Paleozoic 3: Alabama in the Paleozoic

Total Page:16

File Type:pdf, Size:1020Kb

Paleozoic 3: Alabama in the Paleozoic UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Paleozoic 3: Alabama in the Paleozoic Instructor: Dr. Douglas W. Haywick Last Time The Paleozoic Part 2 1) Back to Newfoundland 2) Eastern Laurentian Orogenies (Appalachians) 3) Other Laurentian Orogenies (Antler, Ouachita) (web notes 25) Laurentia (Paleozoic North America) Even though this coastline of Laurentia was a passive continental margin, a plate tectonic boundary was rapidly approaching… A B A B Laurentia (Paleozoic North America) The resulting Taconic Orogeny first depressed the seafloor Laurentia (localized transgression) and A Island arc then pushed previously deposited passive continental B margin sediments up into thrust fault mountains. Baltica There was only minimal metamorphism and igneous A intrusions. B Middle Ordovician Laurentia (Paleozoic North America) Laurentia Baltica Middle Ordovician Laurentia (Paleozoic North America) Laurentia Baltica Middle Ordovician Laurentia (Paleozoic North America) The next tectonic event (the Acadian Orogeny) was caused Laurentia by the approach of Baltica A B Baltica A B Baltica Baltica Late Ordovician Laurentia (Paleozoic North America) The Acadian Orogeny was more extensive and more intense (metamorphism and A lots of igneous intrusions) B A B Early Devonian Laurentia (Paleozoic North America) The Acadian Orogeny was more extensive and more intense (metamorphism and lots of igneous intrusions) Early Devonian Laurentia (Paleozoic North America) Lastly, along comes Gondwanna and…. …well you get the idea. A B B A B Mississippian Laurentia (Paleozoic North America) Lastly, along comes Gondwanna and…. …well you get the idea. A B B A B Pennsylvannian Suture zone Laurentia (Paleozoic North America) Lastly, along comes Gondwanna and…. …well you get the idea. B Pennsylvanian Today’s Agenda The Paleozoic Part 3 1) Other Paleozoic Orogenies 2) Alabama in the Paleozoic (web notes 26) Other Laurentian Orogenies Period North America Permian Alleghenian Orogeny* (SE) Pensylvannian Mississippian Ouachita Orogeny (S) Devonian Acadian Orogeny* (E) Antler Orogeny (W) Silurian Ordovician Taconic Orogeny* (NE) Cambrian Other Laurentian Orogenies Period North America Permian Alleghenian Orogeny* (SE) Pensylvannian Mississippian Ouachita Orogeny (S) Devonian Acadian Orogeny* (E) Antler Orogeny (W) Silurian Ordovician Taconic Orogeny* (NE) Cambrian Antler Orogeny Other Laurentian Orogenies Period North America Permian Alleghenian Orogeny* (SE) Pensylvannian Mississippian Ouachita Orogeny (S) Devonian Acadian Orogeny* (E) Antler Orogeny (W) Silurian Ordovician Taconic Orogeny* (NE) Cambrian Other Laurentian Orogenies Period North America Permian Alleghenian Orogeny* (SE) Pensylvannian Mississippian Ouachita Orogeny (S) Devonian Acadian Orogeny* (E) Antler Orogeny (W) Silurian Ordovician Taconic Orogeny* (NE) Cambrian Other Laurentian Orogenies Period North America Permian Alleghenian Orogeny* (SE) Pensylvannian Mississippian Ouachita Orogeny (S) Devonian Acadian Orogeny* (E) Antler Orogeny (W) Silurian Ordovician Taconic Orogeny* (NE) Cambrian Ouachita Orogeny The Appalachians Period North America Permian Alleghenian Orogeny* (SE) Pensylvannian Mississippian Ouachita Orogeny (S) Devonian Acadian Orogeny* (E) Antler Orogeny (W) Silurian Ordovician Taconic Orogeny* (NE) Cambrian Appalachian Provinces 4 Tectonic provinces are identified 1) Plateaus (undeformed) 2) Valley and ridge (folded/faulted) 3) Piedmont (Highly metamorphosed) 4) Blue Ridge (igneous intrusions) Appalachian Provinces We only see the first 3 in Alabama 1) Plateaus (undeformed) 2) Valley and ridge (folded/faulted) 3) Piedmont (Highly metamorphosed) Appalachian Provinces We only see the first 3 in Alabama 1) Plateaus (undeformed) 2) Valley and ridge (folded/faulted) 3) Piedmont (Highly metamorphosed) Appalachian Provinces Alabama Stratigraphy (Paleozoic) Alabama (Early Paleozoic) B Cambro-Ordovician Alabama (Mississippian) B Alabama (Pennsylvanian ) Today’s Homework 1. Time Chart 2 due Thursday (Hadean to end of Proterozoic) Next Time 1) Quiz 10: Multiple Choice 2) Evolution of Plants GY 112: Earth History Lectures 26: Alabama in the Paleozoic Instructor: Dr. Doug Haywick [email protected] This is a free open access lecture, but not for commercial purposes. For personal use only. .
