A Modified Nuclear Model for Binding Energy of Nuclei And

Total Page:16

File Type:pdf, Size:1020Kb

A Modified Nuclear Model for Binding Energy of Nuclei And A MODIFIED NUCLEAR MODEL FOR BINDING ENERGY OF NUCLEI AND THE ISLAND OF STABILITY BY KENNETH KIPCHUMBA SIRMA A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS, UNIVERSITY OF ELDORET, KENYA. MAY, 2021 ii DECLARATION Declaration by the Candidate I declare that this is my original and personal work and has not been presented for a degree in any other university. This thesis is not to be reproduced without the prior written permission of the author and/or University of Eldoret. Kenneth Kipchumba Sirma ______________________________ _______________________ SC/PHD/002/15 Date Approval by Supervisors This thesis has been submitted for examination with our approval as University Supervisors. ______________________________ _______________________ Prof. Kapil M. Khanna Date Department of Physics University of Eldoret, Kenya. ______________________________ _______________________ Dr. Samuel L. Chelimo Date Physics Department University of Eldoret, Kenya. iii DEDICATION To my beloved mum Grace for her unconditional love, advice and support. To our children Gael and Abby you are blessings. My wife Jacinta, for her love and care. iv ABSTRACT A new nuclear model of quantifying binding energy of nuclei is proposed. The nucleus is assumed to be composed of two regions; the inner core region and surface region. The inner core is assumed to be composed of Z proton-neutron pairs (Z=N) and the surface region is composed of the unpaired neutrons for a nucleus in which N>Z. The interaction between the core and neutrons in the surface region is assumed to be such that it leads to an average potential Vo in which each neutron in the surface region can move. Knowing the experimental values for the binding energy of nuclei, this average interaction potential Vo has been calculated for light, medium, heavy nuclei and Super heavy elements. Vo varies for isotopes, Isobars and Isotones. For isotopes the value of Vo decreases as the nuclei surface region neutron number (N) increases. A decrease in Vo is quite large when the neutron number increases by unity in light nuclei compared to heavy nuclei. For isotones, the value of Vo increases with an increase in proton number (Z). This is evident for both light nuclei and heavy nuclei. For Isobars, all elements ranging from light to SHE, Vo increases with decreasing A-2Z. The value of Vo is calculated for 254 234 295 super heavy nuclei or elements (SHE or SHN) starting from 92U to 118 Ei. The calculated values of the interaction potential Vo range from 671.688 MeV for to the value 267 938.961 MeV for . However, a very high value of 1022.206 MeV is noted for 110 Ds . Definite variations in Vo are obtained for Isotones, Isotopes and Isobars. For Isotones, the value of Vo increases while there is an increase in proton number (Z increases). For isotopes, Vo value decreases while number of neutrons in neutron skin region increases. For isobars, Vo value increases while proton number (Z) increases. This trend in variation of Vo is evident across all the nuclides, the obtained values of Vo are within the expected theoretical values, also the variation of Vo is in agreement with “Woods-Saxon potential”. v TABLE OF CONTENTS DECLARATION ................................................................................................................ ii DEDICATION ................................................................................................................... iii ABSTRACT ....................................................................................................................... iv TABLE OF CONTENTS .................................................................................................... v LIST OF TABLES ........................................................................................................... viii LIST OF FIGURES ........................................................................................................... ix LIST OF SYMBOLS .......................................................................................................... x ACKNOWLEDGEMENT ................................................................................................ xii CHAPTER ONE ............................................................................................................... 1 INTRODUCTION............................................................................................................. 1 1.1 Composition of Nuclei and Nuclear forces ............................................................... 1 1.1.1 Phenomena of pairing in finite and infinite nuclear system .............................. 1 1.1.2 Limits of stability ............................................................................................... 4 1.2 Statement of the problem .......................................................................................... 5 1.3 Research Objectives .................................................................................................. 6 1.3.1 General Objective ............................................................................................... 6 1.3.2 Specific Objectives ............................................................................................. 6 1.4 Justification of study ................................................................................................. 6 1.5 Significance ............................................................................................................... 7 CHAPTER TWO .............................................................................................................. 8 LITERATURE REVIEW ................................................................................................ 8 2.1 Background Information ........................................................................................... 8 2.2 Binding energy of the nucleus ................................................................................. 10 2.3 Semi-Empirical Mass formula (SEMF) .................................................................. 11 2.3.1 Volume Energy ................................................................................................. 