Mechanism of Adenosine Triphosphate Catabolism Induced by Deoxyadenosine and by Nucleoside Analogues in Adenosine Deaminase-Inhibited Human Erythrocytes1

Total Page:16

File Type:pdf, Size:1020Kb

Mechanism of Adenosine Triphosphate Catabolism Induced by Deoxyadenosine and by Nucleoside Analogues in Adenosine Deaminase-Inhibited Human Erythrocytes1 (CANCER RESEARCH 49, 4983-4989, September 15. 1989] Mechanism of Adenosine Triphosphate Catabolism Induced by Deoxyadenosine and by Nucleoside Analogues in Adenosine Deaminase-inhibited Human Erythrocytes1 FrançoiseBontemps2 and Georges Van den Berghe' Laboratory of Physiological Chemistry, International Institute of Cellular and Molecular Pathology, ana University of Louvain, B-1200 Brussels, Belgium ABSTRACT explained this ATP depletion as follows: (a) dAdo, which accumulates when ADA is deficient or inhibited, is phospho- The mechanism of the depletion of ATP, recorded in the erythrocytes of adenosine deaminase-deficient children and of leukemia patients rylated to dAMP and subsequently to dATP, a process which treated with deoxycoformycin, »asinvestigated in normal human eryth utilizes ATP and generates ADP and AMP; (¿>)theaccumula rocytes treated with this inhibitor of adenosine deaminase. Deoxyadeno tion of dATP, which is greatly facilitated by the fact that dAMP sine, which accumulates in both clinical conditions, provoked a dose- is a poor substrate for AMP-DA (15, 16), stimulates both the dependent accumulation of dATP, depletion of ATP, and increases in the deamination of AMP to IMP and the dephosphorylation of production of inosine plus hypoxanthine. Concomitantly, there was an IMP to inosine (14, 17), thereby provoking adenine ribonucle- increase of AMP and IMP, but not of adenosine, indicating that catabo- otide catabolism. This mechanism is, however, difficult to rec lism proceeded by way of AMP deaminase. A series of nucleoside oncile with two observations: (a) dATP and ATP are equipotent analogues (9-/3-D-arabinofuranosyladenine, A*-methyladenosine, 6-meth- as stimulators of erythrocyte (15) and lymphoblast (14) AMP- ylmercaptopurine ribonucleoside, tubercidin, ribavirin, and ¿V-I-ribosyl- DA; (b) the sum of dATP and ATP in ADA-deficient (4, 5) or 5-aminoimidazole-4-carboxamide riboside) also stimulated adenine nu- in ADA-inhibited cells (9, 10, 13) is not or only slightly higher cleotide catabolism and increased AMP and IMP to various extents. The effects of deoxyadenosine and of the nucleoside analogues were prevented than that of ATP in control cells. These data and uncertainties by 5'-iodotubercidin, an inhibitor of adenosine kinase. Strikingly, they about the concentration of AMP in ADA-deficient or -inhibited were reversed if the inhibitor was added after the accumulation of cells prompted a reinvestigation of the mechanism of the deple nucleotide analogues and initiation of adenine nucleotide catabolism. tion of ATP induced by dAdo. This study was performed with Further analyses revealed linear relationships between the rate of phos- normal human erythrocytes in which ADA was inhibited by phorylation of deoxyadenosine and nucleoside analogues and the increase dCF. The effect of dAdo has been compared to that of other in AMP and between the elevation of the latter above a threshold purine nucleoside analogues which are also substrates of aden concentration of 10 UM and the rate of adenine nucleotide catabolism. osine kinase. Our results provide evidence that all these nucle Kinetic studies with purified erythrocytic AMP deaminase, at physiolog osides induce catabolism of the adenine nucleotides by a com ical concentrations of its effectors, showed that the enzyme is nearly mon mechanism, namely elevation of AMP. Part of this work inactive up to 10 UMAMP and increases in activity above this threshold. We conclude that the main mechanism whereby deoxyadenosine and has been presented at a symposium (18). nucleoside analogues stimulate catabolism of adenine nucleotides by way of AMP deaminase in erythrocytes is elevation of AMP, secondary to MATERIALS AND METHODS