Recommended publications
  • Assembly, Configuration, and Break-Up History of Rodinia
    Author's personal copy Available online at www.sciencedirect.com Precambrian Research 160 (2008) 179–210 Assembly, configuration, and break-up history of Rodinia: A synthesis Z.X. Li a,g,∗, S.V. Bogdanova b, A.S. Collins c, A. Davidson d, B. De Waele a, R.E. Ernst e,f, I.C.W. Fitzsimons g, R.A. Fuck h, D.P. Gladkochub i, J. Jacobs j, K.E. Karlstrom k, S. Lu l, L.M. Natapov m, V. Pease n, S.A. Pisarevsky a, K. Thrane o, V. Vernikovsky p a Tectonics Special Research Centre, School of Earth and Geographical Sciences, The University of Western Australia, Crawley, WA 6009, Australia b Department of Geology, Lund University, Solvegatan 12, 223 62 Lund, Sweden c Continental Evolution Research Group, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia d Geological Survey of Canada (retired), 601 Booth Street, Ottawa, Canada K1A 0E8 e Ernst Geosciences, 43 Margrave Avenue, Ottawa, Canada K1T 3Y2 f Department of Earth Sciences, Carleton U., Ottawa, Canada K1S 5B6 g Tectonics Special Research Centre, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia h Universidade de Bras´ılia, 70910-000 Bras´ılia, Brazil i Institute of the Earth’s Crust SB RAS, Lermontova Street, 128, 664033 Irkutsk, Russia j Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway k Department of Earth and Planetary Sciences, Northrop Hall University of New Mexico, Albuquerque, NM 87131, USA l Tianjin Institute of Geology and Mineral Resources, CGS, No.
    [Show full text]
  • Balkatach Hypothesis: a New Model for the Evolution of the Pacific, Tethyan, and Paleo-Asian Oceanic Domains
    Research Paper GEOSPHERE Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains 1,2 2 GEOSPHERE, v. 13, no. 5 Andrew V. Zuza and An Yin 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095-1567, USA doi:10.1130/GES01463.1 18 figures; 2 tables; 1 supplemental file ABSTRACT suturing. (5) The closure of the Paleo-Asian Ocean in the early Permian was accompanied by a widespread magmatic flare up, which may have been CORRESPONDENCE: avz5818@gmail .com; The Phanerozoic history of the Paleo-Asian, Tethyan, and Pacific oceanic related to the avalanche of the subducted oceanic slabs of the Paleo-Asian azuza@unr .edu domains is important for unraveling the tectonic evolution of the Eurasian Ocean across the 660 km phase boundary in the mantle. (6) The closure of the and Laurentian continents. The validity of existing models that account for Paleo-Tethys against the southern margin of Balkatach proceeded diachro- CITATION: Zuza, A.V., and Yin, A., 2017, Balkatach hypothesis: A new model for the evolution of the the development and closure of the Paleo-Asian and Tethyan Oceans criti- nously, from west to east, in the Triassic–Jurassic. Pacific, Tethyan, and Paleo-Asian oceanic domains: cally depends on the assumed initial configuration and relative positions of Geosphere, v. 13, no. 5, p. 1664–1712, doi:10.1130 the Precambrian cratons that separate the two oceanic domains, including /GES01463.1. the North China, Tarim, Karakum, Turan, and southern Baltica cratons.