12 2.3.2 Surface Energy ................................................................................................. 13 2.3.3 Coulomb Energy ............................................................................................... 13 2.3.4 Asymmetry Energy ........................................................................................... 14 2.3.5 Pairing Energy .................................................................................................. 14 vi 2.4 Separation Energy ................................................................................................... 14 2.5 Super Heavy Elements (SHE) and Island of stability ............................................. 16 2.6 Neutron Dripline ..................................................................................................... 20 2.7 Coulomb Energy ..................................................................................................... 20 2.8 Isotopes.................................................................................................................... 21 2.9 Isotones.................................................................................................................... 22 2.10 Isobars ................................................................................................................... 22 CHAPTER THREE ........................................................................................................ 24 METHODOLOGY ......................................................................................................... 24 3.1 Theory ..................................................................................................................... 24 3.2 Calculation of p and Btot ....................................................................................... 24 3.3 Derivation for Vo ..................................................................................................... 26 3.4 Super Heavy Nuclei (SHN) ..................................................................................... 28 CHAPTER FOUR ........................................................................................................... 31 RESULTS AND DISCUSSIONS ................................................................................... 31 4.1 Results ..................................................................................................................... 31 4.2 Discussions .............................................................................................................. 32 4.2.1 Light Nuclei.......................................................................................................... 32 4.2.1.1 Isotopes .......................................................................................................... 32 4.2.1.2 Isotones .......................................................................................................... 33 4.2.1.3 Isobars ............................................................................................................ 35 4.2.2. Medium Nuclei .................................................................................................... 36 4.2.2.1 Isotopes .........................................................................................................
Recommended publications
  • Measurement and Analysis of the Resolved Resonance Cross Sections of the Natural Hafnium Isotopes
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Birmingham Research Archive, E-theses Repository MEASUREMENT AND ANALYSIS OF THE RESOLVED RESONANCE CROSS SECTIONS OF THE NATURAL HAFNIUM ISOTOPES by TIMOTHY CHRISTOPHER WARE A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Physics and Astronomy College of Engineering and Physical Sciences The University of Birmingham June 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Hafnium is a ductile metallic element with a large neutron absorption cross section. It can be used in reactor control rods to regulate the fission process. The NEA High Priority Request List for nuclear data presents a need for improved characterisation of the hafnium cross section in the resolved resonance region. This thesis presents new resonance cross section parameters for the six natural hafnium isotopes. Cross section measurements, supported by the NUDAME and EUFRAT projects, were performed at the IRMM Geel GELINA time-of-flight facility. Capture experiments were conducted on the 12 m, 28 m and 58 m flight paths using C6D6 detectors and transmission experiments were performed at flight paths of 26 m and 49 m using a 6Li glass detector.
    [Show full text]
  • First Search for $\Alpha $ Decays of Naturally Occurring Hf Nuclides With
    First search for α decays of naturally occurring Hf nuclides with emission of γ quanta F.A. Danevicha,1, M. Hultb, D.V. Kasperovycha, G.P. Kovtunc,d, K.V. Kovtune, G. Lutterb, G. Marissensb, O.G. Polischuka, S.P. Stetsenkoc, V.I. Tretyaka aInstitute for Nuclear Research, 03028 Kyiv, Ukraine bEuropean Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium cNational Scientific Center Kharkiv Institute of Physics and Technology, 61108 Kharkiv, Ukraine dKarazin Kharkiv National University, 61022 Kharkiv, Ukraine ePublic Enterprise “Scientific and Technological Center Beryllium”, 61108 Kharkiv, Ukraine Abstract The first ever search for α decays to the first excited state in Yb was performed for six isotopes of hafnium (174, 176, 177, 178, 179, 180) using a high purity Hf-sample of natural isotopic abundance with a mass of 179.8 g. For 179Hf, also α decay to the ground state of 175Yb was searched for thanks to the β-instability of the daughter nuclide 175Yb. The measurements were conducted using an ultra low-background HPGe-detector system located 225 m underground. After 75 d of data taking no decays were detected but lower 15 18 bounds for the half-lives of the decays were derived on the level of lim T1/2 ∼ 10 −10 a. The decay with the shortest half-life based on theoretical calculation is the decay of 174Hf to the first 2+ 84.3 keV excited level of 170Yb. The experimental lower bound was found 15 to be T1/2 ≥ 3.3 × 10 a. Keywords: Alpha decay; 174Hf, 176Hf, 177Hf, 178Hf, 179Hf, 180Hf, Low-background HPGe γ spec- trometry arXiv:1911.02597v1 [nucl-ex] 6 Nov 2019 1 INTRODUCTION Alpha decay is one of the most important topics of nuclear physics both from the theoretical and experimental points of view.