the phosphorylation of the nucleosides. Chemicals. [t/-uC]Adenine (270 Ci/mol) and [8-MC]AMP (55 Ci/ INTRODUCTION mol) were purchased from the Radiochemical Centre (Amersham, Buckinghamshire, England). ITu was from RBI (Natick, MA) and dCF Accumulation of dATP has been documented in erythrocytes was from Warner Lambert (Detroit, MI). Adenine nucleotides and (1-6), in lymphocytes and bone marrow cells (7), and in plate adenosine were from Boehringer (Mannheim, Germany). Other nucleo lets (8) of children with ADA4 deficiency. It is also found in tides, nucleosides, and GTP-agarose were from Sigma (St. Louis, MO). RBC (9-11) and lymphoblasts (12, 13) of leukemia patients The sources of all other chemicals have been given (19, 20). treated with the ADA inhibitor, dCF. In addition, dramatic Incubation of Erythrocytes. Fresh blood taken from a cubital vein of healthy human volunteers was collected on heparin. Isolation and depletions of ATP were recorded in the erythrocytes (9, 10) and washing of erythrocytes were performed in KRB, pH 7.4, containing 5 lymphoblasts (13) of patients treated with dCF, whereas smaller mM glucose and gassed with 95% O2-5% CO2 as described in Ref. 19. decreases were observed in the erythrocytes of some children The RBC were resuspended in the same medium as a 20% hematocrit with ADA deficiency (3-6). Bagnara and Hershfield (14), in and their adenine nucleotides were labeled by a 60-90-min prcincuba- vestigating ADA-inhibited human lymphoblastoid cells, have tion at 37°Cwith 2-3 (¡M[U-'4C|adenine. This was followed by two washes and resuspension as a 20% hematocrit in KRB with 5 mM Received 2/27/89; revised 6/1/89; accepted 6/14/89. The costs of publication of this article were defrayed in part by the payment glucose. Unless given otherwise, the concentration of P¡in the KRB of page charges. This article must therefore be hereby marked advertisement in buffer was 1.2 HIM.In the experiments in which this concentration was accordance with 18 U.S.C. Section 1734 solely to indicate this fact. increased to 10 mM. that of Ca-+ was reduced from 2.5 to 1.25 m\i. 1Supported by Grant 3.4539.87 of the Fund for Medical Scientific Research (Belgium) and by the Belgian State-Prime Minister's Office-Science Policy Pro Incubations were performed in carefully regassed and stoppered vials. In all experiments, suspensions were preincubated for 20 min with 1 gramming. ! To whom requests for reprints should be addressed, at Laboratory of Phys ^M dCF before addition of nucleosides, in order to allow tight binding iological Chemistry. UCL-ICP 75.39, Avenue Hippocrate, 75, B-1200 Brussels, of the inhibitor with ADA. We have shown previously that dCF has no Belgium. 1Director of Research of the Belgian National Fund for Scientific Research. effect by itself on erythrocytic adenine nucleotide catabolism (19). In 4The abbreviations used are: ADA. adenosine deaminase (EC 3.5.4.4); dAdo. some experiments, 10 »\iITu was used to inhibit adenosine kinase 2'-deoxyadenosine; AMP-DA, AMP deaminase (EC 3.5.4.6); KRB, Krebs-Ringer (21). bicarbonate; dCF, 2'-deoxycoformycin; ITu, 5'-iodotubercidin; 2,3-BPG, 2,3- Assessment of Inhibitor Requirements in Intact Erythrocytes. Prelim bisphosphoglycerate; ara-A, 9-fi-D-arabinofuranosyladenine; AICA riboside, ¿V-l- inary studies were performed in which the nucleotides and the catabo- ribosyl-5-aminoimidazole-4-carboxamide: N'-MeAdo, A*-methyladenosine; MMPR, 6-methylmercaptopurine ribonucleoside: Tu, lubercidin (7-deazaadeno- lites produced from the added nucleosides were measured by HPLC, as sine); Rbv, ribavirin (l-/i-n-ribofuranosyl-l.2,4-triazole-3-carboxamide); HPLC, described below. These showed that the addition of IMMdCF and 10 high-performance liquid chromatography. /aMITu inhibited by more than 90% the deamination of up to 0.5 mM 4983 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 1989 American Association for Cancer Research. MECHANISM OF NUCLEOSIDE-1NDUCED ATP CATABOL1SM adenosine, dAdo, and ara-A and prevented any detectable synthesis of lowest concentration, was not completely