedure. The enzymes were kept in a i.e.,-could added nucleotide be recovered and measured? deep freeze and were found to be stable over long periods The results of one such experiment are shown in Table of time. I. The total nucleotide accountable for as AMP, ADP Muscle adenylic acid used for injection was supplied by and ATP in this sample of blood was 6.4 Igm. It is ap- the Ernst Bischoff Co., Ivoryton, Conn. as My-B-Den (1 parent that added ATP can be recovered indicating that ml. ampules containing 20 mgm. as the sodium salt). In the method is reliable. some experiments ampules containing 100 mgm./ml. were Early in our studies on the concentration of the various used. ATP was also obtained from the Ernst Bischoff nucleotide fractions in oxalated human blood, it was Co. and was administered as a solution of the sodium salt. found that ATP content decreased significantly within the first hour, though not in the first five minutes. For EXPERIMENTAL this reason, in the early work which was done on oxalated blood, the samples were pipetted into perchloric acid within Total nucleotide content of blood one minute of withdrawal. To avoid the inconvenience of this procedure, the stability of the nucleotide in heparin- The total nucleotide content of the blood of the ized blood was investigated. Table II shows the percent- four subjects used in the experiments expressed age of total purine found in the ATP, AMP and ADP as mgm. %o adenine are shown in Figure 1 (closed fractions, respectively, in freshly drawn blood, and in the circles). Several conclusions may be drawn from same blood samples after 90 minutes. The experiment was these data: 1.) While there is some variability in run at room temperature and at 37° C. in the presence of a mixture of potassium oxalate and ammonium oxalate, total nucleotide, the levels remain fairly uniform of which the oxalate concentration was 112 mgm. %, and over a period of about eight months. The variabil- in the presence of 5 mgm. % of heparin. It is clear that ity is no greater than one finds in the levels of other the ATP is very significantly split to ADP and AMP in blood constituents under normal conditions. 2.) oxalated blood, while it is quite stable in the heparinized blood. The levels obtained are similar to those obtained Adenylic acid deaminase (Schmidt's deaminase) was by Buell using the nephelometric procedure, so that we appear to be measuring the same thing that TABLE I Buell measured. Recovery of ATP when added to perchloric acid filtrate of blood Nucleotide present as AMP, ADP and ATP 1. Total AMP, ADP, and ATP found in blood sample = That portion of the total nucleotide accountable 6.4 ugm. for as AMP, ADP and ATP is also shown in Fig- 2. ATP added to blood sample = 8.2 %gm. 3. Total AMP, ADP, and ATP in blood and added ATP ure 1 (open circles). It is immediately clear that calculated (1 +2) = 14.6 t'gm. the level of these compounds shows considerably found = 14.3 ogm.
Recommended publications
  • Nucleotide Degradation
    Nucleotide Degradation Nucleotide Degradation The Digestion Pathway • Ingestion of food always includes nucleic acids. • As you know from BI 421, the low pH of the stomach does not affect the polymer. • In the duodenum, zymogens are converted to nucleases and the nucleotides are converted to nucleosides by non-specific phosphatases or nucleotidases. nucleases • Only the non-ionic nucleosides are taken & phospho- diesterases up in the villi of the small intestine. Duodenum Non-specific phosphatases • In the cell, the first step is the release of nucleosides) the ribose sugar, most effectively done by a non-specific nucleoside phosphorylase to give ribose 1-phosphate (Rib1P) and the free bases. • Most ingested nucleic acids are degraded to Rib1P, purines, and pyrimidines. 1 Nucleotide Degradation: Overview Fate of Nucleic Acids: Once broken down to the nitrogenous bases they are either: Nucleotides 1. Salvaged for recycling into new nucleic acids (most cells; from internal, Pi not ingested, nucleic Nucleosides acids). Purine Nucleoside Pi aD-Rib 1-P (or Rib) 2. Oxidized (primarily in the Phosphorylase & intestine and liver) by first aD-dRib 1-P (or dRib) converting to nucleosides, Bases then to –Uric Acid (purines) –Acetyl-CoA & Purine & Pyrimidine Oxidation succinyl-CoA Salvage Pathway (pyrimidines) The Salvage Pathways are in competition with the de novo biosynthetic pathways, and are both ANABOLISM Nucleotide Degradation Catabolism of Purines Nucleotides: Nucleosides: Bases: 1. Dephosphorylation (via 5’-nucleotidase) 2. Deamination and hydrolysis of ribose lead to production of xanthine. 3. Hypoxanthine and xanthine are then oxidized into uric acid by xanthine oxidase. Spiders and other arachnids lack xanthine oxidase.
