Review of Middle East Paleozoic Plate Tectonics
Total Page:16
File Type:pdf, Size:1020Kb
GeoArabia, Vol. 12, No. 3, 2007 Gulf PetroLink, Bahrain Middle East Paleozoic Plate Tectonics Review of Middle East Paleozoic plate tectonics Dmitry A. Ruban, Moujahed I. Al-Husseini and Yumiko Iwasaki ABSTRACT The Paleozoic Middle East terranes, neighboring the present-day Arabian and Levant plates, are shown by most authors to consist of ten major tectonic units: (1 and 2) the Helmand and Farah terranes of Afghanistan, southwest Pakistan and southeast Turkmenistan; (3 to 6) the Alborz, Central Iran (Lut, Yazd and Tabas) and Sanandaj- Sirjan terranes of Iran, and Northwest Iran (possibly extending into eastern Turkey); (7 and 8) the Pontides and Taurides terranes of Turkey; and (9 and 10) the Greater and Lesser Caucasus terranes between the Caspian and Black seas (Armenia, Azerbaijan, Georgia and southwest Russia). Published plate-tectonic reconstructions indicate that all ten terranes may have broken off from either: (1) the Gondwana Supercontinent in the mid-Silurian as part of the Hun Superterrane; or (2) the Pangea Supercontinent during the mid-Permian - Triassic as part of the Cimmeria Superterrane. To the north of Gondwana and Pangea, three successively younger Tethyan oceans evolved: (1) Proto-Tethys (Cambrian - Devonian); (2) Paleo-Tethys (mid-Silurian - Mesozoic); and (3) Neo-Tethys (mid-Permian - Cenozoic). Two regional Paleozoic unconformities in the Arabian Plate are generally linked to major regional-scale structural events, and commonly correlated to the Caledonian and Hercynian orogenies. These orogenies took place many thousands of kilometers away from the Arabian Plate and are considered unlikely causes for these unconformities. Instead, the breakaway of the Hun and Cimmeria superterranes are considered as alternative near-field tectonic sources. The older unconformity (middle Paleozoic event), represented by a mid-Silurian to Middle Devonian hiatus in North Arabia (Iraq and Syria), reflects an episode of epeirogenic uplift, which might be related to the mid-Silurian rift of the Hun Superterrane. The younger mid-Carboniferous Arabia-wide angular unconformity involved compressional faulting and epeirogenic uplift, and might be related to the earliest phase of subduction by the Paleo-Tethyan crust beneath Cimmeria (Sanandaj-Sirjan and nearby regions) before it broke off. Based on our review and regional considerations, we assign the Helmand, Farah, Central Iran, Alborz, Sanandaj-Sirjan, Northwest Iran, Lesser Caucasus, Taurides and Pontides to Cimmeria, whereas the Greater Caucasus is considered Hunic. INTRODUCTION During the past decade, our general knowledge on the geochronological evolution, paleopositions, paleotectonic compositions and paleogeographic outlines of the Phanerozoic supercontinents has significantly improved (e.g. Dalziel, 1997; Stampfli et al., 2001, 2002; Lindsay, 2002; Cocks and Torsvik, 2002; Lawver et al., 2002; Stampfli and Borel, 2002; Veevers, 2003; Pesonen et al., 2003; von Raumer et al., 2002, 2003; Golonka, 2004; Scotese, 2004; Torsvik and Cocks, 2004). Yet today, many uncertainties persist in reconstructing the geological evolution of the regions adjoining the supercontinents, especially for the Paleozoic Era (Cocks and Torsvik, 2002; Torsvik and Cocks, 2004; Scotese, 2004). These regions are in themselves vast, and consist of numerous plate-tectonic units that are sometimes referred to as microplates, terranes, blocks, structural domains, and sometimes grouped into superterranes. The Middle East is a typical example of a border-region that consists of a complex mosaic of tectonic units (Figures 1 and 2). We identify the Middle East terranes, bordering the present-day Arabian and Levant plates, in Afghanistan, Iran, western Pakistan, Turkey, southeast Turkmenistan and the Caucasus (Armenia, Azerbaijan, Georgia and southwest Russia) (Figures 1 and 2). Several of these terranes are strongly deformed and stacked within a wide tectonic belt between the Eurasian, Arabian and Indian plates. 35 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/12/3/35/4566842/ruban.pdf by guest on 30 September 2021 Ruban et al. PLATES AND TERRANES OF THE MIDDLE EAST 20 30 40 50 60 70 FORMER ROMANIA YUGOSLAVIA EURASIAN PLATE Tect ALBANIA BULGARIA onic c Black Sea ollage Aral KAZAKHSTAN 40 Sea Greater Caucasus GREECE Pontides Caspian Less Sea UZBEKISTAN er Caucasus TURKEY East Karakum- 40 Taurides Turkey TURKMENISTAN Turan Northwes Kopet-Dag CYPRUS Iran t Mediterranean Sea SYRIA Alborz LEBANON LIBYA Farah 30 JORDAN Sana IRAQ IRAN Central Iran AFGHANISTAN Karakoram ndaj-Sirja Zagros Levant Helmand KUWAIT n 30 EGYPT PAKISTAN INDIAN PLATE BAHRAIN ARABIAN Makran PLATE Arabian QATAR Gulf 20 Red UAE INDIA Sea SAUDI ARABIA Arabian Sea