utilized over 3 h; nucleotides from the latter nucleosides and from Tu, MMPR, N6- dATP represented 80 to 90% of the total amount of deoxyri- MeAdo, Rbv, and AICA riboside. bonucleotides synthesized (not illustrated). Concomitantly, Assay and Partial Purification of AMP Deaminase. AMP-DA activity was measured by the production of [S-'TJIMP from |8-'4C]AMP. there was a decrease of ATP. At all concentrations of dAdo, Incubations were performed at 37°Cin a medium containing 50 HIM the sum of both triphosphates remained approximately equal A'-2-hydroxyethyl-piperazine-A'-2-ethanesulfonic acid buffer (pH 7.2), or became slightly higher than the initial concentration of ATP. 100 mM KCI, 5 mM MgCl2, [8-uC)AMP (0.05-0.1 ßCi/lest),and AMP The addition of dAdo also induced an accumulation of the at the concentrations indicated, in a total volume of 50 or 100 n\. At terminal purine catabolites, hypoxanthine and inosine (Fig. 1, appropriate time intervals, 10 M'of the incubation medium were spotted rifflit). the latter increasing only at high concentrations of dAdo on polyethyleneimine cellulose thin-layer chromatography plates on (see Fig. 2). The very small accumulation of purine catabolites, which carrier solutions (50 mimi) of AMP and IMP had been applied. recorded in the control condition, was about doubled upon After development in 1.4 M LiCl, activity was calculated from the addition of 20 /¿MdAdo, the lowest concentration used, and radioactivity appearing in IMP. In crude preparations, AMP-DA activ 30- to 50-fold increased in the presence of 0.5 mivi dAdo. The ity was measured at 5 mM AMP in the absence of Mg2* to prevent the dephosphorylation of AMP or IMP by S'-nucleotidase(s). Insignificant purine catabolites nearly completely accounted for the loss of ATP. All these results are qualitatively similar to those recorded amounts of inosine, hypoxanthine, and adenosine (less than 5% of by Bagnara and Hershfield (14) in ADA-inhibited lymphoblas- AMP or IMP) were produced during the assay under these conditions. AMP-DA was purified approximately 50,000-fold, with a yield of toid cells. 10-20%, by a two-step procedure.
Recommended publications
  • Nucleotide Degradation
    Nucleotide Degradation Nucleotide Degradation The Digestion Pathway • Ingestion of food always includes nucleic acids. • As you know from BI 421, the low pH of the stomach does not affect the polymer. • In the duodenum, zymogens are converted to nucleases and the nucleotides are converted to nucleosides by non-specific phosphatases or nucleotidases. nucleases • Only the non-ionic nucleosides are taken & phospho- diesterases up in the villi of the small intestine. Duodenum Non-specific phosphatases • In the cell, the first step is the release of nucleosides) the ribose sugar, most effectively done by a non-specific nucleoside phosphorylase to give ribose 1-phosphate (Rib1P) and the free bases. • Most ingested nucleic acids are degraded to Rib1P, purines, and pyrimidines. 1 Nucleotide Degradation: Overview Fate of Nucleic Acids: Once broken down to the nitrogenous bases they are either: Nucleotides 1. Salvaged for recycling into new nucleic acids (most cells; from internal, Pi not ingested, nucleic Nucleosides acids). Purine Nucleoside Pi aD-Rib 1-P (or Rib) 2. Oxidized (primarily in the Phosphorylase & intestine and liver) by first aD-dRib 1-P (or dRib) converting to nucleosides, Bases then to –Uric Acid (purines) –Acetyl-CoA & Purine & Pyrimidine Oxidation succinyl-CoA Salvage Pathway (pyrimidines) The Salvage Pathways are in competition with the de novo biosynthetic pathways, and are both ANABOLISM Nucleotide Degradation Catabolism of Purines Nucleotides: Nucleosides: Bases: 1. Dephosphorylation (via 5’-nucleotidase) 2. Deamination and hydrolysis of ribose lead to production of xanthine. 3. Hypoxanthine and xanthine are then oxidized into uric acid by xanthine oxidase. Spiders and other arachnids lack xanthine oxidase.
    [Show full text]
  • REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
    REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content.