    [Show full text]
  • Geology: Ordovician Paleogeography and the Evolution of the Iapetus Ocean
    Ordovician paleogeography and the evolution of the Iapetus ocean Conall Mac Niocaill* Department of Geological Sciences, University of Michigan, 2534 C. C. Little Building, Ben A. van der Pluijm Ann Arbor, Michigan 48109-1063. Rob Van der Voo ABSTRACT thermore, we contend that the combined paleomagnetic and faunal data ar- Paleomagnetic data from northern Appalachian terranes identify gue against a shared Taconic history between North and South America. several arcs within the Iapetus ocean in the Early to Middle Ordovi- cian, including a peri-Laurentian arc at ~10°–20°S, a peri-Avalonian PALEOMAGNETIC DATA FROM IAPETAN TERRANES arc at ~50°–60°S, and an intra-oceanic arc (called the Exploits arc) at Displaced terranes occur along the extent of the Appalachian-Cale- ~30°S. The peri-Avalonian and Exploits arcs are characterized by Are- donian orogen, although reliable Ordovician paleomagnetic data from Ia- nigian to Llanvirnian Celtic fauna that are distinct from similarly aged petan terranes have only been obtained from the Central Mobile belt of the Toquima–Table Head fauna of the Laurentian margin, and peri- northern Appalachians (Table 1). The Central Mobile belt separates the Lau- Laurentian arc. The Precordillera terrane of Argentina is also charac- rentian and Avalonian margins of Iapetus and preserves remnants of the terized by an increasing proportion of Celtic fauna from Arenig to ocean, including arcs, ocean islands, and ophiolite slivers (e.g., Keppie, Llanvirn time, which implies (1) that it was in reproductive communi- 1989). Paleomagnetic results from Arenigian and Llanvirnian volcanic units cation with the peri-Avalonian and Exploits arcs, and (2) that it must of the Moreton’s Harbour Group and the Lawrence Head Formation in cen- have been separate from Laurentia and the peri-Laurentian arc well tral Newfoundland indicate paleolatitudes of 11°S (Table 1), placing them before it collided with Gondwana.
    [Show full text]
  • The Taconic Orogeny in Newfoundland: a Three-Stage Process
    atlantic geology . volume 43 . 2007 83 geochronology and isotope geology, indicated that this model was incomplete. We will present new evidence that the Taconic orogeny comprises three separate accretionary events starting in the Late Cambrian and finishing in the Late Ordovician. Taconic 1 is represented by ca. 495 Ma west-directed obduc- tion of the ca. 510 Ma Lushs Bight oceanic Tract onto the peri- Laurentian Dashwoods microcontinent. Subduction is inferred to have initiated at a spreading centre abandoned during an inboard ridge jump responsible for separation of Dashwoods from Laurentia. Partial subduction of the buoyant Dashwoods forced subduction to step back into the Humber seaway, which led to formation of the ca. 490 Ma Baie Verte oceanic tract (BVOT). Dextral oblique closure of the Humber seaway first formed the Notre Dame arc (489–477 Ma) built on Dashwoods and the coeval Snooks Arm arc built on the BVOT, followed by their collision with Laurentia (Taconic 2) and each other. The obliquity of convergence induced large-scale translations of continental ribbons of the Laurentian margin from the lati- tude of Labrador to central Newfoundland. After a magmatic gap of c. 7–10 my, the Notre Dame arc records a voluminous flare-up of predominantly tonalite magmatism (464–459 Ma) during the waning stages of Taconic 2. Magmatism overlaps with strong deformation and comprises both arc and non-arc- like tonalite. We relate this flare-up to break-off of the oceanic lithosphere of the downgoing Laurentian slab. Taconic 3 is rep- resented by 455–450 Ma collision between a peri-Laurentian arc terrane and the peri-Gondwanan Popelogan-Exploits arc and their composite accretion to Laurentia.