    [Show full text]
  • REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
    REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content.
    [Show full text]
  • Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities
    cells Review Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities Patrizia Di Iorio 1,2 and Renata Ciccarelli 1,2,* 1 Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy; [email protected] 2 Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy * Correspondence: [email protected] Abstract: Extracellular vesicles (EVs), mainly classified as small and large EVs according to their size/origin, contribute as multi-signal messengers to intercellular communications in normal/pathological conditions. EVs are now recognized as critical players in cancer processes by promoting transformation, growth, invasion, and drug-resistance of tumor cells thanks to the release of molecules contained inside them (i.e., nucleic acids, lipids and proteins) into the tumor microenvironment (TME). Interestingly, secre- tion from donor cells and/or uptake of EVs/their content by recipient cells are regulated by extracellular signals present in TME. Among those able to modulate the EV-tumor crosstalk, purines, mainly the adenine-based ones, could be included. Indeed, TME is characterized by high levels of ATP/adenosine and by the presence of enzymes deputed to their turnover. Moreover, ATP/adenosine, interacting with their own receptors, can affect both host and tumor responses. However, studies on whether/how the purinergic system behaves as a modulator of EV biogenesis, release and functions in cancer are still poor. Thus, this review is aimed at collecting data so far obtained to stimulate further research in this regard.
    [Show full text]
  • Allopurinol Sodium) for Injection 500 Mg
    ALOPRIM® (allopurinol sodium) for Injection 500 mg [al'-ō-prĭm] For Intravenous Infusion Only Rx only DESCRIPTION: ALOPRIM (allopurinol sodium) for Injection is the brand name for allopurinol, a xanthine oxidase inhibitor. ALOPRIM (allopurinol sodium) for Injection is a sterile solution for intravenous infusion only. It is available in vials as the sterile lyophilized sodium salt of allopurinol equivalent to 500 mg of allopurinol. ALOPRIM (allopurinol sodium) for Injection contains no preservatives. The chemical name for allopurinol sodium is 1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin­ 4-one monosodium salt. It is a white amorphous mass with a molecular weight of 158.09 and molecular formula C5H3N4NaO. The structural formula is: The pKa of allopurinol sodium is 9.31. CLINICAL PHARMACOLOGY: Allopurinol acts on purine catabolism without disrupting the biosynthesis of purines. It reduces the production of uric acid by inhibiting the biochemical reactions immediately preceding its formation. The degree of this decrease is dose dependent. Allopurinol is a structural analogue of the natural purine base, hypoxanthine. It is an inhibitor of xanthine oxidase, the enzyme responsible for the conversion of hypoxanthine to xanthine and of xanthine to uric acid, the end product of purine metabolism in man. Allopurinol is metabolized to the corresponding xanthine analogue, oxypurinol (alloxanthine), which also is an inhibitor of xanthine oxidase. Reutilization of both hypoxanthine and xanthine for nucleotide and nucleic acid synthesis is markedly enhanced when their oxidations are inhibited by allopurinol and oxypurinol. This reutilization does not disrupt normal nucleic acid anabolism, however, because feedback inhibition is an integral part of purine biosynthesis.
    [Show full text]
  • Cyclic Nucleotide Phosphodiesterases in Heart and Vessels
    Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, Véronique Leblais, Rodolphe Fischmeister, Grégoire Vandecasteele To cite this version: Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, et al.. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Archives of cardiovascular diseases, Elsevier/French Society of Cardiology, 2016, 109 (6-7), pp.431-443. 10.1016/j.acvd.2016.02.004. hal-02482730 HAL Id: hal-02482730 https://hal.archives-ouvertes.fr/hal-02482730 Submitted on 23 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective Abbreviated title: Cyclic nucleotide phosphodiesterases in heart and vessels French title: Phosphodiestérases des nucléotides cycliques dans le cœur et les vaisseaux : une perspective thérapeutique. Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, Véronique Leblais, Rodolphe Fischmeister*, Grégoire Vandecasteele* UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France * Corresponding authors. UMR-S1180, Faculté de Pharmacie, Université Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry Cedex, France.