    [Show full text]
  • Physics Study Sheet for Math Pre-Test
    AP Physics 1 Summer Assignments Dear AP Physics 1 Student, kudos to you for taking on the challenge of AP Physics! Attached you will find some physics-related math to work through before the first day of school. The problems require you to apply math concepts that were covered in algebra and trigonometry. Bring your completed sheets on the first day of school. Please familiarize yourself with the following websites. https://phet.colorado.edu/en/simulations/category/physics We will use this website extensively for physics simulations. These websites are good resources for physics concepts: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html http://www.thephysicsaviary.com/APReview.html http://www.physicsclassroom.com/ http://www.learnapphysics.com/apphysics1and2/index.html https://openstax.org/subjects/science This website provides free online textbooks with links to online simulations. Finally, you will need a graph paper composition notebook on the first day of class. This serves as your Lab Notebook. I look forward to learning and teaching with you in the fall! Find time to relax and recharge over the summer. I will be checking my district email, so feel free to contact me with any questions and concerns. My email address is [email protected]. 1 Physics Study Sheet for Math Algebra Skills 1. Solve an equation for any variable. Solve the following for x. ay a) v + w = x2yz c) bx 2 1 1 21y b) d) x 32 x 32 2. Be able to reduce fractions containing powers of ten. 2 3 10 4 10 a) 10 b) 103 106 3.
    [Show full text]
  • 4.62 Samarium
    IUPAC 4.62 samarium Stable Relative Mole isotope atomic mass fraction 144 Sm 143.912 01 0.0308 147 † Sm 146.914 90 0.1500 148 Sm † 147.914 83 0.1125 149 Sm 148.917 19 0.1382 150 Sm 149.917 28 0.0737 152 Sm 151.919 74 0.2674 154 Sm 153.922 22 0.2274 † Radioactive isotope having a relatively long half-life and a characteristic terrestrial isotopic composition that contributes significantly and reproducibly to the determination of the standard atomic weight of the element in normal materials . The half-lives of 147 Sm and 148 Sm are 1.06 × 10 11 years and 7 × 10 15 years, respectively. 4.62.1 Samarium isotopes in Earth/planetary science One possible origin for the Moon is from debris ejected by an indirect giant impact of Earth by an astronomical body the size of Mars when the Earth was forming [433]. The kinetic energy liberated is thought to have melted a large part of the Moon forming a lunar magma ocean. P.O. 13757, Research Triangle Park, NC (919) 485-8700 IUPAC Samarium isotope measurement results [434], along with measurements of isotopes of hafnium, tungsten, and neodymium[435], suggest that lunar magma formed about 70 × 10 6 years after the Solar System formed and had crystallized by about 215 × 10 6 years after formation. 147 Sm is used to study the formation of potassium, rare earth elements , and phosphorus-rich rocks [436]. 4.62.2 Samarium isotopes in geochronology 147 Sm is used for determining formation ages of igneous and metamorphic rocks via analysis of the minerals which compose them, such as those shown in Figure 4.62.1 [437-439].
