Wallumatta Nature Reserve

Total Page:16

File Type:pdf, Size:1020Kb

Wallumatta Nature Reserve WALLUMATTA NATURE RESERVE PLAN OF MANAGEMENT NSW National Parks and Wildlife Service Sydney, February 1999 This plan of management was adopted by the Minister for the Environment on 9 February 1999. Acknowledgments: The valuable input and assistance of Nicole Davis, Noela Kirkwood-Jones, Marjorie Gosling, Alison Ramsay and Peter Beard in the preparation of this plan of management is gratefully acknowledged. Cover photograph: Sydney Turpentine Ironbark Forest in Wallumatta Nature Reserve. This vegetation community was listed as an endangered ecological community in October 1998. Photo by Alison Ramasy. Crown Copyright 1999. Use permitted with appropriate acknowledgment. ISBN 0 7310 7683 4 FOREWORD Wallumatta Nature Reserve is a small reserve, only 6.195 hectares in size, located in the Sydney suburb of East Ryde. It is bounded by sealed roads and residential development. Although small in area, the nature reserve conserves a rare example of open forest on Wianamatta Shale soil. The reserve is also important because it includes species from both wetter and drier shale forests as well as Hawkesbury Sandstone vegetation. This plan of management emphasises the conservation of the reserve’s uncommon Wianamatta Shale vegetation and the promotion of public understanding and awareness of the value of this small remnant area of bush within Sydney. It also recognises the local residents who were instrumental in pressuring for dedication of the reserve, and since then have provided outstanding assistance in bush regeneration and weed control on the reserve. Under this plan of management the loop walking track and information brochure for Wallumatta Nature Reserve will be upgraded, the bush regeneration program will be continued, and on-going scientific investigation and environmental education will be encouraged. In accordance with section 76 of the National Parks and Wildlife Act 1974, this plan of management for Wallumatta Nature Reserve is hereby adopted. Pam Allan Minister for the Environment CONTENTS Page No. 1. INTRODUCTION 1 2. MANAGEMENT CONTEXT 2 2.1 NATURE RESERVES IN NSW. 2 2.2 WALLUMATTA NATURE RESERVE 2 2.2.1 Location and Regional Context 2 2.2.2 Significance of Wallumatta Nature Reserve 4 3. OBJECTIVES OF MANAGEMENT 6 3.1 GENERAL OBJECTIVES 6 3.2 SPECIFIC OBJECTIVES FOR WALLUMATTA NATURE RESERVE 6 4. POLICIES AND FRAMEWORK FOR MANAGEMENT ` 7 4.1 NATURAL AND CULTURAL HERITAGE 7 4.1.1 Geology, Soils and Landforms 7 4.1.2 Native and Introduced Plants 9 4.1.3 Native and Introduced Animals 12 4.1.4 Fire Management 13 4.1.5 Cultural Heritage 15 4.2 USE OF THE AREA 16 4.2.1 Promotion, Interpretation and Education 17 4.2.2 Research 18 4.2.3 Management Operations 19 5. PLAN IMPLEMENTATION 21 6. REFERENCES 23 1 1. INTRODUCTION The National Parks and Wildlife Act, 1974 requires that a plan of management be prepared for each nature reserve. A plan of management is a legal document that outlines how the nature reserve will be managed in the years ahead. The procedures for the adoption of a plan of management for a nature reserve are specified in the Act: - where a plan of management has been prepared, the Director-General is required to refer the plan to the National Parks and Wildlife Advisory Council for its consideration and advice; - the Director-General is required to submit the plan to the Minister, together with any comments or suggestions of the Advisory Council; and - the Minister may adopt the plan without alteration or with such alterations as the Minister may think fit, or may refer it back to the Director-General and Council for further consideration. Once a plan of management has been adopted by the Minister, no operations may be undertaken within the nature reserve except in accordance with the plan. Although not a requirement under the Act to exhibit plans for nature reserves, a draft plan of management for Wallumatta Nature Reserve was placed on public exhibition from 21st November 1997 until 16th February 1998. Seven submissions were received which raised a total of 10 issues. All comments received were referred to the National Parks and Wildlife Advisory Council for its consideration and advice. The comments and suggestions of the Advisory Council were in turn considered by the Minister before adopting this plan. Additional information or enquires on any aspect of the plan can be obtained from Lane Cove National Park, Lady Game Drive, Chatswood 2067 or by telephone on ( 02 ) 9412 1811. 