    [Show full text]
  • Deoxyguanosine Cytotoxicity by a Novel Inhibitor of Furine Nucleoside Phosphorylase, 8-Amino-9-Benzylguanine1
    [CANCER RESEARCH 46, 519-523, February 1986] Potentiation of 2'-Deoxyguanosine Cytotoxicity by a Novel Inhibitor of Furine Nucleoside Phosphorylase, 8-Amino-9-benzylguanine1 Donna S. Shewach,2 Ji-Wang Chern, Katherine E. Pillóte,Leroy B. Townsend, and Peter E. Daddona3 Departments of Internal Medicine [D.S.S., P.E.D.], Biological Chemistry [P.E.D.], and Medicinal Chemistry [J-W.C., K.E.P., L.B.T.], University ol Michigan, Ann Arbor, Michigan 48109 ABSTRACT to the ADA-deficient disease state (2). PNP is an essential enzyme of the purine salvage pathway, We have synthesized and evaluated a series of 9-substituted catalyzing the phosphorolysis of guanosine, inosine, and their analogues of 8-aminoguanine, a known inhibitor of human purine 2'-deoxyribonucleoside derivatives to the respective purine nucleoside phosphorylase (PNP) activity. The ability of these bases. To date, several inhibitors of PNP have been identified, agents to inhibit PNP has been investigated. All compounds were and most of these compounds resemble purine bases or nucleo found to act as competitive (with inosine) inhibitors of PNP, with sides. The most potent inhibitors exhibit apparent K¡values in K¡values ranging from 0.2 to 290 /¿M.Themost potent of these the range of 10~6to 10~7 M (9-12). Using partially purified human analogues, 8-amino-9-benzylguanine, exhibited a K, value that erythrocyte PNP, the diphosphate derivative of acyclovir dis was 4-fold lower than that determined for the parent base, 8- played K¡values of 5.1 x 10~7 to 8.7 x 10~9 M, depending on aminoguanine.
    [Show full text]
  • Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities
    cells Review Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities Patrizia Di Iorio 1,2 and Renata Ciccarelli 1,2,* 1 Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy; [email protected] 2 Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy * Correspondence: [email protected] Abstract: Extracellular vesicles (EVs), mainly classified as small and large EVs according to their size/origin, contribute as multi-signal messengers to intercellular communications in normal/pathological conditions. EVs are now recognized as critical players in cancer processes by promoting transformation, growth, invasion, and drug-resistance of tumor cells thanks to the release of molecules contained inside them (i.e., nucleic acids, lipids and proteins) into the tumor microenvironment (TME). Interestingly, secre- tion from donor cells and/or uptake of EVs/their content by recipient cells are regulated by extracellular signals present in TME. Among those able to modulate the EV-tumor crosstalk, purines, mainly the adenine-based ones, could be included. Indeed, TME is characterized by high levels of ATP/adenosine and by the presence of enzymes deputed to their turnover. Moreover, ATP/adenosine, interacting with their own receptors, can affect both host and tumor responses. However, studies on whether/how the purinergic system behaves as a modulator of EV biogenesis, release and functions in cancer are still poor. Thus, this review is aimed at collecting data so far obtained to stimulate further research in this regard.
    [Show full text]
  • Cyclic Nucleotide Phosphodiesterases in Heart and Vessels
    Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, Véronique Leblais, Rodolphe Fischmeister, Grégoire Vandecasteele To cite this version: Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, et al.. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Archives of cardiovascular diseases, Elsevier/French Society of Cardiology, 2016, 109 (6-7), pp.431-443. 10.1016/j.acvd.2016.02.004. hal-02482730 HAL Id: hal-02482730 https://hal.archives-ouvertes.fr/hal-02482730 Submitted on 23 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective Abbreviated title: Cyclic nucleotide phosphodiesterases in heart and vessels French title: Phosphodiestérases des nucléotides cycliques dans le cœur et les vaisseaux : une perspective thérapeutique. Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, Véronique Leblais, Rodolphe Fischmeister*, Grégoire Vandecasteele* UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France * Corresponding authors. UMR-S1180, Faculté de Pharmacie, Université Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry Cedex, France.