    [Show full text]
  • Quantum Theory, Quantum Mechanics) Part 1
    Quantum physics (quantum theory, quantum mechanics) Part 1 1 Outline Introduction Problems of classical physics Black-body Radiation experimental observations Wien’s displacement law Stefan – Boltzmann law Rayleigh - Jeans Wien’s radiation law Planck’s radiation law photoelectric effect observation studies Einstein’s explanation Quantum mechanics Features postulates Summary Quantum Physics 2 Question: What do these have in common? lasers solar cells transistors computer chips CCDs in digital cameras Ipods superconductors ......... Answer: They are all based on the quantum physics discovered in the 20th century. 3 “Classical” vs “modern” physics 4 Why Quantum Physics? “Classical Physics”: developed in 15th to 20th century; provides very successful description “macroscopic phenomena, i.e. behavior of “every day, ordinary objects” o motion of trains, cars, bullets,…. o orbit of moon, planets o how an engine works,.. o Electrical and magnetic phenomena subfields: mechanics, thermodynamics, electrodynamics, “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” 5 --- William Thomson (Lord Kelvin), 1900 Why Quantum Physics? – (2) Quantum Physics: developed early 20th century, in response to shortcomings of classical physics in describing certain phenomena (blackbody radiation, photoelectric effect, emission and absorption spectra…) describes microscopic phenomena, e.g. behavior of atoms, photon-atom scattering and flow of the electrons in a semiconductor.
    [Show full text]
  • General Technical Base Qualification Standard
    General Technical Base Qualification Standard DOE-STD-1146-2007 Reaffirmed March 2015 June 2016 Reference Guide The Functional Area Qualification Standard References Guides are developed to assist operators, maintenance personnel, and the technical staff in the acquisition of technical competence and qualification within the Technical Qualification Program (TQP). Please direct your questions or comments related to this document to Learning and Career Management, TQP Manager, NNSA Albuquerque Complex. This page is intentionally blank. TABLE OF CONTENTS FIGURES ...................................................................................................................................... iii TABLES ........................................................................................................................................ iii VIDEOS ........................................................................................................................................ iii ACRONYMS ................................................................................................................................. v PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1 PREFACE .....................................................................................................................................
    [Show full text]
  • Fundamentals of Physics 10Th Edition
    PHY241 UNIVERSITY PHYSICS III Heat, entropy, and laws of thermodynamics; wave propagation; geometrical and physical optics; introduction to special relativity. These sites were selected to aid in the study of mechanics and thermodynamics at the college and university level. We tried to stay close to the Welcome page for each website so it would not be lost easily as the semester changes. text : Fundamentals of Physics 10th Edition Links Date Existing or Replacement Site Description Cool Links The National Institute of Standards & Technology A great resource for standards and recently published information. The National Institute of Standards & Technology May-11 http://www.nist.gov/index.html There are links to take you can where you want to go. Physics Resources A comprehensive resource for physics jokes, journals, employment, and recently published information. Physics Resources May-11 http://www.physlink.com/ There is also a question and answer site. There are links to take you the national labs. This site is heavy on graphics. Physics Resources from U. Penn. A comprehensive resource for physics from the University of Penn. This is a great site. Physics Resources from U. Penn May-11 https://www.physics.upenn.edu/resources/physics-astronomy-links There are links to take you the national labs. This site is heavy on graphics. Physics Linkage Page Univerversity of N. C. May-11 http://physics.unc.edu/research-pages/ Physics Link Page Physics Linkage Page Eastern Illinois University May-11 http://www.eiu.edu/~physics/important_links.php Physics Link Page Physics Site with Tutorials May-11 http://www.dl.ket.org/physics/ Physics Tutorials May-11 http://www.physicsclassroom.com/ Physics Tutorials Online Physics Courses May-11 http://academicearth.org/subjects/physics Sites with Multiple Course Material College level Physics A algebra/trig based set of lectures beginning with motion and ending with nuclear physics.
    [Show full text]
  • Operator Algebras in Quantum Mechanics
    Operators and Operator Algebras in Quantum Mechanics Alexander Dzyubenko Department of Physics, California State University at Bakersfield Department of Physics, University at Buffalo, SUNY Supported in part by NSF Department of Mathematics, CSUB September 22, 2004 PDF created with pdfFactory Pro trial version www.pdffactory.com Outline v Quantum Harmonic Oscillator Ø Schrödinger Equation (SE) Ladder Operators Ø Coherent and Squeezed Oscillator States PDF created with pdfFactory Pro trial version www.pdffactory.com Classical Harmonic Oscillator Total Energy = Kinetic Energy + Potential Energy p2 mw 2 x2 H = K +V (x) = + 2m 2 Hamiltonian Function k Frequency m k 2p w = = m T Total Energy: E = mw2 A2 Period Amplitude PDF created with pdfFactory Pro trial version www.pdffactory.com Quantum Harmonic Oscillator Total Energy = Kinetic Energy + Potential Energy pˆ 2 mw2 xˆ2 Hˆ = Kˆ +Vˆ = + 2m 2 Probability Hamiltonian Operator: Acts on Wave Functions Y = Y(x,t) = x Y Density: 2 ¶ | Y(x,t) | Momentum Operator pˆ = -ih ¶x Coordinate Operator xˆ = x Time-Dependent SchroedingerEquation: ¶Y(x,t) ih = HˆY(x,t) ¶t PDF created with pdfFactory Pro trial version www.pdffactory.com Erwin Schrödinger Once at the end of a colloquium I heard Debye saying something like: “Schrödinger, you are not working right now on very important problems… why don’t you tell us some time about that thesis of de Broglie’s… In one of the next colloquia, Schrödinger gave a beautifully clear account of how de Broglie associated a wave with a particle, and how he could obtain the quantization rules… When he had finished, Debye casually remarked that he thought this way of talking was rather childish… To deal properly with waves, one had to have a wave equation.