2 2. MANAGEMENT CONTEXT 2.1 NATURE RESERVES IN NEW SOUTH WALES Reserving areas for nature conservation as a general purpose was introduced into Australia with the establishment of the Royal National Park in 1879. Nature reserves in New South Wales arose out of fauna reserves. Fauna reserves were first established under the Fauna Protection Act 1948, which was replaced by the National Parks and Wildlife Act 1967. Under the latter Act, fauna reserves were re-classified as nature reserves. The 1967 Act has since been replaced by the National Parks and Wildlife Act 1974. Under the National Parks and Wildlife Act, nature reserves are areas of special scientific interest containing wildlife or natural environments or natural phenomena. The purpose of nature reserves are defined in the Act as: (a) the care, propagation, preservation and conservation of wildlife; (b) the care, preservation and conservation of natural environments and natural phenomena; (c) the study of wildlife, natural environments and natural phenomena; and (d) the promotion of the appreciation and enjoyment of wildlife, natural environments and natural phenomena. Nature reserves are valuable refuge areas where natural processes, phenomena and wildlife can be studied. They differ from national parks which include as a major objective the provision of appropriate recreation opportunities. 2.2 WALLUMATTA NATURE RESERVE 2.2.1 Location and Regional Context Wallumatta Nature Reserves covers an area of 6.195 hectares within the Sydney Metropolitan area. It was dedicated in November 1990 over land previously owned by the New South Wales Department of Health and cared for by the nearby Macquarie Hospital. The reserve is located on the corner of Twin Road and Cressy Road, East Ryde (see map, page 3). It is located within suburban Sydney, only 10 kilometres from the Central Business District, and surrounded by residential development, hospital facilities and sealed roads. 4 Wallumatta Nature Reserve protects one of the last remaining areas of native forest on shale soils within Sydney. Practically all fertile shale soils were cleared for farming in the nineteenth century, and as a result the majority of bushland reserves within Sydney are situated on the less fertile Hawkesbury sandstone soils, which support markedly different vegetation. Dalrymple-Hay Nature Reserve on Mona Vale Road at St Ives is also on shale but contains a wetter tall open forest with different species, while the shale west of Parramatta supports a drier woodland community. 2.2.2 The Significance of Wallumatta Nature Reserve Wallumatta Nature Reserve was established to protect its Wianamatta shale vegetation. Its dedication was largely due to the efforts of community groups to preserve this small area of natural bush from urban development. At that time it was also recognised as being of importance as an area for students to study this vegetation community as it is one of the few stands of open forest on shale soil that is conserved in the Sydney metropolitan area. Benson and Howell (1994) estimated that only 0.5% of turpentine/ironbark forest on Wianamatta shale soils remains within the Sydney region. Wallumatta Nature Reserve is located in a ‘transition zone’ between Wianamatta shale and the more prevalent, less fertile Hawkesbury sandstone. The reserve contains soils derived from both rock types as well as an area where the soils are a mix derived from the two. The vegetation of the reserve reflects the soils and therefore there are distinct changes in plant species throughout the reserve. The vegetation of Wallumatta Nature Reserve is also important because it contains species from both the wetter shale forests of the north shore of Sydney and drier shale woodlands west of Parramatta. The range of soil and vegetation types within the reserve makes it a valuable area for environmental education and research. It is used by students from the nearby primary schools, horticulture school and universities for education and research purposes. A number of students have undertaken major projects based on the reserve. Wallumatta Nature Reserve is part of a number of parks and reserves across Sydney which provide