Conceptual Approach to Thermal Analysis and Its Main Applications

Total Page:16

File Type:pdf, Size:1020Kb

Conceptual Approach to Thermal Analysis and Its Main Applications Prospect. Vol. 15, No. 2, Julio-Diciembre de 2017, 117-125 Conceptual approach to thermal analysis and its main applications Aproximación conceptual al análisis térmico y sus principales aplicaciones Alejandra María Zambrano Arévalo1*, Grey Cecilia Castellar Ortega2, William Andrés Vallejo Lozada3, Ismael Enrique Piñeres Ariza4, María Mercedes Cely Bautista5, Jesús Sigifredo Valencia Ríos6 1*M.Sc. Chemical Sciences, Full Professor, Universidad de la Costa. Barranquilla-Colombia. 2M.Sc. Chemical Sciences, Full Professor, Universidad Autónoma del Caribe. Barranquilla-Colombia. 3Ph.D. Chemical Sciences, Full Professor, Universidad del Atlántico. Barranquilla-Colombia. 4M.Sc. Physical Sciences, Occasional Full Professor, Universidad del Atlántico. Barranquilla-Colombia. 5Ph.D. Engineering, Full Professsor, Universidad Autónoma del Caribe. Barranquilla-Colombia. 6Ph. D. Universidad Nacional de Colombia, Vicerrector Universidad Nacional de Colombia (Sede Palmira). Palmira-Colombia. E-mail: [email protected] Recibido 12/04/2017 Cite this article as: A. Zambrano, G.Castellar, W.Vallejo, I.Piñeres, M.M. Aceptado 28/05/2017 Cely, J.Valencia, Aproximación conceptual al análisis térmico y sus principales aplicaciones, “Conceptual approach to thermal analysis and its main applications”. Prospectiva, Vol 15, N° 2, 117-125, 2017. ABSTRACT This work shows to the reader a general description about the techniques of classic thermal analysis as known as Differential Scanning Calorimetry (DSC), Differential Thermal Analysis (DTA) and Thermal Gravimetric Analysis. These techniques are very used in science and material technologies (metals, metals alloys, ceramics, glass, polymer, plastic and composites) with the purpose of characterizing precursors, following and control of process, adjustment of operation conditions, thermal treatment and verifying of quality parameters. Key words: Physical chemistry; Calorimetry; Thermochemistry; Thermal analysis. RESUMEN Este trabajo muestra al lector una descripción general acerca de las técnicas del clásico análisis térmico conocido como calorimetría Diferencial de Barrido (DSC), el Análisis Térmico Diferencial (ATD) y el Análisis Térmico Gravimétrico. Estas técnicas son muy usadas en la ciencia y en la tecnología de materiales (metales, aleaciones metálicas, cerámicos, vidrio, polímeros, plásticos y composite con el propósito de caracterizar a precursores, seguimiento y control de procesos, ajustes de las condiciones de operación, tratamiento térmico y verificación de los parámetros de calidad. Palabras clave: Química física; Calorimetría; Termoquímica; Análisis térmico. Doi: http://dx.doi.org/10.15665/rp.v15i2.1166 117 Conceptual approach to thermal analysis and its main applications 1. INTRODUCTION raw materials, thermal analysis is applied to charac- terize wood and fiber, minerals, fuels (coal, tars and The International Confederation of Thermal Analysis oil), soils (rocks, clays), food and natural products [6, and Calorimetry [1] defines “Thermal Analysis” as a 7] (fats, carbohydrates, proteins). In the area of che- set of techniques where a physical or chemical proper- mical, thermal analysis is used to determine reaction ty is determined and controlled in function of time, enthalpies, heat capacity, energy phase transition, heat temperature or heat flow, depending on the system of combustion, binding energy, purity, thermal stabili- temperature, that high enough (isothermal operation) ty of inorganic compounds, complexes and metal ions it is maintained or amending linearly. in coordination polymers etc [8]. This definition and terminology associated had been In the context of science and materials technology, a also accepted by the International Union of Pure and close relationship between synthesis (preparation and Applied Chemistry (IUPAC) [2] and the American So- processing), the structure (composition), the (physical ciety of Testing and Materials (ASTM E473-14). and chemical behavior) properties and functionality (delivery and performance) is recognized. The ther- Nowadays different procedures exist to examine and mal analysis, in its various form, is a set of very useful quantify the effect of the addition of heat to the physi- and crucial tools in the characterization and proces- cal system properties. Some of the techniques are the sing of