A Rationale for a Human Lunar Pathfinder Mission

Total Page:16

File Type:pdf, Size:1020Kb

A Rationale for a Human Lunar Pathfinder Mission A RATIONALE FOR A HUMAN LUNAR PATHFINDER MISSION Robert Lee Howard, Jr. University of Tennessee Space Institute Tullahoma, TN Abstract NASA must find them and validate them. There are resources in the lunar environment that will NASA is facing immense challenges. enhance our capabilities for missions in other Costs for the International Space Station are areas of space, both within the Earth-Moon' climbing into orbit; Mars is far too unknown for system anq further into the solar system. NASA human flight; robotic missions seem to fail nearly must identify these resources, learn how to tap as often as they succeed; and the shuttle is into them, and create the conditions to make their b.ecoming increasingly obsolete. What is the use a reality. This is why NASA exists. This focus NASA should bring to the new paper will define and justify the objectives of a millennium? Clearly NASA must maintain the pathfinder lunar mission intended to bring focus shuttle and work towards a new launch system. to some of these issues, and will investigate They must complete the International Space mission requirements and constraints to be Station, especially now that components.are in applied to the pathfinder project. orbit. Robotic exploration of the solar system must continue. But for all practical purposes, Introduction this might as well be a path to nowhere. While there are definite long-term payoffs - in the 20+ The call for a return to the moon has year timeframe - there is far too much room in been repeatedly given ever since the final lunar the near future for a loss of identity and purpose. landing. During the period from 1969 to 1972, Neither the scientific community nor the NASA landed six Apollo missions on the moon, American public will find much reward in a thus fulfilling President Kennedy's pledge to space program that spends the next five years land a man on the moon and return him safely to building a space station, the next ten years Earth. These six missions are the only times visiting it, and in the background launches human beings have left the immediate vicinity of occasional robotic probes into space, not to be the Earth to travel to another heavenly body. In heard from until years later. While these subsequent years, however, calls to return to the necessary tasks should by all means continue, moon have fallen largely on deaf ears. Many NASA must place them in the context of a bold times the response has been the question of why. vision for the future of spaceflight. This is not a Much of the space program has been criticized vision consisting of timetables, hypothetical for failing to communicate clear rationales for programs and budget projections. Those have space activity. In a sense, there are a series of been so over-used that they carry no meaning. three questions that must be resolved. Why Instead, this vision must go back to the 1958 should we be in space? Even if we should be in Space Act and reiterate why NASA exists; it space, why should we go to the moon? Ifwe go must create an inspiring image of a future in to the moon, what should that mission space where people beyond the agency and its accomplish? contractors are participants. I believe NASA has the responsibility of opening up the space Why are we in space? frontier. Simply investigating LEO does not constitute an opening of the space frontier; this Why do we have a space program? vision must include the moon as a near term Whenever technical difficulties or budgetary destination. There are valid opportunities for problems come to light, this is often the first commercial enterprise on the moon. NASA must question out of the mouths of critics. What is find them and bring them into reality. There are there about space that could possibly warrant the operational procedures and engineering expenditures and risks incurred in our technologies necessary to support lunar endeavors? What are some reasons to enter operations. We have no idea what they are. space? Why should we enter space at all? There 173 Copyright © 2001 by the Space Studies Institute (SSI) are several reasons that come to mind. It is our creating a major tourist attraction in that location. human destiny (or alternately, it is our human Yet someone found a way to develop a wildly desire/drive). There are commercial successful business plan. Hotel and casino opportunities in space. Finally, there is a operators now have no problem spending national mandate to explore space and develop incredible amounts of money to develop their its potential. facilities, for they know with confidence that they Throughout human history, mankind has can tum a profit. Space is where Las Vegas was exhibited a drive to reach beyond the boundaries a hundred or two years ago. It is a wilderness, of the time. Simple curiosity, desires to make seemingly with very little to offer. But to the new discoveries to improve the quality of life, proper visionary, it is the source of the next and