habitat for native animals. A wildlife corridor between the reserve and the nearby Lane Cove National Park is provided by a number of small local council reserves along Kittys Creek. Although little physical evidence remains of past use of the reserve by Aboriginal or European people, the past Aboriginal occupation of the area is recognised in the name of the reserve and the reserve has an interesting recent history as part of the struggle to protect small remnant bushland within Sydney from development. The importance of Wallumatta Nature Reserve was recognised in 1986 when an Interim Conservation Order under the NSW Heritage Act was placed over the area 5 to protect it from residential development. In 1990 the reserve was also listed by the Australian Heritage Commission on the Register of the National Estate. Wallumatta Nature Reserve is predominantly used by local residents, many of whom take great pride
Recommended publications
  • The University of Sydney
    THE UNIVERSITY OF SYDNEY Copyright and use of this thesis This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author -subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Copyright Service. sydney.edu.au/copyright A STRUCTURAL ANALYSIS OF THE SOUTHERN HORNSBY PLATEAU, SYDNEY BASIN, NEW SOUTH WALES by Anthony Richard Norman, B.Sc. (Hons) A thesis submitted in fulfilment of the requirements for the degree of Master of Science DEPARTMENT OF GEOLOGY AND GEOPHYSICS UNIVERSITY OF SYDNEY September, 1986 ABSTRACT The Hornsby Plateau rises north of Sydney. Aerial photo interpretation of an area north of Hornsby and south of the Hawkesbury River revealed two well defined extensive traces.
    [Show full text]
  • Background Paper on New South Wales Geology with a Focus on Basins Containing Coal Seam Gas Resources
    Background Paper on New South Wales Geology With a Focus on Basins Containing Coal Seam Gas Resources for Office of the NSW Chief Scientist and Engineer by Colin R. Ward and Bryce F.J. Kelly School of Biological, Earth and Environmental Sciences University of New South Wales Date of Issue: 28 August 2013 Our Reference: J083550 CONTENTS Page 1. AIMS OF THE BACKGROUND PAPER .............................................................. 1 1.1. SIGNIFICANCE OF AUSTRALIAN CSG RESOURCES AND PRODUCTION ................... 1 1.2. DISCLOSURE .................................................................................................... 2 2. GEOLOGY AND EVALUATION OF COAL AND COAL SEAM GAS RESOURCES ............................................................................................................. 3 2.1. NATURE AND ORIGIN OF COAL ........................................................................... 3 2.2. CHEMICAL AND PHYSICAL PROPERTIES OF COAL ................................................ 4 2.3. PETROGRAPHIC PROPERTIES OF COAL ............................................................... 4 2.4. GEOLOGICAL FEATURES OF COAL SEAMS .......................................................... 6 2.5. NATURE AND ORIGIN OF GAS IN COAL SEAMS .................................................... 8 2.6. GAS CONTENT DETERMINATION ........................................................................10 2.7. SORPTION ISOTHERMS AND GAS HOLDING CAPACITY .........................................11 2.8. METHANE SATURATION ....................................................................................12
    [Show full text]
  • Exceptional Fossil Preservation During CO2 Greenhouse Crises? Gregory J
    Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates. Exceptional fossil preservation may have been promoted during unusual times, comparable with fi Fossil preservation the present: CO2 greenhouse crises of expanding marine dead zones, oceanic acidi cation, coral bleaching, Trilobite wetland eutrophication, sea level rise, ice-cap melting, and biotic invasions. Fish © 2011 Elsevier B.V. All rights reserved. Carbon dioxide Greenhouse 1. Introduction Zeigler, 1992), sperm (Nishida et al., 2003), nuclei (Gould, 1971)and starch granules (Baxter, 1964). Taphonomic studies of such fossils have Commercial fossil collectors continue to produce beautifully pre- emphasized special places where fossils are exceptionally preserved pared, fully articulated, complex fossils of scientific(Simmons et al., (Martin, 1999; Bottjer et al., 2002).