natural materials (wood, fibers, leather, bone, Differential Thermal Analysis (DTA), Thermogravi- plaster, clay, zeolites), metals and alloys (ferrous and metric Analysis (TGA) and the Differential Scanning nonferrous), ceramics [9] (oxidic and non-oxidic) and Calorimetry (DSC), these above are considered “clas- glasses [10] (siliceous, metallic and non-siliceous), sical methods” of thermal analysis [1]. Other techni- electric and magnetic, liquid crystals, polymers [11, ques such as the Mechanical Thermal Analysis (MTA), 12] and plastic (elastomers and adhesives), paints and Dynamic Mechanical Analysis (AMD), Dielectric coatings, inks and dyes, powders and explosives, se- Analysis (DEA), Thermal Microscopy and the Con- miconductors and superconductors, dielectrics, and duction Calorimetry are called “modern techniques” composites (metal matrix, ceramic matrix polymer of thermal analysis. These techniques are counting matrix). with the developing of high technology instrumenta- tion to perform combined methods, focusing on struc- For each and every of this applications the literature tural, thermal, electrical and magnetic properties of makes extensive reference to the thermal analysis as a materials [3]. set of techniques useful in the identification, characte- rization, exploration and technical application of phy- Thermal analysis is an appropriate methodology to sical systems [13, 14]. assess a wide range of properties of substances, many of them associated with a particular technique [4], Currently, thermal analysis methods continue to grow whereby, the identification is made, the physical and in two directions: On the one hand, these techniques chemical stability is checked, changes of phase are de- are moving towards achieving more accurate, faster tected and fundamental kinetic studies are performed. and ever smaller samples measured; this will give va- Furthermore, thermal analysis permits to find transi- luable information on the interfaces, the microstruc- tion points (melting, sublimation, solidification), make ture and morphology of the substances in condensed measurements of enthalpy and build thermal history, phase. Second, the thermal analysis techniques can determine the heat capacity (specific heat), quantify be conjugated with other analytical methodologies, thermal expansion (diagometría), establish mass loss such as diffraction and X-ray scattering, microscopy, (gravimetry), estimate voltages flow (rheology), per- mechanical testing, electrical and magnetic characte- form studies of viscosity, recognize the processing rization, and some spectroscopies, to perform in situ rate, quantify the amount of water (fisiadsorbida, crys- or in experiments operating conditions, structural and tallization, dehydroxylation), track processes of dena- dynamic studies. turation, evaluate the elastic modulus and damping capacity, examine the evolution of gases and volatile 2. THERMAL ANALYSIS compounds, obtain phase diagrams, measure the crys- tallinity, determine purity, investigate polymorphic When a substance (system) is supplied (heating) or is transitions and make studies of hardness, tempering, withdrawn (cooling) thermal energy as heat, various annealing, tempering and recrystallization [5]. changes can occur sequentially or in parallel; these changes include the synthesis reactions, decompo- Given the different fields of application of the techni- sitions and phase transitions, among which nuclea- ques of thermal analysis can be seen in the bibliogra- tion and crystal growth. After identifying the target phical references in the field of natural resources and system, thermal analysis makes use of a heat source, 118 Prospect. Vol. 15, No. 2, Julio-Diciembre de 2017, 117-125 dispenses heat flow, monitors progress of temperature Figure 1. Basic assembly to determine curves of hea- and builds temperature diagrams, differential tempe- ting or cooling. rature and mass loss, depending on the system tempe- Figura 1. Montaje básico para determinar curvas de rature (you can use an inert gas as reference) or heat calentamiento o de enfriamiento. flow. The diagrams obtained are called thermograms. Beyond the classic calorimetry, represented in the existence of different devices (adiabatic calorimeter, isothermal or isoperibólicos) which are used to mea- sure the enthalpy and other properties that are asso- ciated with different thermodynamic processes (state changes, reactions, dissolution, immersion, crystalli- zation), thermal analysis has