Revealed from Complete Mitochondrial Genomes Feng-Jiau Lin1†, Yuan Liu2†, Zhongli Sha2, Ling Ming Tsang3, Ka Hou Chu3, Tin-Yam Chan4, Ruiyu Liu2 and Zhaoxia Cui2*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Learning in Stomatopod Crustaceans
International Journal of Comparative Psychology, 2006, 19 , 297-317. Copyright 2006 by the International Society for Comparative Psychology Learning in Stomatopod Crustaceans Thomas W. Cronin University of Maryland Baltimore County, U.S.A. Roy L. Caldwell University of California, Berkeley, U.S.A. Justin Marshall University of Queensland, Australia The stomatopod crustaceans, or mantis shrimps, are marine predators that stalk or ambush prey and that have complex intraspecific communication behavior. Their active lifestyles, means of predation, and intricate displays all require unusual flexibility in interacting with the world around them, imply- ing a well-developed ability to learn. Stomatopods have highly evolved sensory systems, including some of the most specialized visual systems known for any animal group. Some species have been demonstrated to learn how to recognize and use novel, artificial burrows, while others are known to learn how to identify novel prey species and handle them for effective predation. Stomatopods learn the identities of individual competitors and mates, using both chemical and visual cues. Furthermore, stomatopods can be trained for psychophysical examination of their sensory abilities, including dem- onstration of color and polarization vision. These flexible and intelligent invertebrates continue to be attractive subjects for basic research on learning in animals with relatively simple nervous systems. Among the most captivating of all arthropods are the stomatopod crusta- ceans, or mantis shrimps. These marine creatures, unfamiliar to most biologists, are abundant members of shallow marine ecosystems, where they are often the dominant invertebrate predators. Their common name refers to their method of capturing prey using a folded, anterior raptorial appendage that looks superficially like the foreleg of a praying mantis. -
Lobsters-Identification, World Distribution, and U.S. Trade
Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de temperature zones. From such partition food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob Nephropoidea), the squat lobsters the world because of species distribu ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con lobsters, Homarus americanus, caught the purpose of reporting fishery statis tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e. -
From Ghost and Mud Shrimp
Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 . -
The Mediterranean Decapod and Stomatopod Crustacea in A
ANNALES DU MUSEUM D'HISTOIRE NATURELLE DE NICE Tome V, 1977, pp. 37-88. THE MEDITERRANEAN DECAPOD AND STOMATOPOD CRUSTACEA IN A. RISSO'S PUBLISHED WORKS AND MANUSCRIPTS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands CONTENTS Risso's 1841 and 1844 guides, which contain a simple unannotated list of Crustacea found near Nice. 1. Introduction 37 Most of Risso's descriptions are quite satisfactory 2. The importance and quality of Risso's carcino- and several species were figured by him. This caused logical work 38 that most of his names were immediately accepted by 3. List of Decapod and Stomatopod species in Risso's his contemporaries and a great number of them is dealt publications and manuscripts 40 with in handbooks like H. Milne Edwards (1834-1840) Penaeidea 40 "Histoire naturelle des Crustaces", and Heller's (1863) Stenopodidea 46 "Die Crustaceen des siidlichen Europa". This made that Caridea 46 Risso's names at present are widely accepted, and that Macrura Reptantia 55 his works are fundamental for a study of Mediterranean Anomura 58 Brachyura 62 Decapods. Stomatopoda 76 Although most of Risso's descriptions are readily 4. New genera proposed by Risso (published and recognizable, there is a number that have caused later unpublished) 76 authors much difficulty. In these cases the descriptions 5. List of Risso's manuscripts dealing with Decapod were not sufficiently complete or partly erroneous, and Stomatopod Crustacea 77 the names given by Risso were either interpreted in 6. Literature 7S different ways and so caused confusion, or were entirely ignored. It is a very fortunate circumstance that many of 1. -
Balanus Trigonus
Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Settlement of the barnacle Balanus trigonus BRAZILIAN CRUSTACEAN SOCIETY Darwin, 1854, on Panulirus gracilis Streets, 1871, in western Mexico e-ISSN 2358-2936 www.scielo.br/nau 1 orcid.org/0000-0001-9187-6080 www.crustacea.org.br Michel E. Hendrickx Evlin Ramírez-Félix2 orcid.org/0000-0002-5136-5283 1 Unidad académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. A.P. 811, Mazatlán, Sinaloa, 82000, Mexico 2 Oficina de INAPESCA Mazatlán, Instituto Nacional de Pesca y Acuacultura. Sábalo- Cerritos s/n., Col. Estero El Yugo, Mazatlán, 82112, Sinaloa, Mexico. ZOOBANK http://zoobank.org/urn:lsid:zoobank.org:pub:74B93F4F-0E5E-4D69- A7F5-5F423DA3762E ABSTRACT A large number of specimens (2765) of the acorn barnacle Balanus trigonus Darwin, 1854, were observed on the spiny lobster Panulirus gracilis Streets, 1871, in western Mexico, including recently settled cypris (1019 individuals or 37%) and encrusted specimens (1746) of different sizes: <1.99 mm, 88%; 1.99 to 2.82 mm, 8%; >2.82 mm, 4%). Cypris settled predominantly on the carapace (67%), mostly on the gastric area (40%), on the left or right orbital areas (35%), on the head appendages, and on the pereiopods 1–3. Encrusting individuals were mostly small (84%); medium-sized specimens accounted for 11% and large for 5%. On the cephalothorax, most were observed in branchial (661) and orbital areas (240). Only 40–41 individuals were found on gastric and cardiac areas. Some individuals (246), mostly small (95%), were observed on the dorsal portion of somites. -
Asc Shrimp Standard Revision
ASC SHRIMP STANDARD REVISION Revision of Current Metrics Background Analysis Document March 2020 Revision of current metrics – Background analysis document Shrimp Standard Revision Purpose The purpose of this document is to present the acquired data for the revision of the ASC Shrimp Standard v.1.1 and propose changes to the metric requirements where relevant. This document will be used for the decision-making process within the revision. Background The ASC Shrimp Standard v.1.1 is based on the anterior work of the Shrimp Aquaculture Dialogue (ShAD) and sets requirements that define what has been deemed ‘acceptable’ levels as regards the major social and environmental impacts of saltwater shrimp farming. The purpose of the ASC Shrimp Standard was and is to provide means to measurably improve the environmental and social performance of shrimp aquaculture operations worldwide. The Standard currently covers species under the genus Penaeus (previously Litopenaeus)1 and is oriented towards the production of P. vannamei2 and P. monodon. A Rationale document3 was produced as part of the ASC Shrimp Standard revision to evaluate the necessity to specifically include Penaeus stylirostris (Blue Shrimp), Penaeus merguiensis (Banana Prawn), Penaeus japonicus (Kuruma Prawn) and Penaeus ensis (Greasyback Shrimp) within the ASC Shrimp Standard. It was concluded that specific metrics for these species are not necessary and certification can remain on the basis of the metrics already contained therein for P. vannamei and P. monodon. Corresponding Metrics The ASC Shrimp Standard covers seven principles regarding legal regulations, environmentally suitable sighting and operation, community interactions, responsible operation practices, shrimp health management, stock management and resources use. -
Revision of Jaxea Kuemeli BACHMAYER, 1954 (Decapoda
N. Jb. Geol. Palaont. Abh. 260/2, 173-184 Article published online March 2011 Revision of Jaxea kuemeli BACHMAYER, 1954 (Decapoda: Gebiidea: Laomediidae) from the Miocene of Europe, with remarks on the palaeobiogeography of the genus Jaxea NARDO, 1847 Matus Hyzny With 7 figures and 2 tables HYZNY,M. (2011): Revision of Jaxea kuemeli BACHMAYER,1954 (Decapoda: Gebiidea: Laomediidae) from the Miocene of Europe, with remarks on the palaeobiogeography of the genus Jaxea NARDO, 1847. - N. lb. Geol. Paliiont. Abh., 260: 173-184; Stuttgart. Abstract: The present contribution reevaluates the fossil record of the genus Jaxea (Decapoda: Ge- biidea: Laomediidae) and gives an emended diagnosis and an updated description of Jaxea kuemeli based on well preserved material from the lower and middle Miocene strata of Austria, Slovakia and Hungary. The species is distinguished from the extant J. nocturna on the basis of the tooth formula of the chelipeds. The geographic distribution and the palaeobiogeography of the genus is discussed and migration from the Tethys eastward towards the present-day Indo-Pacific Ocean during the Miocene time is proposed. The fossil record of the family Laomediidae is shortly reviewed. The monotypical genus Reschia from the Tithonian of southern Germany once tentatively assigned to Laomediidae is excluded from the family. Key words: Decapoda, Laomediidae, Jaxea, Miocene, palaeobiogeography. 1. Introduction A recent study of the type material of Jaxea kuemeli oriented cervical groove. However, a re-examination BACHMAYER,1954 from the middle Miocene of the of the type material has now revealed that what was Vienna Basin, plus additional specimens from sev- described as a complete dorsal carapace is only a frag- erallocalities in Austria, Slovakia and Hungary (Fig. -