a belief that it is simply our purpose have all financial empire. Whether through tourism, fueled this drive. Ancient explorers set sail - at manufacturing, scientific discovery, or some out tremendous expense and risk - seeking to her source of income, multitudes of new traverse vast, unknown oceans and explore newly industries await development. discovered continents. Even today, we still Finally, in Title I, Sec. 102 (d), the explore these oceans and continents, driven to National Air and Space Act imposes the discover and understand parts of this planet that following rationale for American space activity: remain a mystery to us. In the days of American ( d) The aeronautical and space expansion, people believed it was literally God's activities of the United States shall will - or a Manifest Destiny - for the country to be conducted so as to contribute span the continent. This is similar to the beliefs materially to one or more of the of emperors and kings throughout history who following objectives: created vast nations. In a sense, space is the (1) The expansion of human perfect "Manifest Destiny." Unlike the more knowledge of the Earth brutal expansions in the world's past, there are and of phenomena in the no native inhabitants to be oppressed by atmosphere and space; expansion. Space is vast. No matter how far (2) The improvement of the outward we expand there is still new, unexplored usefulness, performance, territory. speed, safety, and efficiency The National Air and Space Act of 1958 of aeronautical and space states in Title I, Sec. 102 ( c ), "The Congress vehicles; declares that the general welfare of the United (3) The development and States requires that the National Aeronautics and operation of vehicles capable Space Administration (as established by title II of of carrying instruments, this Act) seek and encourage, to the maximum equipment, supplies, and extent possible, the fullest commercial use of living organisms through space."1 space; We have only barely begun to fathom (4) The establishment oflong­ commercial possibilities in space. Just fifty years range studies of the potential ago, only the shrewdest of visionaries could have benefits to be gained from, even imagined that space could be a potential the opportunities for, and the source of profits. Yet today, the commercial problems involved in the communications industry is dependent on utilization of aeronautical orbiting satellites to provide a communications and space activities for infrastructure. While commercial profiteering is peaceful and scientific limited at present to communications in Earth purposes; orbit, an unwritten future contains an incalculable (5) The preservation of the role domain of business ventures. of the United States as a A point of inspiration is the city of Las leader in aeronautical and Vegas, and really most of the major cities in the space science and American southwest. Las Vegas is an island of technology and in the financial profiteering in the middle of the desert. application thereof to the When explorers first reached the area where conduct of peaceful activities Vegas now stands, there was nothing but sand. within and outside the {\.nyone would have laughed at the idea of atmosphere; 174 ( 6) The making available to concentrate on terrestrial space stations and Mars agencies directly concerned exploration? with national defense· of discoveries that have Why the moon? military value or significance, and the Some critics of lunar exploration would furnishing by such agencies, ask why go to the moon? They would say that to the civilian agency we've been there with Apollo, so there is nothing established to direct and new to gain. Their logic, however, is flawed. control nonmilitary From Salyut to Skylab, to Mir, and now to ISS, aeronautical and space we are establishing a human presence in Earth activities, of information as orbit. With each program we are learning new to discoveries which have things and accomplishing more than its value or significance to that predecessors. Yes, we have been to the moon agency; before, but only in the most minimal fashion. (7) Cooperation by the United Simply put, we have not accomplished much of States with other nations and significance on the moon. It is true that the groups of nations in work Apollo program provided incredible done pursuant to this Act and breakthroughs and discoveries, but only a tiny in the peaceful application of fraction of what can ultimately be gained from the results thereof; the moon was accomplished through the Apollo (8) The most effective program. To say, "why go to the moon since utilization of the scientific we've been there with Apollo," is comparable to and engineering resources of saying, "why build a space station since.we've the United States, with close been in orbit with Mercury capsules." Just as cooperation among all Mercury was incapable of performing the interested agencies of the missions ISS will accomplish, Apollo was also United States in order to incapable of conducting the missions a return to avoid unnecessary the moon would perform.