AFRICAN PLATE OMAN 20 SUDAN ERITREA N YEMEN 0 500 1,000 ETHIOPIA Indian Ocean Km 10 30 40 50 60 70 Figure 1: The Middle East region consists of the present-day Arabian and Levant plates and numerous terranes (individual boundaries are shown in blue). During the Paleozoic ten large terranes are variably interpreted to have been adjacentSOMALIA to the Arabian and Levant plates (then attached 10to Gondwana and later Pangea). The Paleozoic Middle East terranes (colored brown) include Helmand and Farah (Afghanistan, southwest Pakistan and southeast Turkmenistan); Iran’s Alborz, Northwest Iran, Sanandaj-Sirjan and Central Iran; Turkey’s Pontides and Taurides; and the Greater and Lesser CaucasusZAIRE between the Caspian and Black seas (Armenia, Azerbaijan, Georgia and southwest Russia). The Makran and East Turkey regions may have a Paleozoic core or could have formed as Mesozoic 00 UGANDA accretionaryLake terranes.KENYA Victoria 00 Although30 T ANZANIAtheir boundaries40 are generally traced along50 well-preserved or/and60 reactivated Paleozoic 70fault systems, in some cases the borders remain unclear. Correlation of the sedimentary core complexes, however, suggests that all of these terranes share a common ancestry during some time in the Paleozoic Era. The Middle East terranes were affected by the evolution of the Paleozoic Tethyan oceans, the Hun (Hunic or Intermediate) and Cimmeria (Cimmerian) superterranes, and the Gondwana and Pangea supercontinents (Figures 3 to 11; e.g. Sengör, 1990; Stampfli, 1996; von Raumer, 1998; Cocks and Torsvik, 2002; von Raumer et al., 2002, 2003; Stampfli and Borel, 2002; Stampfli et al., 2001, 2002; Torsvik and Cocks, 2004; Natal’in and Sengör, 2005; Xypolias et al., 2006). At least three major Paleozoic rift episodes occurred along the margins of Gondwana and Pangea (Figures 4 to 11). The first was in the Early Ordovician when Avalonia broke off from Gondwana. This episode was unlikely to have influenced the Middle East region, which was located about 6,000 km away (Figure 4). The second involved the mid-Silurian breakaway of the Hun Superterrane (Figures 6 and 7), the detailed reconstruction of 36 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/12/3/35/4566842/ruban.pdf by guest on 30 September 2021 Middle East Paleozoic Plate Tectonics SUPERCONTINENTS, PLATES AND TERRANES Laurentia Kara Laurentia A NW British Isles va Chukot ATLANTIC lonia OCEAN Armorica P Siberia eru Au n stro ica 60 N Alp - Med ine Baltica Sea Hellenic Moesia Tectonic West Siberian Manchurides collage Basin Apulia Pontides Ural Mountains Kazakh Tau G Causus Terranes Adria L rides Causus K E Tur arakum N 30 N W K North o I pe China ra -T n t-D uran Tarim Sanandaj- ag Sirjan Alborz Farah North Tibet (Qiangtang) PACIFIC OCEAN Central Karakoram South Tibet South Iran Helmand China Africa Makran Arabia India Arabian Annamia GONDWANA Sea Supercontinent LAURUSSIA Supercontinent Sibumasu HUN Superterrane Equ CIMMERIA ator INDIAN OCEAN Superterrane Other 60 E 90 E 120 E Figure 2: The majority of the plates and terranes discussed in this review are shown after Torsvik and Cocks (2004). Besides the NW British Isles and the Chukot Peninsula in Russia, the Laurentia Supercontinent included North America and Greenland (see Figures 4 and 5). Laurentia later collided with Baltica and Avalonia to form the Laurussia Supercontinent (Figure 7). Besides Arabia, Africa and India, the Gondwana Supercontinent included Antarctica, Australia and Madagascar (see Figure 4). Also shown are terranes that may have been part of the Hun and Cimmeria Superterranes. Note that Karakoram in north Pakistan is Cimmerian and different from the Hunic Karakum-Turan terrane. which is unresolved due to insufficient paleomagnetic and paleontological data. This episode is relevant to our review because parts of the superterrane may have involved the Middle East terranes. The third episode is the mid-Permian - Triassic breakaway of several Middle East Cimmerian terranes from Gondwana, by then a part of Pangea (Figures 10 and 11). In most Paleozoic reconstructions, the Middle East region is interpreted as part of the passive margin of Gondwana and Pangea until the mid-Permian - Triassic, when Cimmeria started to rift away, causing the opening of the Neo-Tethys Ocean (e.g. Sharland et al., 2001; Stampfli et al., 2001). In addition, two regional unconformities are recognized. The first corresponds to a mid-Silurian to Middle Devonian hiatus – “middle Paleozoic hiatus” – that is sometimes correlated with the Caledonian Orogeny (e.g. Buday, 1980) (Figures 3, 5 to 7). The second unconformity represents a “mid-Carboniferous hiatus”, and is often correlated to the Hercynian Orogeny (e.g. Berberian and King, 1981) (Figures 3 and 9). These correlations do not provide a satisfactory plate-tectonic