    [Show full text]
  • Ouachita Mountains Ecoregional Assessment December 2003
    Ouachita Mountains Ecoregional Assessment December 2003 Ouachita Ecoregional Assessment Team Arkansas Field Office 601 North University Ave. Little Rock, AR 72205 Oklahoma Field Office 2727 East 21st Street Tulsa, OK 74114 Ouachita Mountains Ecoregional Assessment ii 12/2003 Table of Contents Ouachita Mountains Ecoregional Assessment............................................................................................................................i Table of Contents ........................................................................................................................................................................iii EXECUTIVE SUMMARY..............................................................................................................1 INTRODUCTION..........................................................................................................................3 BACKGROUND ...........................................................................................................................4 Ecoregional Boundary Delineation.............................................................................................................................................4 Geology..........................................................................................................................................................................................5 Soils................................................................................................................................................................................................6
    [Show full text]
  • The Making and Unmaking of a Supercontinent: Rodinia Revisited
    Tectonophysics 375 (2003) 261–288 www.elsevier.com/locate/tecto The making and unmaking of a supercontinent: Rodinia revisited Joseph G. Meerta,*, Trond H. Torsvikb a Department of Geological Sciences, University of Florida, 241 Williamson Hall, PO Box 11210 Gainesville, FL 32611, USA b Academy of Sciences (VISTA), c/o Geodynamics Center, Geological Survey of Norway, Leif Eirikssons vei 39, Trondheim 7491, Norway Received 11 April 2002; received in revised form 7 January 2003; accepted 5 June 2003 Abstract During the Neoproterozoic, a supercontinent commonly referred to as Rodinia, supposedly formed at ca. 1100 Ma and broke apart at around 800–700 Ma. However, continental fits (e.g., Laurentia vs. Australia–Antarctica, Greater India vs. Australia– Antarctica, Amazonian craton [AC] vs. Laurentia, etc.) and the timing of break-up as postulated in a number of influential papers in the early–mid-1990s are at odds with palaeomagnetic data. The new data necessitate an entirely different fit of East Gondwana elements and western Gondwana and call into question the validity of SWEAT, AUSWUS models and other variants. At the same time, the geologic record indicates that Neoproterozoic and early Paleozoic rift margins surrounded Laurentia, while similar-aged collisional belts dissected Gondwana. Collectively, these geologic observations indicate the breakup of one supercontinent followed rapidly by the assembly of another smaller supercontinent (Gondwana). At issue, and what we outline in this paper, is the difficulty in determining the exact geometry of the earlier supercontinent. We discuss the various models that have been proposed and highlight key areas of contention. These include the relationships between the various ‘external’ Rodinian cratons to Laurentia (e.g., Baltica, Siberia and Amazonia), the notion of true polar wander (TPW), the lack of reliable paleomagnetic data and the enigmatic interpretations of the geologic data.
    [Show full text]
  • Geology and Topography of Dutchess County (.Pdf)
    Chapter 3: The Geology and Topography of Dutchess County Chapter 3: Geology and Topography of Dutchess County, NY ______________________________________________________________________________ Roy T. Budnik, Jeffery R. Walker, and Kirsten Menking1 May 2010 INTRODUCTION The topography, settlement patterns, and mineral resources of Chapter Contents Dutchess County are all influenced by the underlying geology. Geologic History For example, the highest mountains contain the hardest rocks, Bedrock Formations Structural Geology communities in the county are generally located in areas of Surficial Deposits sand and gravel because of the relatively level terrain and Mineral Resources Topography abundant water supplies they contain, and construction Trends and Changes Over aggregates are mined where suitable deposits are found. Time Implications for Decision- Understanding geologic materials and processes is essential to Making sound resource management because the geology affects the Resources 1 This chapter was written during 2010 by Dr. Roy T. Budnik (President, Roy T. Budnik & Associates), Dr. Jeffrey R. Walker (Professor of Earth Science & Geography, Vassar College), and Dr. Kirsten Menking (Associate Professor of Earth Science and Geography, Vassar College). It is an updated and expanded version of the Hydrology chapter of the 1985 document Natural Resources, Dutchess County, NY (NRI). Natural Resource Inventory of Dutchess County, NY 1 Chapter 3: The Geology and Topography of Dutchess County quality and quantity of groundwater resources, the migration of pollutants, potential hazards to inhabitants, drainage patterns, mineral resources, and soil characteristics. Geology is the study of the earth, including all materials found at and below the earth’s surface. Geologists analyze the composition, origin, and ongoing changes in the rocks and sediments that compose the earth.