modalities represented in the differential thermal analysis (DTA) [15], ther- mogravimetric analysis (TGA) [16] and differential scanning calorimetry (DSC) [17] that currently are powerful tools for characterization of substances; additionally, in these configurations, thermal analysis can be performed with the system immersed in an at- mosphere can be inert, oxidizing or reducing. To the extent that heat flows into the system, the tem- Under the consideration that some solids, especially perature of the substance, initially assumed solid, will upon presentation of finely divided or porous solids increase with time by describing a slope whose value exhibit adsorption phenomena of gases and vapors, depends on
Recommended publications
  • Thermal Analysis
    TECHNIQUE NOTE Thermal Analysis The scientists at EAG are experts in using thermal analysis techniques for materials characterization as well as for designing custom studies. This application note details TGA (Thermogravimetric Analysis), TG-EGA (Thermogravimetric Analysis with Evolved Gas Analysis), DSC (Differential Scanning Calorimetry), TMA (Thermomechanical Analysis) and DMA (Dynamic Mechanical Analysis). These techniques have played key roles in detailed materials identifications, failure analysis and deformulation (reverse engineering) investigations. THERMOGRAVIMETRIC ANALYSIS (TGA) DESCRIPTION • Vaporization, sublimation TGA measures changes in sample weight in a controlled thermal • Deformulation/failure analysis environment as a function of temperature or time. The changes in • Loss on drying sample weight (mass) can be a result of alterations in chemical or • Residue/filler content physical properties. • Decomposition kinetics TGA is useful for investigating the thermal stability of solids and liquids. A sensitive microbalance measures the change in mass of STRENGTHS the sample as it is heated or held isothermally in a furnace. The • Small sample size purge gas surrounding the sample can be either chemically inert • Analysis of solids and liquids with minimal sample preparation or reactive. TGA instruments can be programmed to switch gases during the test to provide a wide range of information in a single • Quantitative analysis of multiple mass loss thermal events experiment. from physical and chemical changes of materials • Separation and analysis of multiple overlapping mass loss COMMON APPLICATIONS events • Thermal stability/degradation studies LIMITATION • Investigating mass losses resulting from physical and chemical changes • Evolved products are identified only when the TGA is connected to an evolved gas analyzer (e.g. TGA/MS or TGA/ • Quantitation of volatiles/moisture FTIR) • Screening additives COPYRIGHT © 2017 EAG, INC.
    [Show full text]
  • Chapter 8: Gravimetric Methods
    Chapter 8 Gravimetric Methods Chapter Overview 8A Overview of Gravimetric Methods 8B Precipitation Gravimetry 8C Volatilization Gravimetry 8D Particulate Gravimetry 8E Key Terms 8F Chapter Summary 8G Problems 8H Solutions to Practice Exercises Gravimetry includes all analytical methods in which the analytical signal is a measurement of mass or a change in mass. When you step on a scale after exercising you are making, in a sense, a gravimetric determination of your mass. Mass is the most fundamental of all analytical measurements, and gravimetry is unquestionably our oldest quantitative analytical technique. The publication in 1540 of Vannoccio Biringuccio’sPirotechnia is an early example of applying gravimetry—although not yet known by this name—to the analysis of metals and ores.1 Although gravimetry no longer is the most important analytical method, it continues to find use in specialized applications. 1 Smith, C. S.; Gnodi, M. T. translation of Biringuccio, V. Pirotechnia, MIT Press: Cambridge, MA, 1959. 355 356 Analytical Chemistry 2.0 8A Overview of Gravimetric Methods Before we consider specific gravimetric methods, let’s take a moment to develop a broad survey of gravimetry. Later, as you read through the de- scriptions of specific gravimetric methods, this survey will help you focus on their similarities instead of their differences. You will find that it is easier to understand a new analytical method when you can see its relationship to other similar methods. 8A.1 Using Mass as an Analytical Signal Method 2540D in Standard Methods for Suppose you are to determine the total suspended solids in the water re- the Examination of Waters and Wastewaters, leased by a sewage-treatment facility.
