IMX25INDFS I.MX25 Family of Applications Processors Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

IMX25INDFS I.MX25 Family of Applications Processors Fact Sheet Industrial/General Embedded Market i.MX25 Family of Applications Processors Industrial/general embedded portfolio: i.MX253, i.MX257 and i.MX258 Overview The i.MX25 family of applications processors extends Freescale’s ARM® ARM9™ core-based Target Applications portfolio and introduces several key new features such as DDR2, two embedded USB PHYs, • Secure residential gateway 3.3 V I/O support, three general-purpose 12-bit ADCs and a touchscreen controller that allows (smart meters) customers to reduce their overall system bill of materials cost. In addition, the i.MX25 continues to make the industrial and general embedded market a key focus of i.MX with the integration • Graphical keypads of 10/100 Ethernet MAC, SD/SDIO/MMC connectivity, up to SVGA (800 x 600) resolution TFT • Graphical security panels LCD support, camera sensor interface and 400 MHz CPU speed grade. Improving on the • “Smart touch” human-machine strength of previous i.MX platforms, the i.MX25 applications processor provides additional interface (HMI) tamper detection security that monitors and helps prevent system integrity attacks from hackers, making it the right choice for any type of secure device, whether it’s a wired or • Wired/wireless payment devices wireless payment terminal (POS) or secure residential gateway for smart metering. The i.MX25 • Barcode scanners also complements the ARM ARM11™ core-based i.MX portfolio by maintaining a large share • Factory automation and robotics of peripheral commonality with the recently announced i.MX35 applications processor family. • Multifunction portable printers i.MX258 Applications Processor • Secure devices Ext Storage Advanced Connectivity Ext Memory I/F MMC+/SD x 2 10/100 Ethernet HS OTG + Phy NAND P-ATA CAN x 2* HS Host + Phy NOR CE-ATA SDIO x 2 Smartcard x 2* DDR2 Int Memory i.MX258 ARM® ARM926EJ-S™ mDDR 128 KB SRAM 400 MHz SDRAM 32 KB ROM 16 KB I-cache MMU User I/F Standard Connectivity LCD Controller 16 KB D-cache 5 x 5 Crossbar I2C x 3 Touchscreen* CSPI x 3 Security*/** CMOS Sensor I/F* UART x 5 SCC RNGB 8 x 8 Keypad GPIO x 4 HAB SRTC SLCD Controller 12-bit ADC x 3 RTICv3 Dry-Ice 1-Wire Audio SSI2S x 2 System Debug Standard System ETM Timer x 4 P WM x 4 ESAI* SJTAG Watch Dog SDMA Audio Mux * indicates this feature is not available on the i.MX253 ** indicates this feature is not available on the i.MX257 Features low power consumption of the i.MX25 can accurate continuous time kept during SoC improve energy efficiency. The integrated power down. The i.MX258 also contains a CPU 128K SRAM enables low-power refresh true random number generator (TRNG) as • ARM ARM926EJ-STM core runs up to of the display to save power and extend well as a pseudo random number generator 400 MHz battery life. It can also be used to optimize (PRNG) to achieve both true randomness • Integrated 128K SRAM to improve system customer developed algorithms, increasing and cryptographic strength. The randomly performance or low-power LCD refresh performance of the product. generated numbers are intended for direct Connectivity use as secret keys, per message secrets, Connectivity random challenges and other similar • 10/100 Ethernet MAC With a wide range of connectivity options, quantities used in cryptographic algorithms. • 2 x FlexCAN modules such as UART, SDIO, USB and I2C, the • High-Speed USB OTG with PHY i.MX25 applications processors provide the Development Tools ability to connect wirelessly to other devices, • High-Speed USB host with PHY Ordering Information through the use of off-chip Bluetooth®, Wi-Fi® • 2 x SD/SDIO/MMC modules and other wireless protocols. The i.MX25 Freescale offers a feature-rich evaluation • 2 x subscriber identification modules (SIM) family also provides off-chip, removable data kit demonstrating the capabilities of the MCIMX25 running embedded Linux® • 5 x UART storage through USB keys and SD cards. and Windows® Embedded CE 6.0. The • 2 x configurable serial peripheral interfaces Integration evaluation kit includes support for DDR2, (CSPI) The i.MX25 applications processors feature NAND, SDIO, USB, Ethernet and 5.7" • 3.3 V general purpose I/O a high level of integration specifically landscape VGA TFT LCD. targeted towards the industrial and general Multimedia and Graphics Product Development Kit Processing embedded market. Integration such as 10/100 Ethernet, touch screen controller, The i.MX25 product development kit (PDK) • Display controller optimized for up to USB PHYs and support for 3.3 V I/O helps is an integrated hardware and software 16-bit-per-pixel SVGA (800 x 600) resolution to reduce the system bill of materials for solution that simplifies product development • CMOS/CCD sensor interface for camera OEMs, enabling a lower priced end device. so developers can focus on critical or