    [Show full text]
  • Insights Into the Acadian Orogeny, New England Appalachians: a Provenance Study of the Carrabassett and Kittery Formations, Maine
    Insights into the Acadian orogeny, New England Appalachians: a provenance study of the Carrabassett and Kittery formations, Maine Michael J. Dorais1*, Robert P. Wintsch2, Wendy R. Nelson3, and Michael Tubrett4 1. Department of Geological Sciences, Brigham Young University, Provo, Utah 84602, USA 2. Department of Geological Sciences, Indiana University, Bloomington, Indiana 47405, USA 3. Department of Geosciences, Penn State University, University Park, Pennsylvania 16802, USA 4. CREAIT Network, MicroAnalysis Facility, Inco Innovation Centre (MAF-IIC), Memorial University, St. John’s, Newfoundland A1B 3X5, Canada * Corresponding author: <[email protected]> Date received: 07 July 2008 ¶ Date accepted: 11 February 2009 ABSTRACT The Central Maine Basin and Merrimack Trough are Silurian basins that formed adjacent to or were accreted to the Laurentian margin during the Acadian orogeny. The Early Devonian Carrabassett Formation of the Central Maine Basin and the Kittery Formation of the Merrimack Trough have major and trace element compositions indica- tive of a passive continental margin provenance, not unlike the older formations of the Central Maine Basin that are thought to have been derived from Laurentian sources. However, both the Carrabassett and Kittery formations have paleocurrent indicators of outboard sources. The Carrabassett Formation is one of the youngest formations of the Central Maine Basin and was deposited just prior to the Acadian orogeny. The Carrabassett and Kittery formations have major and trace element concentrations suggestive of passive margin turbidites derived from intermediate to felsic sources, inconsistent with a juvenile Avalonian provenance. The Carrabassett Formation contains detrital zircon grains that match the ages of peri-Gondwanan Ganderia. Unlike the dominance of positive bulk-rock εNd values that are characteristic of Avalonia, Ganderia has negative εNd values that are a better match for the negative εNd values of the Carrabassett and Kittery formations.
    [Show full text]
  • University of Texas at Arlington Dissertation Template
    CHEMOSTRATIGRAPHY AND PALEOCEANOGRAPHY OF THE MISSISSIPPIAN BARNETT FORMATION, SOUTHERN FORT WORTH BASIN, TEXAS, USA by JAMES DANIEL HOELKE Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN GEOLOGY THE UNIVERSITY OF TEXAS AT ARLINGTON AUGUST 2011 Copyright © by James Hoelke 2011 All Rights Reserved ACKNOWLEDGEMENTS First, I would like to thank my advisor, Dr. Harry Rowe, for his patience, time and energy during these past few years. I have learned much from him. This thesis would not have been possible without him. Second, I would like to thank the members of my graduate committee, Dr. Andrew Hunt and Dr. Robert Loucks, for the knowledge and insight you have provided in class and in conversations. I would also like to thank Dr. Christopher Scotese for assistance and advice with paleogeographic maps. I would also like to thank several members of the Texas Bureau of Economic Geology. I would like to thank especially Dr. Stephen Ruppel for providing core access and material support for this project as well as advice. I would also like to thank James Donnelly, Nathan Ivicic, Kenneth Edwards, and Josh Lambert for core handling assistance. I want to thank Henry Francis and Andrea Conner at the Kentucky Geological Survey for providing geochemical analyses. I would also like to thank some members of our geochemistry research group. Niki Hughes provided substantial assistance especially with calibrations and great encouragement. I would also like to thank Jak Kearns, Pukar Mainali, Krystin Robinson, and Robert Nikirk for their help.