    [Show full text]
  • Gravimetric Analysis
    Gravimetric Analysis Gravimetric Analysis can be used to determine the percent composition of a species in a compound. This is known as quantitative analysis. An agent (precipitating agent) is chosen which will cause the species of interest to precipitate out of solution. The precipitate is then isolated and weighed. Through a series of calculations, the amount of the species in the original sample or compound can then be determined. 1. Weigh accurately about 0.5 g of the unknown, and dissolve it in water. The volume of water is not important, but you do want to make sure the solid is completely dissolved. 2. Add the precipitating agent in the form of solution. For example, to precipitate a chloride use a soluble salt of silver (AgNO3). 3. Add the precipitating agent until no more solid seems to precipitate. Allow the mixture to sit for about 5 minutes, and then add a few drops more, observing to see if any more precipitation occurs. If you see more solid forming, keep repeating the steps until no more precipitate results. Now separate the solid from the liquid. The mixture can be filtered by vacuum filtration through a weighed filter paper. Other methods involve gravity filtration or use of a centrifuge. Allow the solid to dry until you get a constant weight for readings at subsequent times (at least overnight or through use of an oven). 4. From the mass of precipitated compound (ppt) and the formula (in this case AgCl), you can calculate the percent composition of a species (in this case Cl-) in the original sample.
    [Show full text]
  • Lecture 10. Analytical Chemistry What Is Analytical Chemistry ?
    5/5/2019 What is Analytical Chemistry ? It deals with: Lecture 10. • separation Analytical Chemistry • identification • determination of components in a sample. Basic concepts It includes coverage of chemical equilibrium and statistical treatment of data. It encompasses any type of tests that provide information relating to the chemical composition of a sample. 1 2 • Analytical chemistry is divided into two areas of analysis: • The substance to be analyzed within a sample • Qualitative – recognizes the particles which are present in a sample. is known as an analyte, whereas the substances which may cause incorrect or • Quantitative – identifies how much of inaccurate results are known as chemical particles is present in a sample. interferents. 3 4 1 5/5/2019 Qualitative analysis is used to separate an analyte from interferents existing in a sample and detect the previous one. It gives negative, positive, or yes/no types of data. Qualitative analysis It informs whether or not the analyte is present in a sample. 5 6 Examples of qualitative analysis 7 8 2 5/5/2019 Analysis of an inorganic sample The classical procedure for systematic analysis of an inorganic sample consists of several parts: preliminary tests (heating, solubility in water, appearance of moisture) more complicated tests e.g. introducing the sample into a flame and noting the colour produced; determination of anionic or cationic constituents of 9 solute dissolved in water 10 Flame test Sodium Bright yellow (intense, persistent) Potassium Pale violet (slight, fleeting) Solutions of ions, when mixed with concentrated Calcium Brick red (medium, fleeting) HCl and heated on a nickel/chromium wire in a flame, cause the flame to change to a colour Strontium Crimson (medium) characteristic of the element.
    [Show full text]
  • 1 Introduction of Mass Spectrometry and Ambient Ionization Techniques
    1 1 Introduction of Mass Spectrometry and Ambient Ionization Techniques Yiyang Dong, Jiahui Liu, and Tianyang Guo College of Life Science & Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China 1.1 Evolution of Analytical Chemistry and Its Challenges in the Twenty-First Century The Chemical Revolution began in the eighteenth century, with the work of French chemist Antoine Lavoisier (1743–1794) representing a fundamental watershed that separated the “modern chemistry” era from the “protochemistry” era (Figure 1.1). However, analytical chemistry, a subdiscipline of chemistry, is an ancient science and its metrological tools, basic applications, and analytical processes can be dated back to early recorded history [1]. In chronological spans covering ancient times, the middle ages, the era of the nineteenth century, and the three chemical revolutionary periods, analytical chemistry has successfully evolved from the verge of the nineteenth century to modern and contemporary times, characterized by its versatile traits and unprecedented challenges in the twenty-first century. Historically, analytical chemistry can be termed as the mother of chemistry, as the nature and the composition of materials are always needed to be iden- tified first for specific utilizations subsequently; therefore, the development of analytical chemistry has always been ahead of general chemistry [2]. During pre-Hellenistic times when chemistry did not exist as a science, various ana- lytical processes, for example, qualitative touchstone method and quantitative fire-assay or cupellation scheme have been in existence as routine quality control measures for the purpose of noble goods authentication and anti-counterfeiting practices. Because of the unavailability of archeological clues for origin tracing, the chemical balance and the weights, as stated in the earliest documents ever found, was supposed to have been used only by the Gods [3].
