Radiochemical Analysis: Activation Analysis, Instrumentation, Radiation Techniques, and Radioisotope Techniques July 1964 to June 1965
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 8: Gravimetric Methods
Chapter 8 Gravimetric Methods Chapter Overview 8A Overview of Gravimetric Methods 8B Precipitation Gravimetry 8C Volatilization Gravimetry 8D Particulate Gravimetry 8E Key Terms 8F Chapter Summary 8G Problems 8H Solutions to Practice Exercises Gravimetry includes all analytical methods in which the analytical signal is a measurement of mass or a change in mass. When you step on a scale after exercising you are making, in a sense, a gravimetric determination of your mass. Mass is the most fundamental of all analytical measurements, and gravimetry is unquestionably our oldest quantitative analytical technique. The publication in 1540 of Vannoccio Biringuccio’sPirotechnia is an early example of applying gravimetry—although not yet known by this name—to the analysis of metals and ores.1 Although gravimetry no longer is the most important analytical method, it continues to find use in specialized applications. 1 Smith, C. S.; Gnodi, M. T. translation of Biringuccio, V. Pirotechnia, MIT Press: Cambridge, MA, 1959. 355 356 Analytical Chemistry 2.0 8A Overview of Gravimetric Methods Before we consider specific gravimetric methods, let’s take a moment to develop a broad survey of gravimetry. Later, as you read through the de- scriptions of specific gravimetric methods, this survey will help you focus on their similarities instead of their differences. You will find that it is easier to understand a new analytical method when you can see its relationship to other similar methods. 8A.1 Using Mass as an Analytical Signal Method 2540D in Standard Methods for Suppose you are to determine the total suspended solids in the water re- the Examination of Waters and Wastewaters, leased by a sewage-treatment facility. -
Gravimetric Analysis
Gravimetric Analysis Gravimetric Analysis can be used to determine the percent composition of a species in a compound. This is known as quantitative analysis. An agent (precipitating agent) is chosen which will cause the species of interest to precipitate out of solution. The precipitate is then isolated and weighed. Through a series of calculations, the amount of the species in the original sample or compound can then be determined. 1. Weigh accurately about 0.5 g of the unknown, and dissolve it in water. The volume of water is not important, but you do want to make sure the solid is completely dissolved. 2. Add the precipitating agent in the form of solution. For example, to precipitate a chloride use a soluble salt of silver (AgNO3). 3. Add the precipitating agent until no more solid seems to precipitate. Allow the mixture to sit for about 5 minutes, and then add a few drops more, observing to see if any more precipitation occurs. If you see more solid forming, keep repeating the steps until no more precipitate results. Now separate the solid from the liquid. The mixture can be filtered by vacuum filtration through a weighed filter paper. Other methods involve gravity filtration or use of a centrifuge. Allow the solid to dry until you get a constant weight for readings at subsequent times (at least overnight or through use of an oven). 4. From the mass of precipitated compound (ppt) and the formula (in this case AgCl), you can calculate the percent composition of a species (in this case Cl-) in the original sample. -
Measurement and Analysis of the Resolved Resonance Cross Sections of the Natural Hafnium Isotopes
CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Birmingham Research Archive, E-theses Repository MEASUREMENT AND ANALYSIS OF THE RESOLVED RESONANCE CROSS SECTIONS OF THE NATURAL HAFNIUM ISOTOPES by TIMOTHY CHRISTOPHER WARE A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Physics and Astronomy College of Engineering and Physical Sciences The University of Birmingham June 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Hafnium is a ductile metallic element with a large neutron absorption cross section. It can be used in reactor control rods to regulate the fission process. The NEA High Priority Request List for nuclear data presents a need for improved characterisation of the hafnium cross section in the resolved resonance region. This thesis presents new resonance cross section parameters for the six natural hafnium isotopes. Cross section measurements, supported by the NUDAME and EUFRAT projects, were performed at the IRMM Geel GELINA time-of-flight facility. Capture experiments were conducted on the 12 m, 28 m and 58 m flight paths using C6D6 detectors and transmission experiments were performed at flight paths of 26 m and 49 m using a 6Li glass detector. -
First Search for $\Alpha $ Decays of Naturally Occurring Hf Nuclides With
First search for α decays of naturally occurring Hf nuclides with emission of γ quanta F.A. Danevicha,1, M. Hultb, D.V. Kasperovycha, G.P. Kovtunc,d, K.V. Kovtune, G. Lutterb, G. Marissensb, O.G. Polischuka, S.P. Stetsenkoc, V.I. Tretyaka aInstitute for Nuclear Research, 03028 Kyiv, Ukraine bEuropean Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium cNational Scientific Center Kharkiv Institute of Physics and Technology, 61108 Kharkiv, Ukraine dKarazin Kharkiv National University, 61022 Kharkiv, Ukraine ePublic Enterprise “Scientific and Technological Center Beryllium”, 61108 Kharkiv, Ukraine Abstract The first ever search for α decays to the first excited state in Yb was performed for six isotopes of hafnium (174, 176, 177, 178, 179, 180) using a high purity Hf-sample of natural isotopic abundance with a mass of 179.8 g. For 179Hf, also α decay to the ground state of 175Yb was searched for thanks to the β-instability of the daughter nuclide 175Yb. The measurements were conducted using an ultra low-background HPGe-detector system located 225 m underground. After 75 d of data taking no decays were detected but lower 15 18 bounds for the half-lives of the decays were derived on the level of lim T1/2 ∼ 10 −10 a. The decay with the shortest half-life based on theoretical calculation is the decay of 174Hf to the first 2+ 84.3 keV excited level of 170Yb. The experimental lower bound was found 15 to be T1/2 ≥ 3.3 × 10 a. Keywords: Alpha decay; 174Hf, 176Hf, 177Hf, 178Hf, 179Hf, 180Hf, Low-background HPGe γ spec- trometry arXiv:1911.02597v1 [nucl-ex] 6 Nov 2019 1 INTRODUCTION Alpha decay is one of the most important topics of nuclear physics both from the theoretical and experimental points of view. -
4.62 Samarium
IUPAC 4.62 samarium Stable Relative Mole isotope atomic mass fraction 144 Sm 143.912 01 0.0308 147 † Sm 146.914 90 0.1500 148 Sm † 147.914 83 0.1125 149 Sm 148.917 19 0.1382 150 Sm 149.917 28 0.0737 152 Sm 151.919 74 0.2674 154 Sm 153.922 22 0.2274 † Radioactive isotope having a relatively long half-life and a characteristic terrestrial isotopic composition that contributes significantly and reproducibly to the determination of the standard atomic weight of the element in normal materials . The half-lives of 147 Sm and 148 Sm are 1.06 × 10 11 years and 7 × 10 15 years, respectively. 4.62.1 Samarium isotopes in Earth/planetary science One possible origin for the Moon is from debris ejected by an indirect giant impact of Earth by an astronomical body the size of Mars when the Earth was forming [433]. The kinetic energy liberated is thought to have melted a large part of the Moon forming a lunar magma ocean. P.O. 13757, Research Triangle Park, NC (919) 485-8700 IUPAC Samarium isotope measurement results [434], along with measurements of isotopes of hafnium, tungsten, and neodymium[435], suggest that lunar magma formed about 70 × 10 6 years after the Solar System formed and had crystallized by about 215 × 10 6 years after formation. 147 Sm is used to study the formation of potassium, rare earth elements , and phosphorus-rich rocks [436]. 4.62.2 Samarium isotopes in geochronology 147 Sm is used for determining formation ages of igneous and metamorphic rocks via analysis of the minerals which compose them, such as those shown in Figure 4.62.1 [437-439]. -
Lecture 10. Analytical Chemistry What Is Analytical Chemistry ?