    [Show full text]
  • Mechanisms of Synthesis of Purine Nucleotides in Heart Muscle Extracts
    Mechanisms of Synthesis of Purine Nucleotides in Heart Muscle Extracts David A. Goldthwait J Clin Invest. 1957;36(11):1572-1578. https://doi.org/10.1172/JCI103555. Research Article Find the latest version: https://jci.me/103555/pdf MECHANISMS OF SYNTHESIS OF PURINE NUCLEOTIDES IN HEART MUSCLE EXTRACTS1 BY DAVID A. GOLDTHWAIT2 (From the Departments of Biochemistry and Medicine, Western Reserve University, Cleveland, Ohio) (Submitted for publication February 18, 1957; accepted July 18, 1957) The key role of ATP, a purine nucleotide, in 4. Adenine or Hypoxanthine + PRPP -> AMP the conversion of chemical energy into mechanical or Inosinic Acid (IMP) + P-P. work by myocardial tissue is well established (1, The third mechanism of synthesis is through the 2). The requirement for purine nucleotides has phosphorylation of a purine nucleoside (8, 9): also been demonstrated in the multiple synthetic 5. Adenosine + ATP -, AMP + ADP. reactions which maintain all animal cells in the Several enzymatic mechanisms are known which steady state. Since the question immediately arises result in the degradation of purine nucleotides and whether the purine nucleotides are themselves in nucleosides. The deamination of adenylic acid is a steady state, in which their rates of synthesis well known (10): equal their rates of degradation, it seems reason- 6. AMP -* IMP + NH8. able to investigate first what mechanisms of syn- Non-specific phosphatases (11) as well as spe- thesis and degradation may be operative. cific 5'-nucleotidases (12) have been described At present, there are three known pathways for which result in dephosphorylation: the synthesis of purine nucleotides. The first is 7.
    [Show full text]
  • Questions with Answers- Nucleotides & Nucleic Acids A. the Components
    Questions with Answers- Nucleotides & Nucleic Acids A. The components and structures of common nucleotides are compared. (Questions 1-5) 1._____ Which structural feature is shared by both uracil and thymine? a) Both contain two keto groups. b) Both contain one methyl group. c) Both contain a five-membered ring. d) Both contain three nitrogen atoms. 2._____ Which component is found in both adenosine and deoxycytidine? a) Both contain a pyranose. b) Both contain a 1,1’-N-glycosidic bond. c) Both contain a pyrimidine. d) Both contain a 3’-OH group. 3._____ Which property is shared by both GDP and AMP? a) Both contain the same charge at neutral pH. b) Both contain the same number of phosphate groups. c) Both contain the same purine. d) Both contain the same furanose. 4._____ Which characteristic is shared by purines and pyrimidines? a) Both contain two heterocyclic rings with aromatic character. b) Both can form multiple non-covalent hydrogen bonds. c) Both exist in planar configurations with a hemiacetal linkage. d) Both exist as neutral zwitterions under cellular conditions. 5._____ Which property is found in nucleosides and nucleotides? a) Both contain a nitrogenous base, a pentose, and at least one phosphate group. b) Both contain a covalent phosphodister bond that is broken in strong acid. c) Both contain an anomeric carbon atom that is part of a β-N-glycosidic bond. d) Both contain an aldose with hydroxyl groups that can tautomerize. ___________________________________________________________________________ B. The structures of nucleotides and their components are studied. (Questions 6-10) 6._____ Which characteristic is shared by both adenine and cytosine? a) Both contain one methyl group.