Recommended publications
  • Acquisition of the Space Station Propulsion Module, IG-01-027
    IG-01-027 AUDIT ACQUISITION OF THE SPACE STATION REPORT PROPULSION MODULE May 21, 2001 OFFICE OF INSPECTOR GENERAL National Aeronautics and Space Administration Additional Copies To obtain additional copies of this report, contact the Assistant Inspector General for Auditing at (202) 358-1232, or visit www.hq.nasa.gov/office/oig/hq/issuedaudits.html. Suggestions for Future Audits To suggest ideas for or to request future audits, contact the Assistant Inspector General for Auditing. Ideas and requests can also be mailed to: Assistant Inspector General for Auditing Code W NASA Headquarters Washington, DC 20546-0001 NASA Hotline To report fraud, waste, abuse, or mismanagement contact the NASA Hotline at (800) 424-9183, (800) 535-8134 (TDD), or at www.hq.nasa.gov/office/oig/hq/hotline.html#form; or write to the NASA Inspector General, P.O. Box 23089, L’Enfant Plaza Station, Washington, DC 20026. The identity of each writer and caller can be kept confidential, upon request, to the extent permitted by law. Reader Survey Please complete the reader survey at the end of this report or at www.hq.nasa.gov/office/oig/hq/audits.html. Acronyms ATV Autonomous Transfer Vehicle FAR Federal Acquisition Regulation FGB Functional Energy Block GAO General Accounting Office ICM Interim Control Module ISS International Space Station NPD NASA Policy Directive NPG NASA Procedures and Guidelines OIG Office of Inspector General OMB Office of Management and Budget OPTS Orbiter Propellant Transfer System SRR Systems Requirements Review USPM United States Propulsion Module USPS United States Propulsion System W May 21, 2001 TO: A/Administrator FROM: W/Inspector General SUBJECT: INFORMATION: Audit of Acquisition of the Space Station Propulsion Module Report Number IG-01-027 The NASA Office of Inspector General (OIG) has completed an Audit of Acquisition of the Space Station Propulsion Module.
    [Show full text]
  • A Feasibility Study for Using Commercial Off the Shelf (COTS)
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2011 A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2 Chad Lee Davis University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerodynamics and Fluid Mechanics Commons, Other Aerospace Engineering Commons, and the Space Vehicles Commons Recommended Citation Davis, Chad Lee, "A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2. " Master's Thesis, University of Tennessee, 2011. https://trace.tennessee.edu/utk_gradthes/965 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Chad Lee Davis entitled "A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aerospace Engineering.
    [Show full text]
  • Congressional Record United States Th of America PROCEEDINGS and DEBATES of the 105 CONGRESS, SECOND SESSION
    E PL UR UM IB N U U S Congressional Record United States th of America PROCEEDINGS AND DEBATES OF THE 105 CONGRESS, SECOND SESSION Vol. 144 WASHINGTON, TUESDAY, JULY 7, 1998 No. 88 House of Representatives The House was not in session today. Its next meeting will be held on Tuesday, July 14, 1998, at 12:30 p.m. Senate TUESDAY, JULY 7, 1998 The Senate met at 9:30 a.m. and was SCHEDULE as we can. Members have to expect called to order by the President pro Mr. LOTT. Mr. President, this morn- votes late on Monday afternoons and tempore [Mr. THURMOND]. ing the Senate will immediately pro- on Fridays also. We certainly need all ceed to a vote on a motion to invoke Senators’ cooperation to get this work PRAYER cloture on the motion to proceed to the done. We did get time agreements at The Chaplain, Dr. Lloyd John product liability bill. If cloture is in- the end of the session before we went Ogilvie, offered the following prayer: voked, the Senate will debate the mo- out for the Fourth of July recess period Gracious God, our prayer is not to tion to proceed until the policy lunch- on higher education and also on a overcome Your reluctance to help us eons at 12:30 p.m., and following the package of energy bills. So we will know and do Your will, for You have policy luncheons, it is expected the work those in at the earliest possible created us to love, serve, and obey Senate will resume consideration of opportunity this week or next week.