5/5/2019 What is Analytical Chemistry ? It deals with: Lecture 10. • separation Analytical Chemistry • identification • determination of components in a sample. Basic concepts It includes coverage of chemical equilibrium and statistical treatment of data. It encompasses any type of tests that provide information relating to the chemical composition of a sample. 1 2 • Analytical chemistry is divided into two areas of analysis: • The substance to be analyzed within a sample • Qualitative – recognizes the particles which are present in a sample. is known as an analyte, whereas the substances which may cause incorrect or • Quantitative – identifies how much of inaccurate results are known as chemical particles is present in a sample. interferents. 3 4 1 5/5/2019 Qualitative analysis is used to separate an analyte from interferents existing in a sample and detect the previous one. It gives negative, positive, or yes/no types of data. Qualitative analysis It informs whether or not the analyte is present in a sample. 5 6 Examples of qualitative analysis 7 8 2 5/5/2019 Analysis of an inorganic sample The classical procedure for systematic analysis of an inorganic sample consists of several parts: preliminary tests (heating, solubility in water, appearance of moisture) more complicated tests e.g. introducing the sample into a flame and noting the colour produced; determination of anionic or cationic constituents of 9 solute dissolved in water 10 Flame test Sodium Bright yellow (intense, persistent) Potassium Pale violet (slight, fleeting) Solutions of ions, when mixed with concentrated Calcium Brick red (medium, fleeting) HCl and heated on a nickel/chromium wire in a flame, cause the flame to change to a colour Strontium Crimson (medium) characteristic of the element. -
1 Introduction of Mass Spectrometry and Ambient Ionization Techniques
1 1 Introduction of Mass Spectrometry and Ambient Ionization Techniques Yiyang Dong, Jiahui Liu, and Tianyang Guo College of Life Science & Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China 1.1 Evolution of Analytical Chemistry and Its Challenges in the Twenty-First Century The Chemical Revolution began in the eighteenth century, with the work of French chemist Antoine Lavoisier (1743–1794) representing a fundamental watershed that separated the “modern chemistry” era from the “protochemistry” era (Figure 1.1). However, analytical chemistry, a subdiscipline of chemistry, is an ancient science and its metrological tools, basic applications, and analytical processes can be dated back to early recorded history [1]. In chronological spans covering ancient times, the middle ages, the era of the nineteenth century, and the three chemical revolutionary periods, analytical chemistry has successfully evolved from the verge of the nineteenth century to modern and contemporary times, characterized by its versatile traits and unprecedented challenges in the twenty-first century. Historically, analytical chemistry can be termed as the mother of chemistry, as the nature and the composition of materials are always needed to be iden- tified first for specific utilizations subsequently; therefore, the development of analytical chemistry has always been ahead of general chemistry [2]. During pre-Hellenistic times when chemistry did not exist as a science, various ana- lytical processes, for example, qualitative touchstone method and quantitative fire-assay or cupellation scheme have been in existence as routine quality control measures for the purpose of noble goods authentication and anti-counterfeiting practices. Because of the unavailability of archeological clues for origin tracing, the chemical balance and the weights, as stated in the earliest documents ever found, was supposed to have been used only by the Gods [3]. -
Conceptual Approach to Thermal Analysis and Its Main Applications