    [Show full text]
  • Effects of Allopurinol and Oxipurinol on Purine Synthesis in Cultured Human Cells
    Effects of allopurinol and oxipurinol on purine synthesis in cultured human cells William N. Kelley, James B. Wyngaarden J Clin Invest. 1970;49(3):602-609. https://doi.org/10.1172/JCI106271. Research Article In the present study we have examined the effects of allopurinol and oxipurinol on thed e novo synthesis of purines in cultured human fibroblasts. Allopurinol inhibits de novo purine synthesis in the absence of xanthine oxidase. Inhibition at lower concentrations of the drug requires the presence of hypoxanthine-guanine phosphoribosyltransferase as it does in vivo. Although this suggests that the inhibitory effect of allopurinol at least at the lower concentrations tested is a consequence of its conversion to the ribonucleotide form in human cells, the nucleotide derivative could not be demonstrated. Several possible indirect consequences of such a conversion were also sought. There was no evidence that allopurinol was further utilized in the synthesis of nucleic acids in these cultured human cells and no effect of either allopurinol or oxipurinol on the long-term survival of human cells in vitro could be demonstrated. At higher concentrations, both allopurinol and oxipurinol inhibit the early steps ofd e novo purine synthesis in the absence of either xanthine oxidase or hypoxanthine-guanine phosphoribosyltransferase. This indicates that at higher drug concentrations, inhibition is occurring by some mechanism other than those previously postulated. Find the latest version: https://jci.me/106271/pdf Effects of Allopurinol and Oxipurinol on Purine Synthesis in Cultured Human Cells WILLIAM N. KELLEY and JAMES B. WYNGAARDEN From the Division of Metabolic and Genetic Diseases, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27706 A B S TR A C T In the present study we have examined the de novo synthesis of purines in many patients.
    [Show full text]
  • Nucleotide Metabolism II
    Nucleotide Metabolism II • Biosynthesis of deoxynucleotides • Salvage Pathway • Catabolism: Purines • Catabolism: Pyrimidines • Feedback inhibition in purine nucleotide biosynthesis CPS II • Cytosolic CPS II uses glutamine as the nitrogen donor to carbamoyl phosphate Regulation of pyrimidine synthesis •CPSII is allosterically regulated: PRPP and IMP are activators Several pyrimidines are inhibitors • Aspartate transcarbamoylase (ATCase) Important regulatory point in prokaryotes Catalyzes the first committed pathway step Allosteric regulators: CTP (-), CTP + UTP (-), ATP (+) • Regulation of pyrimidine nucleotide synthesis in E. coli Biosynthesis of deoxynucleotides • Uses diphosphates (ribo) • Ribonucleotide reducatase • 2 sub-units • R1- reduces, active and two allosteric sites (activity and specificity site) • R2- tyrosine radical carries electrons • removes 2' OH to H Ribonucleotide reductase reaction • removes 2' OH to H • Thioredoxin and NADPH used to regenerate sulfhydryl groups Thymidylate synthesis • UDP ------> dUMP • dUMP --------> dTMP • required THF • methylates uracil Regulation THF • Mammals cannot conjugate rings or synthesize PABA. • So must get in diet. • Sulfonamides effective in bacteria due to competitive inhibition of the incorporation of PABA Cancer Drugs • fluorouracil-- suicide inhibitor of Thy synthase • aminopterin • Methotrexate -- inhibits DHF reductase Salvage of Purines and Pyrimidines • During cellular metabolism or digestion, nucleic acids are degraded to heterocyclic bases • These bases can be salvaged
    [Show full text]
  • Effects of Salt Stress on Adenine and Uridine Nucleotide Pools, Sugar and Acid-Soluble Phosphate in Shoots of Pepper and Safflower
    Journal of Experimental Botany, Vol. 39, No. 200, pp. 301-309, March 1988 Effects of Salt Stress on Adenine and Uridine Nucleotide Pools, Sugar and Acid-Soluble Phosphate in Shoots of Pepper and Safflower R. H. NIEMAN, R. A. CLARK, D. PAP, G. OGATA AND E. V. MAAS USDA, ARS, U.S. Salinity Laboratory, Riverside, California, U.S.A. Received 7 September 1987 ABSTRACT Nieman, R. H., Clark, R. A., Pap, D., Ogata, G. and Maas, E. V. 1988. Effects of salt stress on adenine and uridine nucleotide pools, sugar and acid-soluble phosphate in shoots of pepper and safflower.—J. exp. Bot. 39: 301-309. Pepper (Capsicum annuum cv. Yolo wonder) and safflower (Carthamus tmctonus L. cv. Gila) were 3 3 grown hydroponically and subjected to a salt stress (51 mol m" NaCl plus 25-5 mol m" CaCl2). Mature photosynthetic source leaves and shoot meristematic sinks (young pepper leaves and safflower buds) were analyzed for nucleotides by high performance liquid chromatography and for hexose and acid-soluble P—pepper was still vegetative whereas safflower had switched to flower bud formation—the salt stress reduced the fresh shoot yield of pepper by nearly two-thirds and of safflower by half. It reduced the ATP pool and ATP/ADP ratio in the source leaves of both species and also in the young pepper leaves. It had little or no effect on ATP or other nucleotide pools in safflower buds. The UDPG pool was not affected in source leaves or safflower buds, but in the young pepper leaves it was reduced by half, along with UTP.