    [Show full text]
  • NSIAD-99-175 Space Station B-280328
    United States General Accounting Office GAO Report to Congressional Requesters August 1999 SPACE STATION Russian Commitment and Cost Control Problems GAO/NSIAD-99-175 United States General Accounting Office National Security and Washington, D.C. 20548 International Affairs Division B-280328 Letter August 17, 1999 The Honorable John McCain Chairman, Committee on Commerce, Science and Transportation United States Senate The Honorable Bill Frist Chairman, Subcommittee on Science, Technology and Space Committee on Commerce, Science and Transportation United States Senate The National Aeronautics and Space Administration (NASA) faces many challenges in developing and building the International Space Station (ISS). These challenges, such as Russian difficulty in completing its components on schedule due to insufficient funding and continuing U.S. prime contractor cost increases, have translated into schedule delays and higher program cost estimates to complete development. As requested, we reviewed the status of Russian involvement in the ISS program. We also examined the prime contractor’s progress in implementing cost control measures and NASA’s efforts to oversee the program’s nonprime activity. Specifically, we (1) assessed NASA’s progress in developing contingency plans to mitigate the possibility of Russian nonperformance and the loss or delay of other critical components, (2) identified NASA’s efforts to ensure that Russian quality assurance processes meet the station’s safety requirements, and (3) determined the effectiveness of cost control efforts regarding the prime contract and nonprime activities. Results in Brief As an ISS partner, Russia agreed to provide equipment, such as the Service Module, Progress vehicles to reboost the station, dry cargo, and related launch services throughout the station’s life.1 However, Russia’s funding problems have delayed delivery of the Service Module—the first major Russian-funded component—and raised questions about its ability to support the station during and after assembly.
    [Show full text]
  • 1St Annual ISS Research and Development Conference Results and Opportunities – the Decade of Utilization
    1st Annual ISS Research and Development Conference Results and Opportunities – The Decade of Utilization June 26-27, 2012 Denver Marriott City Center 1701 California Street Denver, Colorado 80202 www.astronautical.org 1st Annual ISS Research and Development Conference June 26-27, 2012 Denver Marriott City Center, 1701 California Street, Denver, Colorado 80202 Organized by the American Astronautical Society in cooperation with the Center for the Advancement of Science in Space Inc. (CASIS) and NASA Sponsored by: The International Space Station (ISS) – Scientific Laboratory Technology Testbed Orbiting Outpost Galactic Observatory Innovation Engine Student Inspiration. This conference focuses on ISS R & D — research results and future opportunities in physical sciences, life sciences, Earth and space sciences, and spacecraft technology development. Plenary sessions will highlight major results and pathways to future opportunities. Organizations managing and funding research on ISS, including NASA programs and the ISS National Laboratory will provide overviews of upcoming opportunities. Parallel technical sessions will provide tracks for scientists to be updated on significant accomplishments to date within their disciplines. On June 28. NASA will conduct a separate workshop designed to help new users take this information and develop their own ideas for experiments using this unique laboratory, as well as a SBIR Technologies workshop. Potential ISS users who attend will learn: “What can I do on the ISS? How can I do it?” This is the only annual gathering offering perspectives on the full breadth of research and technology development on ISS, and includes one stop for the full suite of opportunities for future research. Page 2 Conference Technical Co-Chairs Conference Planning Dr.