    [Show full text]
  • Inhibitory Effects of Cordycepin on Platelet Activation Via Regulation of Cyclic Adenosine Monophosphate-Downstream Pathway
    Biomedical Science Letters 2017, 23(3): 251~260 Original Article https://doi.org/10.15616/BSL.2017.23.3.251 eISSN : 2288-7415 Inhibitory Effects of Cordycepin on Platelet Activation via Regulation of Cyclic Adenosine Monophosphate-downstream Pathway Dong-Ha Lee† Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan 31172, Korea Platelet activation is essential at the sites of vascular injury, which leads to hemostasis through adhesion, aggregation, and secretion process. However, potent and continuous platelet activation may be an important reason of circulatory disorders. Therefore, proper regulation of platelet activation may be an effective treatment for vascular diseases. In this research, inhibitory effects of cordycepin (3'-deoxyadenosine) on platelet activation were determined. As the results, cordycepin increased cAMP and cGMP, which are intracellular Ca2+-antagonists. In addition, cordycepin reduced collagen- 2+ elevated [Ca ]i mobilization, which was increased by a cAMP-dependent protein kinase (PKA) inhibitor (Rp-8-Br- cAMPS), but not a cGMP-protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). Furthermore, cordycepin increased IP3RI 1756 2+ (Ser ) phosphorylation, indicating inhibition of IP3-mediated Ca release from internal store via the IP3RI, which was strongly inhibited by Rp-8-Br-cAMPS, but was not so much inhibited by Rp-8-Br-cGMPS. These results suggest that the 2+ 1756 reduction of [Ca ]i mobilization is caused by the cAMP/A-kinase-dependent IP3RI (Ser ) phosphorylation. In addition, cordycepin increased the phosphorylation of VASP (Ser157) known as PKA substrate, but not VASP (Ser239) known as PKG substrate. Cordycepin-induced VASP (Ser157) phosphorylation was inhibited by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS, and cordycepin inhibited collagen-induced fibrinogen binding to αIIb/β3, which was increased by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS.
    [Show full text]
  • Inosine in Biology and Disease
    G C A T T A C G G C A T genes Review Inosine in Biology and Disease Sundaramoorthy Srinivasan 1, Adrian Gabriel Torres 1 and Lluís Ribas de Pouplana 1,2,* 1 Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; [email protected] (S.S.); [email protected] (A.G.T.) 2 Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain * Correspondence: [email protected]; Tel.: +34-934034868; Fax: +34-934034870 Abstract: The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post- transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health. Keywords: inosine; deamination; adenosine deaminase acting on RNAs; RNA modification; translation Citation: Srinivasan, S.; Torres, A.G.; Ribas de Pouplana, L. Inosine in 1. Introduction Biology and Disease. Genes 2021, 12, 600. https://doi.org/10.3390/ Inosine was one of the first nucleobase modifications discovered in nucleic acids, genes12040600 having been identified in 1965 as a component of the first sequenced transfer RNA (tRNA), tRNAAla [1].
    [Show full text]
  • Questions with Answers- Nucleotides & Nucleic Acids A. the Components
    Questions with Answers- Nucleotides & Nucleic Acids A. The components and structures of common nucleotides are compared. (Questions 1-5) 1._____ Which structural feature is shared by both uracil and thymine? a) Both contain two keto groups. b) Both contain one methyl group. c) Both contain a five-membered ring. d) Both contain three nitrogen atoms. 2._____ Which component is found in both adenosine and deoxycytidine? a) Both contain a pyranose. b) Both contain a 1,1’-N-glycosidic bond. c) Both contain a pyrimidine. d) Both contain a 3’-OH group. 3._____ Which property is shared by both GDP and AMP? a) Both contain the same charge at neutral pH. b) Both contain the same number of phosphate groups. c) Both contain the same purine. d) Both contain the same furanose. 4._____ Which characteristic is shared by purines and pyrimidines? a) Both contain two heterocyclic rings with aromatic character. b) Both can form multiple non-covalent hydrogen bonds. c) Both exist in planar configurations with a hemiacetal linkage. d) Both exist as neutral zwitterions under cellular conditions. 5._____ Which property is found in nucleosides and nucleotides? a) Both contain a nitrogenous base, a pentose, and at least one phosphate group. b) Both contain a covalent phosphodister bond that is broken in strong acid. c) Both contain an anomeric carbon atom that is part of a β-N-glycosidic bond. d) Both contain an aldose with hydroxyl groups that can tautomerize. ___________________________________________________________________________ B. The structures of nucleotides and their components are studied. (Questions 6-10) 6._____ Which characteristic is shared by both adenine and cytosine? a) Both contain one methyl group.