    [Show full text]
  • Coal Resource Recovery Plan
    Tahmoor Coal Pty Ltd COAL RESOURCE RECOVERY PLAN Tahmoor North Western Domain Longwalls West 1 and West 2 July 2019 simecgfg.com This page has been left blank intentionally. 2 | Tahmoor North Western Domain LW W1-W2 – Coal Resource Recovery Plan TAH-HSEC-243 (July 2019 Ver1) This page has been left blank intentionally. 4 | Tahmoor North Western Domain LW W1-W2 – Coal Resource Recovery Plan TAH-HSEC-243 (July 2019 Ver1) Table of Contents Table of Contents ....................................................................................................................... 5 List of Figures ............................................................................................................................. 7 List of Tables .............................................................................................................................. 7 1 Introduction ........................................................................................................................ 9 Background ............................................................................................................................... 9 Purpose ..................................................................................................................................... 9 Scope ......................................................................................................................................... 9 2 Regulatory Requirements .................................................................................................
    [Show full text]
  • Strategic Assessment Report, Heathcote Ridge, West Menai
    STRATEGIC ASSESSMENT REPORT HEATHCOTE RIDGE, WEST MENAI November 2012 Prepared for Gandangara Local Aboriginal Land Council By Cumberland Ecology with input from BBC Consulting Planners and 1. PURPOSE AND DESCRIPTION .......................................................................... 3 1.1 Introduction ........................................................................................................ 3 1.1.1 Background........................................................................................................... 3 1.2 The Program ..................................................................................................... 4 1.2.1 Background........................................................................................................... 4 1.2.2 Proposed Development Concept ..................................................................... 5 1.3 Regional Context ............................................................................................. 12 1.4 Land Use Planning .......................................................................................... 13 1.4.1 Land to Which the SEPP Amendment will Apply ............................................ 13 1.4.2 Proposed Land Use Zones ................................................................................. 13 1.4.3 Principal Development Standards ................................................................... 14 1.4.4 Consent Authority ..............................................................................................
    [Show full text]
  • Sydenham to Bankstown Environmental Impact Statement
    SYDENHAM TO BANKSTOWN ENVIRONMENTAL IMPACT STATEMENT > Technical Paper 9 - Biodiversity assessment report Transport for NSW Sydney Metro City & Southwest Sydenham to Bankstown upgrade Environmental Impact Statement Technical Paper 9 – Biodiversity Assessment Report August 2017 Table of contents 1. Introduction..................................................................................................................................... 1 1.1 Overview .............................................................................................................................. 1 1.2 The project ........................................................................................................................... 2 1.3 Purpose and scope of this report ....................................................................................... 12 1.4 Secretary’s environmental assessment requirements ....................................................... 13 1.5 Legislation and policy......................................................................................................... 14 2. Methodology ................................................................................................................................. 17 2.1 Approach ............................................................................................................................ 17 2.2 Desktop research ............................................................................................................... 17 2.3 Field survey .......................................................................................................................