    [Show full text]
  • The International Space Station Partners: Background and Current Status
    The Space Congress® Proceedings 1998 (35th) Horizons Unlimited Apr 28th, 2:00 PM Paper Session I-B - The International Space Station Partners: Background and Current Status Daniel V. Jacobs Manager, Russian Integration, International Partners Office, International Space Station ogrPr am, NASA, JSC Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Jacobs, Daniel V., "Paper Session I-B - The International Space Station Partners: Background and Current Status" (1998). The Space Congress® Proceedings. 18. https://commons.erau.edu/space-congress-proceedings/proceedings-1998-35th/april-28-1998/18 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. THE INTERNATIONAL SPACE STATION: BACKGROUND AND CURRENT STATUS Daniel V. Jacobs Manager, Russian Integration, International Partners Office International Space Station Program, NASA Johnson Space Center Introduction The International Space Station, as the largest international civil program in history, features unprecedented technical, managerial, and international complexity. Seven interna- tional partners and participants encompassing fifteen countries are involved in the ISS. Each partner is designing, developing and will be operating separate pieces of hardware, to be inte- grated on-orbit into a single orbital station. Mission control centers, launch vehicles, astronauts/ cosmonauts, and support services will be provided by multiple partners, but functioning in a coordinated, integrated fashion. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of opera- tions and sustaining engineering centers, astronaut training, and seven Space Shuttle/Mir docking missions.
    [Show full text]
  • A Call for a New Human Missions Cost Model
    A Call For A New Human Missions Cost Model NASA 2019 Cost and Schedule Analysis Symposium NASA Johnson Space Center, August 13-15, 2019 Joseph Hamaker, PhD Christian Smart, PhD Galorath Human Missions Cost Model Advocates Dr. Joseph Hamaker Dr. Christian Smart Director, NASA and DoD Programs Chief Scientist • Former Director for Cost Analytics • Founding Director of the Cost and Parametric Estimating for the Analysis Division at NASA U.S. Missile Defense Agency Headquarters • Oversaw development of the • Originator of NASA’s NAFCOM NASA/Air Force Cost Model cost model, the NASA QuickCost (NAFCOM) Model, the NASA Cost Analysis • Provides subject matter expertise to Data Requirement and the NASA NASA Headquarters, DARPA, and ONCE database Space Development Agency • Recognized expert on parametrics 2 Agenda Historical human space projects Why consider a new Human Missions Cost Model Database for a Human Missions Cost Model • NASA has over 50 years of Human Space Missions experience • NASA’s International Partners have accomplished additional projects . • There are around 70 projects that can provide cost and schedule data • This talk will explore how that data might be assembled to form the basis for a Human Missions Cost Model WHY A NEW HUMAN MISSIONS COST MODEL? NASA’s Artemis Program plans to Artemis needs cost and schedule land humans on the moon by 2024 estimates Lots of projects: Lunar Gateway, Existing tools have some Orion, landers, SLS, commercially applicability but it seems obvious provided elements (which we may (to us) that a dedicated HMCM is want to independently estimate) needed Some of these elements have And this can be done—all we ongoing cost trajectories (e.g.
    [Show full text]
  • ESA's ISS External Payloads
    number 8, march 2002 on station The Newsletter of the Directorate of Manned Spaceflight and Microgravity http://www.esa.int/spaceflight in this issue A Promising Start to 2002 aurora Jörg Feustel-Büechl Aurora: A European Roadmap 4 ESA Director of Manned Spaceflight and Microgravity for Solar System Exploration Rolf Schulze I want to highlight two very important milestones for this year. Firstly, the final integration and test of our Columbus virtual campus laboratory for the International Space Station began at The Erasmus Virtual Campus 6 Astrium GmbH in Bremen (D) following the arrival in Dieter Isakeit September of the Pre-Integrated Columbus Assembly (PICA) from Alenia Spazio in Turin (I). I believe that we have a payloads masterpiece of European engineering here, and I am ESA’s ISS External Payloads 8 delighted with the progress so far.We should be seeing some Steve Feltham & Giacinto Gianfiglio very real advance on Columbus by the end of 2002 and look forward to its status then. xeus Secondly, I had the opportunity on 15 January to review ISS Assembly of XEUS 10 the course of the Automated Transfer Vehicle (ATV) project at Jens Schiemann Les Mureaux (F), together with our team and the industries involved in the project under prime contractor EADS-LV.The spoe progress is quite remarkable when we remember the SPOE 12 difficulties of last year. All in all, I think that the technical Rolf-Dieter Andresen, Maurizio Nati achievements so far are satisfactory. One important & Chris Taylor demonstration of this progress is the arrival of the ATV Structural Test Model in ESTEC’s Test Centre, where it will research undergo testing during the whole of this year.