    [Show full text]
  • General Relativity and Modified Gravity
    General Relativity and Modified Gravity Dimitrios Germanis September 30, 2011 Abstract In this paper we present a detailed review of the most widely ac- cepted theory of gravity: general relativity. We review the Einstein- Hilbert action, the Einstein field equations, and we discuss the various astrophysical tests that have been performed in order to test Einstein’s theory of gravity. We continue by looking at alternative formulations, such as the Palatini formalism, the Metric-Affine gravity, the Vier- bein formalism, and others. We then present and analytically discuss a modification of General Relativity via the Chern-Simons gravity cor- rection term. We formulate Chern-Simons modified gravity, and we provide a derivation of the modified field equations by embedding the 3D-CS theory into the 4D-GR. We continue by looking at the appli- cations of the modified theory to CMB polarization, and review the various astrophysical tests that are used to test this theory. Finally, we look at f(R) theories of gravity and specifically, f(R) in the met- ric formalism, f(R) in the Palatini formalism, f(R) in the metric-affine formalism, and the various implications of these theories in cosmology, astrophysics, and particle physics. 1 Contents 1 Introduction 3 2 General Relativity 7 2.1 Foundations of GR . 7 2.2 Einstein’s Theory of GR . 16 2.3 The Einstein-Hilbert Action . 18 2.4 Einstein’s Field Equations . 20 2.5 Astrophysical Tests . 23 3 Alternative Formulations 28 3.1 The Palatini Formalism . 28 3.2 Metric-Affine Gravity . 31 3.3 The Vierbein Formalism .
    [Show full text]
  • PHYS 6601C: Learning and Teaching Algebra-Based Physics: Waves, Quantum & Nuclear Physics
    PHYS 6601C: Learning and Teaching Algebra-Based Physics: Waves, Quantum & Nuclear Physics Instructor: Yuriy Zavorotniy Email: [email protected] Course Credit: 2.0 NJCTL credits Dates & Times: This is a 2-credit, self-paced course, covering 6 modules of content. The exact number of hours that you can expect to spend on each module will vary based upon the module coursework, as well as your study style and preferences. You should plan to spend 6-12 hours per module, completing the module slides, readings, short answer assignments, labs, mastery exercises, practice problems, and module exams. COURSE DESCRIPTION: This is the last of three mini-courses which, together, are designed for those who are learning to teach Algebra-Based physics for middle school or high school students, focusing on conveying physics and mathematical concepts and understandings. Underlying themes are physics connections to everyday life, applications of mathematics in physics, problem solving, and hands on laboratory experience. The course presents physics as the foundation for studying chemistry, biology and advanced mathematics. Technology serves as a tool to establish these connections through exploration, problem solving, formative assessment, presentation, and communication. New Points: This final course is comprised of modern physics, including Simple Harmonic Motion, Waves, Light and the Bohr model of the Hydrogen atom for the last 20%. The order of the topics has been geared towards reinforcing skills in algebra and requires no trigonometry. This is accomplished by only including problems that can be simplified to one- dimensional form. While vectors are introduced, they are only added and subtracted in one dimension at a time.