Prospect. Vol. 15, No. 2, Julio-Diciembre de 2017, 117-125 Conceptual approach to thermal analysis and its main applications Aproximación conceptual al análisis térmico y sus principales aplicaciones Alejandra María Zambrano Arévalo1*, Grey Cecilia Castellar Ortega2, William Andrés Vallejo Lozada3, Ismael Enrique Piñeres Ariza4, María Mercedes Cely Bautista5, Jesús Sigifredo Valencia Ríos6 1*M.Sc. Chemical Sciences, Full Professor, Universidad de la Costa. Barranquilla-Colombia. 2M.Sc. Chemical Sciences, Full Professor, Universidad Autónoma del Caribe. Barranquilla-Colombia. 3Ph.D. Chemical Sciences, Full Professor, Universidad del Atlántico. Barranquilla-Colombia. 4M.Sc. Physical Sciences, Occasional Full Professor, Universidad del Atlántico. Barranquilla-Colombia. 5Ph.D. Engineering, Full Professsor, Universidad Autónoma del Caribe. Barranquilla-Colombia. 6Ph. D. Universidad Nacional de Colombia, Vicerrector Universidad Nacional de Colombia (Sede Palmira). Palmira-Colombia. E-mail: [email protected] Recibido 12/04/2017 Cite this article as: A. Zambrano, G.Castellar, W.Vallejo, I.Piñeres, M.M. Aceptado 28/05/2017 Cely, J.Valencia, Aproximación conceptual al análisis térmico y sus principales aplicaciones, “Conceptual approach to thermal analysis and its main applications”. Prospectiva, Vol 15, N° 2, 117-125, 2017. ABSTRACT This work shows to the reader a general description about the techniques of classic thermal analysis as known as Differential Scanning Calorimetry (DSC), Differential Thermal Analysis (DTA) and Thermal Gravimetric Analysis. These techniques are very used in science and material technologies (metals, metals alloys, ceramics, glass, polymer, plastic and composites) with the purpose of characterizing precursors, following and control of process, adjustment of operation conditions, thermal treatment and verifying of quality parameters. Key words: Physical chemistry; Calorimetry; Thermochemistry; Thermal analysis. -
Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake
foods Article Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake Thi Linh Nham Tran 1,2, Ana F. Miranda 1 , Aidyn Mouradov 1,* and Benu Adhikari 1 1 School of Science, RMIT University, Bundoora Campus, Melbourne, VIC 3083, Australia; [email protected] (T.L.N.T.); [email protected] (A.F.M.); [email protected] (B.A.) 2 Faculty of Agriculture Bac Lieu University, 8 wards, Bac Lieu 960000, Vietnam * Correspondence: [email protected]; Tel.: +61-3-99257144 Received: 13 May 2020; Accepted: 8 June 2020; Published: 11 June 2020 Abstract: The oil from thraustochytrids, unicellular heterotrophic marine protists, is increasingly used in the food and biotechnological industries as it is rich in omega-3 fatty acids, squalene and a broad spectrum of carotenoids. This study showed that the oilcake, a by-product of oil extraction, is equally valuable as it contained 38% protein/dry mass, and thraustochytrid protein isolate can be obtained with 92% protein content and recovered with 70% efficiency. The highest and lowest solubilities of proteins were observed at pH 12.0 and 4.0, respectively, the latter being its isoelectric point. Aspartic acid, glutamic acid, histidine, and arginine were the most abundant amino acids in proteins. The arginine-to-lysine ratio was higher than one, which is desired in heart-healthy foods. The denaturation temperature of proteins ranged from 167.8–174.5 ◦C, indicating its high thermal stability. Proteins also showed high emulsion activity (784.1 m2/g) and emulsion stability (209.9 min) indices. The extracted omega-3-rich oil melted in the range of 30–34.6 ◦C and remained stable up to 163–213 ◦C. -
A Modified Nuclear Model for Binding Energy of Nuclei And
A MODIFIED NUCLEAR MODEL FOR BINDING ENERGY OF NUCLEI AND THE ISLAND OF STABILITY BY KENNETH KIPCHUMBA SIRMA A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS, UNIVERSITY OF ELDORET, KENYA. MAY, 2021 ii DECLARATION Declaration by the Candidate I declare that this is my original and personal work and has not been presented for a degree in any other university. This thesis is not to be reproduced without the prior written permission of the author and/or University of Eldoret. Kenneth Kipchumba Sirma ______________________________ _______________________ SC/PHD/002/15 Date Approval by Supervisors This thesis has been submitted for examination with our approval as University Supervisors. ______________________________ _______________________ Prof. Kapil M. Khanna Date Department of Physics University of Eldoret, Kenya. ______________________________ _______________________ Dr. Samuel L. Chelimo Date Physics Department University of