    [Show full text]
  • Beam Sterilization with Gamma Radiation Sterilization
    FABAD J. Pharm. Sci., 34, 43–53, 2009 REVIEW ARTICLE Sterilization Methods and the Comparison of E-Beam Sterilization with Gamma Radiation Sterilization Mine SİLİNDİR*, A. Yekta ÖZER*° Sterilization Methods and the Comparison of E-Beam Sterilizasyon Metodları ve E-Demeti ile Sterilizasyonun Sterilization with Gamma Radiation Sterilization Gama Radyasyonu ile Karşılaştırılması Summary Özet Sterilization is used in a varity of industry field and a strictly Sterilizasyon endüstrinin pek çok alanında kullanılmakta- required process for some products used in sterile regions dır ve medikal cihazlar ve parenteral ilaçlar gibi direk vü- of the body like some medical devices and parenteral drugs. cudun steril bölgelerine uygulanan bazı ürünler için ge- Although there are many kinds of sterilization methods rekli bir işlemdir. Ürünlerin fizikokimyasal özelliklerine according to physicochemical properties of the substances, bağlı olarak pek çok farklı sterilizasyon metodu bulunma- the use of radiation in sterilization has many advantages sına rağmen, radyasyonun sterilizasyon amacıyla kullanı- depending on its substantially less toxicity. The use of mı daha az toksik etkisine bağlı olarak pek çok avantaja sa- radiation in industrial field showed 10-15% increase per every hiptir. Radyasyonun endüstriyel alanda kullanımı her yıl year of the previous years and by 1994 more than 180 gamma bir öncekine oranla %10-15 artış göstermiştir ve 1994’ten irradiation institutions have functioned in 50 countries. As bu yana 50 ülkede 180’den fazla gama ışınlama
    [Show full text]
  • Thermal Analysis Methods
    Modern Methods in Heterogeneous Catalysis Research Thermal analysis methods Rolf Jentoft 03.11.06 Outline • Definition and overview • Thermal Gravimetric analysis • Evolved gas analysis (calibration) • Differential Thermal Analysis/DSC • Kinetics introduction • Data analysis examples Definition Thermal analysis: the measurement of some physical parameter of a system as a function of temperature. Usually measured as a dynamic function of temperature. Types of thermal analysis – TG (Thermogravimetric) analysis: weight – DTA (Differential Thermal Analysis): temperature – DSC (Differential Scanning Calorimetry): temperature – DIL (Dilatometry): length – TMA (Thermo Mechanical Analysis): length (with strain) – DMA (Dynamic-Mechanical Analysis): length (dynamic) – DEA (Dielectric Analysis): conductivity – Thermo Microscopy: image –...– Combined methods Thermogravimetric Developed by Honda in 1915 Oven Oven heated at controlled rate Sample Temperature and Weight are recorded Balance Types of thermal analysis – TG (Thermogravimetric) analysis: weight – DTA (Differential Thermal Analysis): temperature – DSC (Differential Scanning Calorimetry): temperature – DIL (Dilatometry): length – TMA (Thermo Mechanical Analysis): length (with strain) – DMA (Dynamic-Mechanical Analysis): length (dynamic) – DEA (Dielectric Analysis): conductivity – Thermo Microscopy: image – Combined methods DTA/DSC First introduced by Le Chatelier in 1887, perfected by Roberts-Austen 1899 Sample Reference Oven heated at controlled rate Temperature and temperature difference
    [Show full text]
  • Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake
    foods Article Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake Thi Linh Nham Tran 1,2, Ana F. Miranda 1 , Aidyn Mouradov 1,* and Benu Adhikari 1 1 School of Science, RMIT University, Bundoora Campus, Melbourne, VIC 3083, Australia; [email protected] (T.L.N.T.); [email protected] (A.F.M.); [email protected] (B.A.) 2 Faculty of Agriculture Bac Lieu University, 8 wards, Bac Lieu 960000, Vietnam * Correspondence: [email protected]; Tel.: +61-3-99257144 Received: 13 May 2020; Accepted: 8 June 2020; Published: 11 June 2020 Abstract: The oil from thraustochytrids, unicellular heterotrophic marine protists, is increasingly used in the food and biotechnological industries as it is rich in omega-3 fatty acids, squalene and a broad spectrum of carotenoids. This study showed that the oilcake, a