    [Show full text]
  • Paleozoic Evolution of the Appalachians
    Paleozoic Evolution of the Appalachians: Tectonic Overview Three major tectonic episodes, all involving lateral accretion of terranes: deformation, terrane migration, accretion, and continental convergence 1. Ordovician Taconic Orogeny (~470-440 Ma) • collision of Laurentian margin with one or more magmatic arcs Shelburne Falls arc (475-470 Ma) and Bronson Hill arc (454-442 Ma) • or, continent-continent collision between Laurentia and proto-Andean region of Gondwana • slope & rise sediments thrust westward over shelf deposits 2. Devonian Acadian Orogeny (~420-360 Ma) • accretion of Avalon terrane southward continuation of Silurian Caledonian Orogeny (NW Europe) collision of Baltica with Laurentia to form Laurussia • deformation of Bronson Hill arc and sedimentary basins seaward of BH arc at least 3 pulses of deformation • oblique accretion of Avalon and other terranes(?) much strike-slip displacement but also subduction (coastal volcanics) • large mountains erosion creates thick clastic wedge (Catskills and Poccono Mtns.); thinned westward toward cratonic interior 3. Pennsylvansylvanian-Permian Alleghenian Orogeny (~325- 275 Ma) • collision with Gondwanaland consolidation of supercontinent Pangea • extensive zone of deformation New England - Georgia & Alabama (Appalachian Mtns.) - Oklahoma, Arkansas (Ouachita Mtns.) - Texas (Marathon Mtns.) • side-effects: deep crustal shear in Mass., formation of Narragansett rift basin basement block faulting in western interior, uplift of ancestral Rockies "TECTONIC CYCLES" • recorded by the creation of foreland basins sedimentation in eastern New York • associated with tectonic uplift and deformation due to the accretion of island arcs to the east in Massachusetts (first the Ordovician Taconic Orogeny followed by the Devonian Acadian Orogeny: Ordovician Taconic Orogeny (generalized succession in eastern NY) Age Environment Lithology Formation late Ordovician deltaic and molasse Queenston Fm.
    [Show full text]
  • Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas Camille M
    Journal of the Arkansas Academy of Science Volume 59 Article 15 2005 Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas Camille M. Hutchinson University of Arkansas, Fayetteville Jon C. Dowell University of Arkansas, Fayetteville Stephen K. Boss University of Arkansas, Fayetteville, [email protected] Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Geographic Information Sciences Commons, and the Stratigraphy Commons Recommended Citation Hutchinson, Camille M.; Dowell, Jon C.; and Boss, Stephen K. (2005) "Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas," Journal of the Arkansas Academy of Science: Vol. 59 , Article 15. Available at: http://scholarworks.uark.edu/jaas/vol59/iss1/15 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 59 [2005], Art. 15 Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas CAMILLEM.HUTCHINSONJON C. DOWELL, AND STEPHEN K.BOSS* Department ofGeosciences, 113 Ozark Hall, University ofArkansas, Fayetteville, AR 72701 Correspondent: [email protected] Abstract A digital geologic map of Sonora quadrangle was produced at 1:24,000 scale using the geographic information system GIS) software Maplnfo.
    [Show full text]
  • The Taconic Orogeny
    JOHN RODGERS Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520 The Taconic Orogeny Address as Retiring President of The Geological Society of America, Milwaukee, Wiscon- sin, 11 November 1970 ABSTRACT difficulty with this definition, for like a once The Taconic orogeny of eastern North popular definition of graywacke—the sedimen- America was not, as traditionally defined, a sin- tary analogue of gabbro as arkose is of granite gle erogenic event that occurred at the end of —it practically defines the thing out of exist- the Ordovician period, but rather a complex ence. Just as resedimented gabbro is rare and series of erogenic episodes or climaxes spread the original Saxon graywacke is nothing of the over the larger part of that period. In most sort, so the orogenic episode in the Appalachi- sectors of the northern Appalachians it in- ans exactly at the end of the Ordovician, if any, cluded at least three of the following: discon- was quite minor, and the early Paleozoic oro- formity in an external belt where carbonate was genic activity in the area of the Taconic Moun- accumulating; severe early deformation in an tains was all over by that time. Thus, the internal volcanic belt; gravity slides from inter- textbook definition I have cited reduces one to nal uplifts into the external belt; and wide- the state of the schoolboy who, having some spread deformation, especially in the more vague idea of the Baconian controversy, wrote external belts. In general, these events did not on an examination that the plays of William occur at the same time in the various sectors; Shakespeare were not written by William each took a considerable time, and they over- Shakespeare but by another man of the same lapped to some extent.
    [Show full text]