    [Show full text]
  • Astro2010: the Astronomy and Astrophysics Decadal Survey
    Astro2010: The Astronomy and Astrophysics Decadal Survey Notices of Interest 1. 4 m space telescope for terrestrial planet imaging and wide field astrophysics Point of Contact: Roger Angel, University of Arizona Summary Description: The proposed 4 m telescope combines capabilities for imaging terrestrial exoplanets and for general astrophysics without compromising either. Extremely high contrast imaging at very close inner working angle, as needed for terrestrial planet imaging, is accomplished by the powerful phase induced amplitude apodization method (PIAA) developed by Olivier Guyon. This method promises 10-10 contrast at 2.0 l/D angular separation, i.e. 50 mas for a 4 m telescope at 500 nm wavelength. The telescope primary mirror is unobscured with off-axis figure, as needed to achieve such high contrast. Despite the off-axis primary, the telescope nevertheless provides also a very wide field for general astrophysics. A 3 mirror anastigmat design by Jim Burge delivers a 6 by 24 arcminute field whose mean wavefront error of 12 nm rms, i.e.diffraction limited at 360 nm wavelength. Over the best 10 square arcminutes the rms error is 7 nm, for diffraction limited imaging at 200 nm wavelength. Any of the instruments can be fed by part or all of the field, by means of a flat steering mirror at the exit pupil. To allow for this, the field is curved with a radius equal to the distance from the exit pupil. The entire optical system fits in a 4 m diameter cylinder, 8 m long. Many have considered that only by using two spacecraft, a conventional on-axis telescope and a remote occulter, could high contrast and wide field imaging goals be reconciled.
    [Show full text]
  • Space Stations
    Order Code IB93017 CRS Issue Brief for Congress Received through the CRS Web Space Stations Updated November 17, 2005 Marcia S. Smith Resources, Science, and Industry Division Congressional Research Service ˜ The Library of Congress CONTENTS SUMMARY MOST RECENT DEVELOPMENTS BACKGROUND AND ANALYSIS Introduction The Space Station Program: 1984-1993 Space Station Freedom 1993 Redesign — the Clinton Administration Restructuring The International Space Station (ISS): 1993-Present ISS Design, Cost, Schedule, and Lifetime September 1993-January 2001: The Clinton Administration 2001-Present: The George W. Bush Administration Reviews of NASA’s Cost Estimates and Adding Funds for ISS Congressional Action FY2005 FY2006 International Partners The Original Partners: Europe, Canada, and Japan Russia Risks and Benefits of Russian Participation ISS and U.S. Nonproliferation Objectives, Including the Iran Nonproliferation Act (INA) Key Issues For Congress Maintaining ISS Operations While the Shuttle Is Grounded Ensuring U.S. Astronaut Participation in Long-Duration Missions Impact of President Bush’s Vision for Space Exploration, Including a Potential Gap in U.S. Human Access to Space LEGISLATION IB93017 11-17-05 Space Stations SUMMARY Congress continues to debate NASA’s “Moon/Mars” Vision instead of the broadly- International Space Station (ISS), a perma- based program that was planned. nently occupied facility in Earth orbit where astronauts live and conduct research. Canada, Japan, and several European Congress appropriated approximately $35 countries became partners with NASA in billion for the program from FY1985-2005. building the space station in 1988; Russia The initial FY2006 ISS request was $2.180 joined in 1993. Except for money paid to billion: $1.857 billion for construction and Russia, there is no exchange of funds among operations and $324 million for research to be the partners.