    [Show full text]
  • Plasma Deoxyadenosine, Adenosine, and Erythrocyte Deoxyatp Are Elevated at Birth in an Adenosine Deaminase-Deficient Child
    Plasma deoxyadenosine, adenosine, and erythrocyte deoxyATP are elevated at birth in an adenosine deaminase-deficient child. R Hirschhorn, … , A Rubinstein, P Papageorgiou J Clin Invest. 1980;65(3):768-771. https://doi.org/10.1172/JCI109725. Research Article We have determined concentrations of adenosine, deoxyadenosine, and deoxyATP (dATP) in cord blood from an infant prenatally diagnosed as ADA deficient. Plasma deoxyadenosine and adenosine were already elevated in cord blood (0.7 and 0.5 microM vs. normal of less than 0.07 microM). Elevation of plasma deoxyadenosine has not previously been documented in these children. Erythrocyte dATP content was also elevated at birth (215 nmol/ml packed erythrocytes vs. normal of 2.9). These elevated concentrations of adenosine, deoxyadenosine, and dATP are similar to those we observed in another older adenosine deaminase-deficient patient and may explain the impaired immune function and lymphopenia seen at birth. Find the latest version: https://jci.me/109725/pdf RAPID PUBLICATIONS Plasma Deoiyadenosine, Adenosine, and Erythrocyte deoxyATP are Elevated at Birth in an Adenosine Deaminase-deficient Child ROCHELLE HIRSCHHORN and VIVIAN ROEGNER, Department of Medicine, New York University School of Medicine, New York 10016 ARYE RUBINSTEIN, Department of Pediatrics, Albert Einstein College of Medicine, New York 10461 PHOTINI PAPAGEORGIOU, Department of Pediatrics, Rutgers University Medical School, New Brunswick, Netv Jersey 08854 A B S T RA C T We have determined concentrations of amounts of deoxyadenosine, another substrate of ADA, adenosine, deoxyadenosine, and deoxyATP (dATP) in in their urine (4-11). Additionally, deoxyATP (dATP), a cord blood from an infant prenatally diagnosed as ADA metabolite of deoxyadenosine, is markedly increased deficient.
    [Show full text]
  • Nucleosides & Nucleotides
    Nucleosides & Nucleotides Biochemistry Fundamentals > Genetic Information > Genetic Information NUCLEOSIDE AND NUCLEOTIDES SUMMARY NUCLEOSIDES&NBSP; • Comprise a sugar and a base NUCLEOTIDES&NBSP; • Phosphorylated nucleosides (at least one phosphorus group) • Link in chains to form polymers called nucleic acids (i.e. DNA and RNA) N-BETA-GLYCOSIDIC BOND&NBSP; • Links nitrogenous base to sugar in nucleotides and nucleosides • Purines: C1 of sugar bonds with N9 of base • Pyrimidines: C1 of sugar bonds with N1 of base PHOSPHOESTER BOND • Links C3 or C5 hydroxyl group of sugar to phosphate NITROGENOUS BASES&NBSP; • Adenine • Guanine • Cytosine • Thymine (DNA) 1 / 8 • Uracil (RNA) NUCLEOSIDES • =sugar + base • Adenosine • Guanosine • Cytidine • Thymidine • Uridine NUCLEOTIDE MONOPHOSPHATES – ADD SUFFIX 'SYLATE' • = nucleoside + 1 phosphate group • Adenylate • Guanylate • Cytidylate • Thymidylate • Uridylate Add prefix 'deoxy' when the ribose is a deoxyribose: lacks a hydroxyl group at C2. • Thymine only exists in DNA (deoxy prefix unnecessary for this reason) • Uracil only exists in RNA NUCLEIC ACIDS (DNA AND RNA)&NBSP; • Phosphodiester bonds: a phosphate group attached to C5 of one sugar bonds with - OH group on C3 of next sugar • Nucleotide monomers of nucleic acids exist as triphosphates • Nucleotide polymers (i.e. nucleic acids) are monophosphates • 5' end is free phosphate group attached to C5 • 3' end is free -OH group attached to C3 2 / 8 FULL-LENGTH TEXT • Here we will learn about learn about nucleoside and nucleotide structure, and how they create the backbones of nucleic acids (DNA and RNA). • Start a table, so we can address key features of nucleosides and nucleotides. • Denote that nucleosides comprise a sugar and a base.