    [Show full text]
  • On-Line Separation of Short-Lived Tungsten Isotopes from Tantalum; Hafnium and Lutetium by Adsorption on Ion Exchangers from Aqueous Ammonia Solution
    Jointly I,ublished by Elsevier Scie.ce S. A~. Lausanne and J.Radioanal.Nucl.Chem.,Letters Akad?miai Kiod6, Bltdapest 214 (I) I-7 (I 996) ON-LINE SEPARATION OF SHORT-LIVED TUNGSTEN ISOTOPES FROM TANTALUM; HAFNIUM AND LUTETIUM BY ADSORPTION ON ION EXCHANGERS FROM AQUEOUS AMMONIA SOLUTION 1 1 1 1 D. Schumann , R. Dressler , St. Taut , H. Nitsche , Z. Szeglowski2, B. Kubica2~ L.I. Guseva 3, 4 G.S. Tikhomirova3, A. Yakushev~, O. Constantinescu , V.P. Domanov 4, M. Constantinescu 4, Dinh Thi Lien 4, Yu. Ts. Oganessian 4, V.B. Brudanin 4, I. Zvara 4, H. Bruchertseifer 5 I Institute of Analytical Chemistry, University of Technology Dresden, 01062 Dresden, Germany 2H. Niewodniczanski Institut of Nuclear Physics, Krakow, Poland ~Institute of Geochemistry and Analytical Chemistry, Moscow, Russia 4joint Institute of Nuclear Research, Dubna, Russia 5paul-Scherrer-Institute, Villigen, Switzerland Received 17 June 1996 Accepted I July 1996 The title goal was achieved using a DOWEX 50Wx8 cation exchange column saturated with La(OH) 3 and ammonia solution as eluent.>Hf, Ta and Lu were adsorbed on this column, where- as W remained in the solution. This chemical system may be used for fast on-line separa- tions of element 106. INTRODUCT ION Subgroup VI elements form oxo-anions in alkaline solu- tion I , whereas subgroup IV and V elements and lanthanides hydroiyze under these conditions. This might be of inter- 0236 -5 731/76/.[/S ~ J 2,0 Cops I"ight ~'9~6 Ak~ch~nlirli KicaM, Blldapr All t il.,ht$ rest'tied SCHUMANN et al.: ON-LINE SEPARATION OF TUNGSTEN ISOTOPES est for fast on-line separation of element 106 from heavy actinides and element 104 produced simultaneously in heavy ion reactions.
    [Show full text]
  • Lecture 5: Kirchhoff's Laws in Circuits
    8/22/2019 Recommended learning opportunities • Workshops (as announced each week) • Office Hours Room 1005 (near lab), Monday-Friday • CARE Grainger Library • Honors projects targeting James Scholars, ECE110+ECE120 Encountering various difficulties? Contact your Instructor, lab TA, or the advising office on the second floor (2120 ECEB)! 1 Lecture 1: ECE110 Introduction to Electronics: Key Intro Concepts Charge Current Voltage 2 8/22/2019 The Field of Study Defined “Engineers use the knowledge of mathematics and natural sciences gained by study, experience, and practice, applied with judgment, to develop ways to economically utilize the materials and forces of nature for the benefit of mankind. “ - ABET (Accreditation Board for Engineering and Technology) Electrical engineering (EE) is a field of engineering that generally deals with the study and application of electricity, electronics, and electromagnetism - WikiPedia 3 A short history of Electrical Engineering 4 8/22/2019 Charge • Charge is measured in coulombs (퐶) • Capital or lowercase “Q” is the variable typically used to represent charge • an electron is a charged subatomic particle • the coulomb is extremely large compared to the charge of a single electron −19 −1.6 × 10 퐶 (푛표푡푎푡표푛 푐ℎ푎푛푔푒) −1.6 e − 19 퐶 푒푙푒푐푡푟표푛 = 푒푙푒푐푡푟표푛 • Electronics is much more than just movement of electrons 5 Current: the rate at which Charge moves • Current is measured in units of amps (퐴) • Capital or lowercase “I” is the variable typically used to represent current…it means intensity. • Electric current is the flow of electric charge in time (퐶/푠) 푑푞 푡 푡 = 푑푡 Image is public domain. • The ampere is the unit of electric current 1 퐴 = 1 퐶/푠 • Current is measured by an ammeter 6 8/22/2019 “DC” Current For constant rates called “Direct Current” or “DC”, we typically use capitalized variables and can replace the differential with observations in some time, Δ푡.
    [Show full text]