by-product of oil extraction, is equally valuable as it contained 38% protein/dry mass, and thraustochytrid protein isolate can be obtained with 92% protein content and recovered with 70% efficiency. The highest and lowest solubilities of proteins were observed at pH 12.0 and 4.0, respectively, the latter being its isoelectric point. Aspartic acid, glutamic acid, histidine, and arginine were the most abundant amino acids in proteins. The arginine-to-lysine ratio was higher than one, which is desired in heart-healthy foods. The denaturation temperature of proteins ranged from 167.8–174.5 ◦C, indicating its high thermal stability. Proteins also showed high emulsion activity (784.1 m2/g) and emulsion stability (209.9 min) indices. The extracted omega-3-rich oil melted in the range of 30–34.6 ◦C and remained stable up to 163–213 ◦C.
    [Show full text]
  • Differential Scanning Calorimetry Beginner's Guide
    FREQUENTLY ASKED Differential Scanning QUESTIONS Calorimetry (DSC) DSC 4000 DSC 8000 DSC 8500 with Autosampler DSC 6000 with Autosampler PerkinElmer's DSC Family A Beginner's Guide This booklet provides an introduction to the concepts of Differential Scanning Calorimetry (DSC). It is written for the materials scientist unfamiliar with DSC. The differential scanning calorimeter (DSC) is a fundamental tool in thermal analysis. It can be used in many industries – from pharmaceuticals to polymers and from nanomaterials to food products. The information these instruments generate is used to understand amorphous and crystalline behavior, poly- morph and eutectic transitions, curing and degree of cure, and many other material properties used to design, manufacture and test products. DSCs are manufactured in several variations, but PerkinElmer is the only company to make both single and double-furnace styles. We’ve manufactured thermal analysis instrumentation since 1960, and no one understands the applications of DSC like we do. In the following pages, we answer common questions about what a DSC is, how the instruments work, and what they tell you. Table of Contents 20 Common Questions about DSC What is DSC? ................................................................................................3 What is the difference between a heat flow and a heat flux DSC? ...................3 How does the difference affect me? ..............................................................3 Why do curves point in different directions? ...................................................4
    [Show full text]
  • THERMAL ANALYSIS New Castle, DE USA
    THERMAL ANALYSIS New Castle, DE USA Lindon, UT USA Hüllhorst, Germany Shanghai, China Beijing, China Tokyo, Japan Seoul, South Korea Taipei, Taiwan Bangalore, India Sydney, Australia Guangzhou, China Eschborn, Germany Wetzlar, Germany Brussels, Belgium Etten-Leur, Netherlands Paris, France Elstree, United Kingdom Barcelona, Spain Milano, Italy Warsaw, Poland Prague, Czech Republic Sollentuna, Sweden Copenhagen, Denmark Chicago, IL USA São Paulo, Brazil Mexico City, Mexico Montreal, Canada Thermal Analysis Thermal Analysis is important to a wide variety of industries, including polymers, composites, pharmaceuticals, foods, petroleum, inorganic and organic chemicals, and many others. These instruments typically measure heat flow, weight loss, dimension change, or mechanical properties as a function of temperature. Properties characterized include melting, crystallization, glass transitions, cross-linking, oxidation, decomposition, volatilization, coefficient of thermal expansion, and modulus. These experiments allow the user to examine end-use performance, composition, processing, stability, and molecular structure and mobility. All TA Instruments thermal analysis instruments are manufactured to exacting standards and with the latest technology and processes for the most accurate, reliable, and reproducible data available. Multiple models are available based on needs; suitable for high sensitivity R&D as well as high throughput quality assurance. Available automation allows for maximum unattended laboratory productivity in all test environments.