    [Show full text]
  • NASA's International Relations in Space
    Notes 1 Introduction and Historical Overview: NASA’s International Relations in Space 1. James R. Hansen, First Man. The Life of Neil A. Armstrong (New York: Simon and Schuster, 2005), 493. 2. Ibid., 393, 503. 3. Ibid., 505. 4. For survey of the historical literature, see Roger D. Launius, “Interpreting the Moon Landings: Project Apollo and the Historians,” History and Technology 22:3 (September 2006), 225–255. On the gendering of the Apollo program, see Margaret A. Weitekamp, The Right Stuff, the Wrong Sex: The Lovelace Women in the Space Program (Baltimore: Johns Hopkins University Press, 2004); “The ‘Astronautrix’ and the ‘Magnificent Male.’ Jerrie Cobb’s Quest to be the First Woman in America’s Manned Space pro- gram,” in Avital H. Bloch and Lauri Umansky (eds.), Impossible to Hold. Women and Culture in the 1960s (New York: New York University Press), 9–28. 5. Hansen, First Man , 513–514. 6. Sunny Tsiao, “Read You Loud and Clear.” The Story of NASA’s Spaceflight Tracking and Data Network (Washington, DC: NASA SP-2007–4232), Chapter 5 . 7. Experiment Operations during Apollo EVAs. Experiment: Solar Wind Experiment, http://ares.jsc.nasa.gov/humanexplore/exploration/exlibrary/docs/apollocat/ part1/swc.htm (accessed August 31, 2008). 8. Thomas A. Sullivan, Catalog of Apollo Experiment Operations (Washington, DC: NASA Reference Publication 1317, 1994), 113–116. Geiss’s team also measured the amounts of rare gases trapped in lunar rocks: P. Eberhart and J. Geiss, et al., “Trapped Solar Wind Noble Gases, Exposure Age and K/Ar Age in Apollo 11 Lunar Fine Material,” in A.
    [Show full text]
  • Table 3–51. Space Shuttle Missions Summary (1989–1998) 3–51
    databk7_collected.book Page 370 Monday, September 14, 2009 2:53 PM 370 Table 3–51. Space Shuttle Missions Summary (1989–1998) (Continued) Flt No. Mission/Orbiter Dates Crew Major Payloads 73 STS-74/Atlantis November 12, 1995 – CDR: Kenneth D. Cameron NASA Payload Deployed: None November 20, 1995 PLT: James D. Halsell, Jr. Second Shuttle-Mir docking MS: Chris A. Hadfield, Jerry L. Ross, William S. McArthur, Jr. 74 STS-72/Endeavour January 11, 1996 – CDR: Brian Duffy NASA Payload Deployed and Retrieved: DATABOOKNASA HISTORICAL January 20, 1996 PLT: Brent W. Jett, Jr. SPARTAN-OAST Flyer MS: Leroy Chiao, Retrieved Japanese Space Flyer Unit Winston E. Scott, Koichi Wakata, Daniel T. Barry 75 STS-75/Columbia February 22, 1996 – CDR: Andrew M. Allen NASA-Italian Space Agency Payload March 9, 1996 PLT: Scott J. Horowitz Deployed: Tethered Satellite System MS: Jeffrey A. Hoffman, (TSS)-1R Maurizio Cheli, Carried USMP-3 Claude Nicollier PC: Franklin R. Chang-Diaz PS: Umberto Guidoni 76 STS-76/Atlantis March 22, 1996 – CDR: Kevin P. Chilton NASA Payload Deployed: None March 31, 1996 PLT: Richard A. Searfoss Third Shuttle-Mir docking MS: Ronald M. Sega, Michael R. Carried SPACEHAB Single Module Clifford, Linda M. Godwin, Shannon W. Lucid (to Mir) 77 STS-77/Endeavour May 19, 1996 – CDR: John H. Casper NASA Payload Deployed and Retrieved: May 29, 1996 PLT: Curtis L. Brown, Jr. SPARTAN-207 carrying Inflatable MS: Andrew S.W. Thomas, Antenna Experiment Daniel W. Bursch, Mario Runco, Jr., Carried SPACEHAB research module Marc Garneau databk7_collected.book Page 371 Monday, September 14, 2009 2:53 PM Table 3–51.
    [Show full text]