    [Show full text]
  • The Geology of NSW
    The Geology of NSW The geological characteristics and history of NSW with a focus on coal seam gas (CSG) resources A report commissioned for the NSW Chief Scientist’s Office, May, 2013. Authors: Dr Craig O’Neill1, [email protected] Dr Cara Danis1, [email protected] 1Department of Earth and Planetary Science, Macquarie University, Sydney, NSW, 2109. Contents A brief glossary of terms i 1. Introduction 01 2. Scope 02 3. A brief history of NSW Geology 04 4. Evolution of the Sydney­Gunnedah­Bowen Basin System 16 5. Sydney Basin 19 6. Gunnedah Basin 31 7. Bowen Basin 40 8. Surat Basin 51 9. Clarence­Moreton Basin 60 10. Gloucester Basin 70 11. Murray Basin 77 12. Oaklands Basin 84 13. NSW Hydrogeology 92 14. Seismicity and stress in NSW 108 15. Summary and Synthesis 113 ii A brief Glossary of Terms The following constitutes a brief, but by no means comprehensive, compilation of some of the terms used in this review that may not be clear to a non‐geologist reader. Many others are explained within the text. Tectono­thermal: The involvement of either (or both) tectonics (the large‐scale movement of the Earth’s crust and lithosphere), and geothermal activity (heating or cooling the crust). Orogenic: pertaining to an orogen, ie. a mountain belt. Associated with a collisional or mountain‐building event. Ma: Mega‐annum, or one million years. Conventionally associated with an age in geochronology (ie. million years before present). Epicratonic: “on the craton”, pertaining to being on a large, stable landmass (eg.
    [Show full text]
  • Bringelly Shale
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Lovering, J. F., 1954. The stratigraphy of the Wianamatta Group Triassic System, Sydney Basin. Records of the Australian Museum 23(4): 169–210, plate xii. [25 June 1954]. doi:10.3853/j.0067-1975.23.1954.631 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia THE STRATIGRAPHY OF THE WIANAMATTA GROUP TRIASSIC SYSTEM, SYDNEY BASIN BY J. F. LOVERING, M.Sc. Assistant Curator of Minerals and Rocks, The Australian Museum, Sydney. (Plate xii, ten text-figures; eight maps.) Introduction. Methods of Mapping. Stratigraphy. A. General Definition. B. Liverpool Sub-group: (i) Ashfield Shale: (ii) Minchinbury Sandstone: (iii) Bringelly Shale. C. Camden Sub-group : (i) Potts Hill Sandstone; (ii) Annan Shale; (iii) Razorback Sandstone; (iv) Picton Formation; (v) PrndhQe Shale. Sedimentary Petrology and Petrography of the Sandstone 'Formations. The Sedimentary Environment and Sedimentary Tectonics. Post-Depositional Tectonics. SYNOPSIS. The Wianamatta Group has been divided into two Sub-groups-The Liverpool Sub-group (lower. approximately 400 feet thick, predominantly shale lithology) and the Camden Sub-group (upper, approximately 350 feet thick, sandstone lit.hology prominent with shale). The Uverpool Sub-group includes three formations (Ashfield Shale, Minchinbury Sandstone, Bringelly Shale). The Camden Sub-group includes five formations (Potts Hill Sandstone, Annan Shale, Razorback Sandstone, Picton Formation, Prudhoe Shale). The sedimentary petrology of the graywacke-type .sandstones and the relation of the lithology to the sedimentary environment and tectonics is discussed.
    [Show full text]
  • Tectonic Control of Cenozoic Deposition in the Cumberland Basin, Penrith/ Hawkesbury Region, New South Wales
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Online University of Wollongong Research Online Faculty of Science, Medicine & Health - Honours Theses University of Wollongong Thesis Collections 2011 Tectonic Control of Cenozoic Deposition in the Cumberland Basin, Penrith/ Hawkesbury Region, New South Wales Lewis Carter University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/thsci University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Carter, Lewis, Tectonic Control of Cenozoic Deposition in the Cumberland Basin, Penrith/Hawkesbury Region, New South Wales, Bachelor of Science (Honours), School of Earth & Environmental Sciences, University of Wollongong, 2011.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Palaeogeography, Palaeoclimatology, Palaeoecology 308 (2011) 233–251 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction Gregory J. Retallack a,⁎, Nathan D. Sheldon b, Paul F. Carr c, Mark Fanning d, Caitlyn A. Thompson a, Megan L. Williams c, Brian G. Jones c, Adrian Hutton c a Department of Geological Sciences, University of Oregon, Eugene, OR, USA 97403-1272 b Department of Geological Sciences, University of Michigan, Ann Arbor, MI, USA 48109-1005 c School of Geosciences, University of Wollongong, New South Wale, Australia, 2522 d Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia 0200 article info abstract Article history: The Late Permian mass extinction was not only the most catastrophic known loss of biodiversity, but was Received 11 February 2010 followed by unusually prolonged recovery through the Early Triassic.