    [Show full text]
  • High Performance Liquid Chromatography Method Development and Chemometric Analysis of Ecstasy and Cocaine
    institlüld ictterkcnny TeicneoUiochti institute lyit (.«Ulf C*»n«lon of Technology High performance liquid chromatography method development and chemometric analysis of ecstasy and cocaine Kim McFadden Supervisors Dr. B. F. Carney, Letterkenny Institute of Technology Dr. D. O'Driscoll, Forensic Science Laboratory, Dublin Submitted to Higher bducation and Training Awards Council (HETAC) in fulfilment for the requirements for the degree of Doctor of Philosophy HPLC method development & chemomelric analysis of ecstasy & cocaine Declaration I hereby declare that the work herein, submitted for Ph.D. in Analytical Science at Letterkenny Institute of Technology, is the result of my own investigation, except where reference is made to published literature. I also certify that the material submitted in this thesis has not been previously submitted for any other qualification. Kim McFadden 1 HPLC method development & chemometric analysis of ecstasy & cocaine Table of Contents Declaration 1 Abstract 5 List of Abbreviations 7 List of Figures 10 List of Tables 14 List of Presentations and Publications 16 Acknowledgments 18 Chapter 1: Literature review. 19 1.1. Introduction. 20 1.2. Drugs of abuse. 21 1.2.1. Narcotics. 22 1.2.2. Depressants. 24 1.2.3. Stimulants. 24 1.2.4. Hallucinogens. 25 1.2.5. Ecstasy. 26 1.2.6. Cocaine. 31 1.3. Current analytical techniques for forensic drug analysis. 34 1.3.1. Spectrometric methods. 34 1.3.2. Chromatographic methods. 36 1.4. Fundamentals of High Performance Liquid Chromatography. 40 1.4.1. Chromatographic interactions. 40 1.4.2. Mobile phase. 41 1.4.3. The column. 42 1.4.4.
    [Show full text]
  • Ch 27 Gravimetric Analysis Analytical Chemistry
    Ch 27 Gravimetric Analysis 1 Analytical chemistry Classification by the techniques: 1. Classical Analysis Gravimetric, Titration(Volumetric) Analysis 2. Instrumental Analysis Electrochemical Analysis, Spectrochemical Analysis, Chromatographic Separation and Analysis 2 1 Ch 12 Gravimetric Analysis gravi – metric (weighing - measure) Definition: A precipitation or volatilization method based on the determination of weight of a substance of known composition that is chemically related to the analyte. 3 12. 1 Procedure Criteria (1)The desired substance: completely precipitated. "common ion" effect can be utilized: Ag+ + Cl- AgCl(s) excess of Cl- which is added (2) The weighed form: known composition. (3) The product: "pure", easily filtered.. 4 2 12. 1 Procedure • 7 Steps in Gravimetric Analysis 1) Dry and weigh sample 2) Dissolve sample 3) Add precipitating reagent in excess 4) Coagulate precipitate usually by heating 5) Filtration-separate precipitate from mother liquor 6) Wash precipitate 7) Dry and weigh to constant weight (0.2-0.3 mg) 5 Suction Filtration • Filter flask • Buchner funnel • Filter paper • Glass frit • Filter adapter • Heavy-walled rubber tubing • Water aspirator 6 3 Suction Filtration • Mother liquor 7 12.2 Advantages/Disadvantages • Experimentally simple and elegant • Accurate • Precise (0.1-0.3 %) • Macroscopic technique-requires at least 10 mg ppt to collect and weigh properly • Time-consuming (1/2 day?) 8 4 12.3 Calculation • Design of experiment • Content Calculation • Evaluation of the results 9 12.3 Calculation • % of analyte, % A • %A = weight of analyte x 100 weight of sample • weight of ppt directly obtained ->%A 10 5 How Do We Get %A? • % A = weight of ppt x gravimetric factor (G.F.) x 100 weight of sample • G.F.
    [Show full text]