    [Show full text]
  • Biochemical Basis for Differential Deoxyadenosine Toxicity To
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 5, pp. 2434-2437, May 1979 Medical Sciences Biochemical basis for differential deoxyadenosine toxicity to T and B lymphoblasts: Role for 5'-nucleotidase (deoxyadenosine kinase/deoxyadenylate kinase/immunodeficiency) ROBERT L. WORTMANN, BEVERLY S. MITCHELL, N. LAWRENCE EDWARDS, AND IRVING H. Fox Human Purine Research Center, Departments of Internal Medicine and Biological Chemistry, Clinical Research Center, University of Michigan Medical Center, Ann Arbor, Michigan 48109 Communicated by James B. Wyngaarden, March 7, 1979 ABSTRACT Deoxyadenosine metabolism was investigated tained from Calbiochem. Erythro-9-[3-(2-hydroxynonyl)]- in cultured human cells to elucidate the biochemical basis for adenine (EHNA) was a gift from G. B. Elion of Burroughs the sensitivity of T lymphoblasts and the resistance of B lym- Wellcome (Research Triangle Park, NC). Horse serum was phoblasts to deoxyadenosine toxicity. T lymphoblasts have a 20- to 45-fold greater capacity to synthesize deoxyadenosine nu- obtained from Flow Laboratories (Rockville, MD), and Eagle's cleotides than B lymphoblasts at deoxyadenosine concentrations minimal essential medium was purchased from GIBCO. From of 50-300 ,uM. During the synthesis of dATP, T lymphoblasts Amersham/Searle, [U-14C]deoxyadenosine (505 mCi/mmol), accumulate large quantities of dADP, whereas B lymphoblasts [8-14C]hypoxanthine (52.5 mCi/mmol), and [U-14C]deoxy- do not accumu ate dADP. Enzymes affecting deoxyadenosine adenosine monophosphate (574 mCi/mmol) were purchased; nucleotide synthesis were assayed in these cells. No substantial and, from ICN, [8-14C]adenosine monophosphate (34.4 mCi/ differences were evident in activities of deoxyadenosine kinase (ATP: deoxyadenosine 5'-phosphotransferase, EC 2.7.1.76) or mmol) was purchased (1 Ci = 3.7 X 1010 becquerels).
    [Show full text]
  • Nucleoside Diphosphokinase of Eschericia Coli and Its Interactions With
    AN ABSTRACT OF THE THESIS OF Nancy Bisset Ray for the degree of Doctor of Philosophy in Biochemistry and Biophysics presented on May 8, 1992 Title : Nucleoside Diphosphokinase of Eschericia coli and its Interactions with Bacteriophape T4 proteins of DNA synthesis Redacted for privacy Abstract approved: Escherichia coli nucleoside diphosphokinase (NDPK), the product of gene ndk, synthesizes nucleoside triphosphates from the corresponding diphosphates. This bacterial enzyme is an integral component of the T4 bacteriophage dNTP synthetase complex, a multienzyme complex for deoxyribonucleotide biosynthesis, and it plays an indispensable role in T4 DNA replication. A goal was established to locate and clone ndk, in order to overexpress the gene and obtain large enough quantities of the enzyme for the analysis of protein interactions, involving NDPK and proteins of both the T4 dNTP synthetase complex and the T4 DNA replication complex. NDPK was first purified 5000-fold from crude extracts of E. coli B cells for N-terminal amino acid sequencing. Over forty residues of N-terminal sequence were determined, providing information used to design mixed oligonucleotide probes, designed to search for the ndk gene in the Clarke and Carbon E. coif ColE1 plasmid library. A 3.2-kb Pst I fragment from the Clarke and Carbon plasmid, pLC34-9, hybridized specifically to one of the probes and was subcloned into pUC19. Six- fold higher NDPK enzyme activity, over host NDPK enzyme activity, was generated by the recombinant pUC19 plasmid in JM83 cells. A 6.0-kb EcoRl fragment from the Kohara E. co/i lambda library, mapping to approximately the same area, was also cloned into pUC18 based on the elevated, overlapping NDPK enzyme activity of two lambda clones, 2D5 and 7F8.
    [Show full text]