Crustacea, Decapoda, Dendrobranchiata and Caridea) from Off Northeastern Japan
Bull. Natl. Mus. Nat. Sci., Ser. A, 42(1), pp. 23–48, February 22, 2016 Additional Records of Deep-water Shrimps (Crustacea, Decapoda, Dendrobranchiata and Caridea) from off Northeastern Japan Tomoyuki Komai1 and Hironori Komatsu2 1 Natural History Museum and Institute, Chiba, 955–2 Aoba-cho, Chiba 260–8682, Japan E-mail: [email protected] 2 Department of Zoology, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan E-mail: [email protected] (Received 5 October 2015; accepted 22 December 2015) Abstract Four deep-water species of shrimps are newly recorded from off Tohoku District, northeastern Japan: Hepomadus gracialis Spence Bate, 1888 (Dendrobranchiata, Aristeidae), Pasiphaea exilimanus Komai, Lin and Chan, 2012 (Caridea, Pasiphaeidae), Nematocarcinus longirostris Spence Bate, 1888 (Caridea, Nematocarcinidae), and Glyphocrangon caecescens Anonymous, 1891 (Caridea, Glyphocrangonidae). Of them, the bathypelagic P. exilimanus is new to the Japanese fauna. The other three species are abyssobenthic, extending to depths greater than 3000 m, and thus have been rarely collected. The newly collected samples of H. gracialis enable us to reassess diagnostic characters of the species. Nematocarcinus longirostris is rediscovered since the original description, and the taxonomy of the species is reviewed. Glyphocrangon caecescens is the sole representative of the family extending to off northern Japan. Key words : Hepomadus gracialis, Pasiphaea exilimanus, Nematocarcinus longirostris, Glypho- crangon caecescens, -
Large Spiny Lobsters Reduce the Catchability of Small Conspecifics
Vol. 666: 99–113, 2021 MARINE ECOLOGY PROGRESS SERIES Published May 20 https://doi.org/10.3354/meps13695 Mar Ecol Prog Ser OPEN ACCESS Size matters: large spiny lobsters reduce the catchability of small conspecifics Emma-Jade Tuffley1,2,3,*, Simon de Lestang2, Jason How2, Tim Langlois1,3 1School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 2Aquatic Science and Assessment, Department of Primary Industries and Regional Development, 39 Northside Drive, Hillarys, WA 6025, Australia 3The UWA Oceans Institute, Indian Ocean Marine Research Centre, Cnr. of Fairway and Service Road 4, Crawley, WA 6009, Australia ABSTRACT: Indices of lobster abundance and population demography are often derived from pot catch rate data and rely upon constant catchability. However, there is evidence in clawed lobsters, and some spiny lobsters, that catchability is affected by conspecifics present in pots, and that this effect is sex- and size-dependent. For the first time, this study investigated this effect in Panulirus cyg nus, an economically important spiny lobster species endemic to Western Australia. Three studies: (1) aquaria trials, (2) pot seeding experiments, and (3) field surveys, were used to investi- gate how the presence of large male and female conspecifics influence catchability in smaller, immature P. cygnus. Large P. cygnus generally reduced the catchability of small conspecifics; large males by 26−33% and large females by 14−27%. The effect of large females was complex and varied seasonally, dependent on the sex of the small lobster. Conspecific-related catchability should be a vital consideration when interpreting the results of pot-based surveys, especially if population demo graphy changes. -
Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects
FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2003 Springer‐Verlag. This manuscript is an author version with the final publication available at http://www.springerlink.com and may be cited as: Marshall, N. J., Cronin, T. W., & Frank, T. M. (2003). Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects. In S. P. Collin & N. J. Marshall (Eds.), Sensory Processing in Aquatic Environments. (pp. 343‐372). Berlin: Springer‐Verlag. doi: 10.1007/978‐0‐387‐22628‐6_18 18 Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects N. Justin Marshall, Thomas W. Cronin, and Tamara M. Frank Abstract Crustaceans possess a huge variety of body plans and inhabit most regions of Earth, specializing in the aquatic realm. Their diversity of form and living space has resulted in equally diverse eye designs. This chapter reviews the latest state of knowledge in crustacean vision concentrating on three areas: spectral sensitivities, ontogenetic development of spectral sen sitivity, and the temporal properties of photoreceptors from different environments. Visual ecology is a binding element of the chapter and within this framework the astonishing variety of stomatopod (mantis shrimp) spectral sensitivities and the environmental pressures molding them are examined in some detail. The quantity and spectral content of light changes dra matically with depth and water type and, as might be expected, many adaptations in crustacean photoreceptor design are related to this governing environmental factor. Spectral and temporal tuning may be more influenced by bioluminescence in the deep ocean, and the spectral quality of light at dawn and dusk is probably a critical feature in the visual worlds of many shallow-water crustaceans. -
Homarus Gammarus ) Reveals Its Generalist Parasitic Strategy in Marine Invertebrates
Title Halioticida noduliformans infection in eggs of lobster ( Homarus gammarus ) reveals its generalist parasitic strategy in marine invertebrates Authors Holt, C; Foster, R; Daniels, CL; van der Giezen, M; Feist, SW; Stentiford, GD; Bass, D Description publisher: Elsevier articletitle: Halioticida noduliformans infection in eggs of lobster (Homarus gammarus) reveals its generalist parasitic strategy in marine invertebrates journaltitle: Journal of Invertebrate Pathology articlelink: http://dx.doi.org/10.1016/ j.jip.2018.03.002 content_type: article copyright: © 2018 The Authors. Published by Elsevier Inc.; 0000-0002-6719-5565 Date Submitted 2018-06-02 Journal of Invertebrate Pathology xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Halioticida noduliformans infection in eggs of lobster (Homarus gammarus) reveals its generalist parasitic strategy in marine invertebrates ⁎ Corey Holta,b,c, , Rachel Fosterd, Carly L. Danielsc, Mark van der Giezenb, Stephen W. Feista, Grant D. Stentiforda, David Bassa,d a Pathology and Microbial Systematics, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom b Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom c The National Lobster Hatchery, South Quay, Padstow PL28 9BL, United Kingdom d The Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, United Kingdom ARTICLE INFO ABSTRACT Keywords: A parasite exhibiting Oomycete-like morphology and pathogenesis was isolated from discoloured eggs of the Halioticida noduliformans European lobster (Homarus gammarus) and later found in gill tissues of adults. Group-specific Oomycete primers Homarus gammarus were designed to amplify the 18S ribosomal small subunit (SSU), which initially identified the organism as the Haliphthoros same as the ‘Haliphthoros’ sp. -
(Decapoda, Gebiidea, Upogebiidae) in the South China Sea
THE SUBFAMILY NEOGEBICULINAE (DECAPODA, GEBIIDEA, UPOGEBIIDAE) IN THE SOUTH CHINA SEA BY WENLIANG LIU1,3) and RUIYU LIU (J.Y. LIU)2,4) 1) Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Graduate University, Chinese Academy of Sciences, Beijing 100049, China 2) Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China ABSTRACT Three species of the subfamily Neogebiculinae Sakai, 2006 are recorded from the Beibu Gulf (Tonkin Gulf), northern South China Sea. The first species, Neogebicula wistari Ngoc-Ho, 1995 is recorded for the first time from Chinese waters. The other two are described as new to science in this paper. The present authors take great pleasure to name them as Paragebicula bijdeleyi sp.nov.andNeogebicula holthuisi sp. nov. to honor the great carcinologist, the late Dr. Lipke Bijdeley Holthuis. Neogebicula holthuisi is closely allied to N. monochela (Sakai, 1967) but differs markedly in having an elongate rostrum. Paragebicula bijdeleyi sp. nov. is closely related to P. edentata (Lin, Ngoc-Ho & Chan, 2001) but differs markedly in the rostrum bearing marginal denticles. RÉSUMÉ Trois espèces de la sous-famille des Neogebiculinae Sakai, 2006 sont signalées dans le Golfe de Beibu (Golfe de Tonkin), nord de la mer de Chine du Sud. Le première espèce, Neogebicula wistari Ngoc-Ho, 1995 est signalée pour la première fois dans les eaux chinoises. Les deux autres sont décrites dans cet article comme nouvelles pour la science. C’est avec un grand plaisir que les auteurs les dédient à la mémoire du grand carcinologiste Dr. Lipke Bijdeley Holthuis, en les nommant Paragebicula bijdeleyi sp.