    [Show full text]
  • Engineering Performance of Bringelly Shale
    CHAPTER 3 SAMPLING AND MINERALOGY OF BRINGELLY SHALE §3.1. INTRODUCTION The objectives of this chapter are to present details of the Bringelly shale from the four sites used in this study. This includes the location of the sites, their lithology and the techniques of sampling from these sites. An examination of the mineralogy and micro-structure of Bringelly shale is also included. These were investigated using a variety of techniques including x-ray diffraction, optical microscopy, and scanning electron microscopy. Laboratory characterisation studies of this shale have been limited to the claystone-siltstone materials which are the predominant lithology in Bringelly shale. Outcomes of the study in this chapter will be linked to the engineering and physical properties of Bringelly shale in the following chapters. §3.2 LOCATION AND ACCESSIBILITY Within the south west of the Sydney Metropolitan area, four separate sites were selected for sampling and field study. A location map including the general geology of the area is shown in Fig.3.1. The sites are active clay shale quarries and major current sources of brick clay and fill material in the Sydney region. A network of 79 Figure 3.1 Geological map showing the location of the study area well-paved roads traverses all localities as shown by the topographic map of the Sydney area shown in Figure 3A.1 in Appendix 3A. Access to the sites is further facilitated by numerous property tracks. All sites required entry permission from the owners, and compliance with site safety precautions. The location of each site can be determined from its grid reference on the Penrith 1:100,000 sheet.
    [Show full text]
  • ON the PRINCIPLES of GLOBAL CORRELATION of the CONTINENTAL TRIASSIC on the TETRAPODS the Triassic Was a Time of Transition From
    Acta Palaeontologica Polonica Vol. 34, No. 2 pp. 149-173 Warszawa, 1989 V. G. OCHEV and M. A. SHISHKIN ON THE PRINCIPLES OF GLOBAL CORRELATION OF THE CONTINENTAL TRIASSIC ON THE TETRAPODS OCHEV, V. G. and SHISHKIN, M. A.: On the principles of global correlation af the continental Triassic on the tetsapods. Acta Palaeont. Polonica, 34, 2, 143--173, 1989. History of the Triassic land vertebrates comprises three successive global epoches referred to as proterosuchian, kannemeyeroid and dinosaur ones. The earliest and the middle epoches are typified by the regional faunal sequence of East Europe. The proterosuchian time spaas here the Neorhachitome and Paroto- suchus faunas, the former being directly correlated with the Induan-Lower Olenekian, and the latter with the Upper Olenekian (Spathian). The Eryosuchus and Mastodonsaurus faunas of the kannemeyeroid epoch in East Europe are Middle Triassic in age and correspond to the Muschelkalk and Lettenkohle respectively. An evidence is brought for contemporaneity of the protero- suchian-kannemeyeroid biotic replacement in Laurasia and Gondwana. This implies the Middle Triassic age of the Cynognathus Zone of South Africa and its equivalents in South America. The bulk of Lystrosausus fauna in Gondwana is suggested to range over the most of, or the whole, Early Triassic. K e y w 0 r d s: Triassic tetrapods, biotic epoches, correlation. V. G. Ochev, Saratov State University, Saratov, USSR; M. A. Shtshktn, PaUleontologtcal Institute, Academy of Sciences of the USSR, Profsoyuznaya, 123 Moscow, USSR. Received: December 1988. INTRODUCTION The Triassic was a time of transition from the late Palaeozoic (the- rapsid) to the true Mesozoic (archosaur) stage of the tetrapod faunal evolution.
    [Show full text]