    [Show full text]
  • Thymine, Uracil and Adenine 21
    CHAPTER 4: THYMINE, URACIL AND ADENINE 21 CHAPTER 4: THYMINE, URACIL AND ADENINE 22 CHAPTER 4: THYMINE, URACIL AND ADENINE 4.1 THYMINE Not only the pyrimidines present in the nucleic acids (cytosine, uracil and thymine) but also a great number of other pyrimidine derivatives play a vital role in many biological processes. In most biological systems vitamin B1 (derivative of 2-methyl-4- aminopyrimidine) occurs as its coenzyme, the specie that functions in biological systems [106]. Another pyrimidine alloxan was intensively studied [64,65] due to cause diabetes when administrated in laboratory animals. A number of pyrimidines derivatives are antimetabolites, been of clinical interest in cancer chemotherapy. 4.1.1 TAUTOMERISM AND PK VALUE Thymine exists in two tautomeric forms the keto and the enol form, where the keto form is strongly favored in the equilibrium. O OH H C H C 3 4 3 5 3NH N 6 2 1 N O N OH H Keto Enol Figure 4.1: Tautomeric forms for thymine. At alkaline pH the hydrogen N(3) for thymine is removed, indicating the weak basicity of the ring nitrogen. CHAPTER 4: THYMINE, URACIL AND ADENINE 23 O O H3C H3C 4 pKa=9.5 4 - 5 N 5 3NH 3 2 6 2 6 1 1 N O N O H H Figure 4.2: Ionization constant for thymine. Arrow indicates the dipole moment. 4.1.2 ADSORPTION OF THYMINE ON AU(111) AND AU POLYCRISTALLINE The adsorption of pyrimidines (uracil, thymine, and cytosine) on electrode surfaces had been carefully investigated in many studies in the recent years [24,51,52,54-56].
    [Show full text]
  • Nucleobases Thin Films Deposited on Nanostructured Transparent Conductive Electrodes for Optoelectronic Applications
    www.nature.com/scientificreports OPEN Nucleobases thin flms deposited on nanostructured transparent conductive electrodes for optoelectronic applications C. Breazu1*, M. Socol1, N. Preda1, O. Rasoga1, A. Costas1, G. Socol2, G. Petre1,3 & A. Stanculescu1* Environmentally-friendly bio-organic materials have become the centre of recent developments in organic electronics, while a suitable interfacial modifcation is a prerequisite for future applications. In the context of researches on low cost and biodegradable resource for optoelectronics applications, the infuence of a 2D nanostructured transparent conductive electrode on the morphological, structural, optical and electrical properties of nucleobases (adenine, guanine, cytosine, thymine and uracil) thin flms obtained by thermal evaporation was analysed. The 2D array of nanostructures has been developed in a polymeric layer on glass substrate using a high throughput and low cost technique, UV-Nanoimprint Lithography. The indium tin oxide electrode was grown on both nanostructured and fat substrate and the properties of the heterostructures built on these two types of electrodes were analysed by comparison. We report that the organic-electrode interface modifcation by nano- patterning afects both the optical (transmission and emission) properties by multiple refections on the walls of nanostructures and the electrical properties by the efect on the organic/electrode contact area and charge carrier pathway through electrodes. These results encourage the potential application of the nucleobases thin flms deposited on nanostructured conductive electrode in green optoelectronic devices. Te use of natural or nature-inspired materials in organic electronics is a dynamic emerging research feld which aims to replace the synthesized materials with natural (bio) ones in organic electronics1–3.
    [Show full text]