Eldoret, Kenya. iii DEDICATION To my beloved mum Grace for her unconditional love, advice and support. To our children Gael and Abby you are blessings. My wife Jacinta, for her love and care. iv ABSTRACT A new nuclear model of quantifying binding energy of nuclei is proposed. The nucleus is assumed to be composed of two regions; the inner core region and surface region. The inner core is assumed to be composed of Z proton-neutron pairs (Z=N) and the surface region is composed of the unpaired neutrons for a nucleus in which N>Z. The interaction between the core and neutrons in the surface region is assumed to be such that it leads to an average potential Vo in which each neutron in the surface region can move. -
High Performance Liquid Chromatography Method Development and Chemometric Analysis of Ecstasy and Cocaine
institlüld ictterkcnny TeicneoUiochti institute lyit (.«Ulf C*»n«lon of Technology High performance liquid chromatography method development and chemometric analysis of ecstasy and cocaine Kim McFadden Supervisors Dr. B. F. Carney, Letterkenny Institute of Technology Dr. D. O'Driscoll, Forensic Science Laboratory, Dublin Submitted to Higher bducation and Training Awards Council (HETAC) in fulfilment for the requirements for the degree of Doctor of Philosophy HPLC method development & chemomelric analysis of ecstasy & cocaine Declaration I hereby declare that the work herein, submitted for Ph.D. in Analytical Science at Letterkenny Institute of Technology, is the result of my own investigation, except where reference is made to published literature. I also certify that the material submitted in this thesis has not been previously submitted for any other qualification. Kim McFadden 1 HPLC method development & chemometric analysis of ecstasy & cocaine Table of Contents Declaration 1 Abstract 5 List of Abbreviations 7 List of Figures 10 List of Tables 14 List of Presentations and Publications 16 Acknowledgments 18 Chapter 1: Literature review. 19 1.1. Introduction. 20 1.2. Drugs of abuse. 21 1.2.1. Narcotics. 22 1.2.2. Depressants. 24 1.2.3. Stimulants. 24 1.2.4. Hallucinogens. 25 1.2.5. Ecstasy. 26 1.2.6. Cocaine. 31 1.3. Current analytical techniques for forensic drug analysis. 34 1.3.1. Spectrometric methods. 34 1.3.2. Chromatographic methods. 36 1.4. Fundamentals of High Performance Liquid Chromatography. 40 1.4.1. Chromatographic interactions. 40 1.4.2. Mobile phase. 41 1.4.3. The column. 42 1.4.4. -
Ch 27 Gravimetric Analysis Analytical Chemistry
Ch 27 Gravimetric Analysis 1 Analytical chemistry Classification by the techniques: 1. Classical Analysis Gravimetric, Titration(Volumetric) Analysis 2. Instrumental Analysis Electrochemical Analysis, Spectrochemical Analysis, Chromatographic Separation and Analysis 2 1 Ch 12 Gravimetric Analysis gravi – metric (weighing - measure) Definition: A precipitation or volatilization method based on the determination of weight of a substance of known composition that is chemically related to the analyte. 3 12. 1 Procedure Criteria (1)The desired substance: completely precipitated. "common ion" effect can be utilized: Ag+ + Cl- AgCl(s) excess of Cl- which is added (2) The weighed form: known composition. (3) The product: "pure", easily filtered.. 4 2 12. 1 Procedure • 7 Steps in Gravimetric Analysis 1) Dry and weigh sample 2) Dissolve sample 3) Add precipitating reagent in excess 4) Coagulate precipitate usually by heating 5) Filtration-separate precipitate from mother liquor 6) Wash precipitate 7) Dry and weigh to constant weight (0.2-0.3 mg) 5 Suction Filtration • Filter flask • Buchner funnel • Filter paper • Glass frit • Filter adapter • Heavy-walled rubber tubing • Water aspirator 6 3 Suction Filtration • Mother liquor 7 12.2 Advantages/Disadvantages • Experimentally simple and elegant • Accurate • Precise (0.1-0.3 %) • Macroscopic technique-requires at least 10 mg ppt to collect and weigh properly • Time-consuming (1/2 day?) 8 4 12.3 Calculation • Design of experiment • Content Calculation • Evaluation of the results 9 12.3 Calculation • % of analyte, % A • %A = weight of analyte x 100 weight of sample • weight of ppt directly obtained ->%A 10 5 How Do We Get %A? • % A = weight of ppt x gravimetric factor (G.F.) x 100 weight of sample • G.F.