video input differentiation needed for market success. Multimedia Freescale offers comprehensive board Memory The i.MX25 family of products supports support packages for both Linux and • Internal 128K SRAM up to SVGA (800 x 600) resolution TFT Windows Embedded CE operating systems • Support for external DDR2, mDDR displays and allows a wide range of colors with the PDK, as well as optimized or SDRAM to be displayed. The internal DMA within the middleware such as audio and video codecs • Support for external NAND or NOR flash display controller and the large display buffer and digital rights management libraries. improves performance of data rendering to Security Freescale Connect Partner Program display and reduces the occurrence of flicker. • High-assurance boot (HAB) library to The Freescale Connect partner program is provide secure boot The camera sensor interface on the i.MX25 your essential source for embedded designs • Secure 47-bit time counter running from has been performance tuned to support based on Freescale solutions. The program 32.768 kHz clock the high throughput requirements of data comprises a global network of independent acquisition devices. • Secure 32-bit monotonic counter engineering companies that offer the vital tools, software, technology, engineering • Volatile key storage Security (i.MX258 only) services and training to speed your design. The i.MX258 has an advanced security • Robust tamper detection and secure From reference boards to optimized architecture that includes the hardware and key erase software, Freescale Connect provides a software components necessary to provide • True random number generator powerful and comprehensive ecosystem trusted software boot and protect against • User programmable e-fuses that partners with you in making the world a external attacks on system integrity. New to smarter, more connected place. Learn more • Secure JTAG the i.MX258 is the Dry-Ice module that not at freescale.com/partners. Benefits only provides a trusted and certifiable time source, but also provides volatile storage The i.MX Family CPU Performance and Low Power of encryption keys together with robust Freescale’s i.MX family of applications 400 MHz ARM9 CPU with ample headroom tamper detection and secure key erase. processors serves a broad range of for many industrial and embedded Also provided is power-loss protection automotive, consumer, industrial and applications while not sacrificing battery via a back-up power supply to ensure general-purpose embedded applications. life. For plugged-in, always-on devices, the persistence of volatile keys as well as To learn more, visit freescale.com/iMX. For more information, visit freescale.com/iMX Freescale, the Freescale logo and the Energy Efficient Solutions logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is a registered trademark of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. ARM9, ARM926EJ-S and ARM11 are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2010, 2014 Freescale Semiconductor, Inc. Document Number: IMX25INDFS Rev 3 cc.
Recommended publications
  • Arm Cortex-R52
    Arm Cortex-R52 Product Brief Benefits Overview 1. Software Separation The Cortex-R52 is the most advanced processor in the Cortex-R family delivering real-time Robust hardware-enforced software performance for functional safety. As the first Armv8-R processor, Cortex-R52 introduces separation provides confidence that support for a hypervisor, simplifying software integration with robust separation to protect software functions can’t interfere with safety-critical code, while maintaining real-time deterministic operation required in high each other. For safety-related tasks, dependable control systems. this can mean less code needs to be certified, saving time, cost and effort. Cortex-R52 addresses a range of applications such as high performance domain controllers for vehicle powertrain and chassis systems or as a safety island providing 2. Multiple OS upportS protection in complex ADAS and Autonomous Drive systems. Virtualization support gives developers flexibility, readily allowing consolidation Safety Ready of applications using multiple operating systems within a single CPU. This eases Arm Cortex-R52 is part of Arm’s Safety Ready portfolio, a collection of Arm IP that the addition of functionality without have been through various and rigorous levels of functional safety systematic flows growing the number of electronic and development. control units. Learn more at www.arm.com/safety 3. Real-Time Performance High-performance multicore clusters of Cortex-R52 CPUs deliver real-time responsiveness for deterministic systems with the lowest Cortex-R latency. 1 Specifications Architecture Armv8-R Arm and Thumb-2. Supports DSP instructions and a configurable Floating-Point Unit either with Instruction Set single-precision or double precision and Neon.
    [Show full text]
  • ARM Architecture
    ARM Architecture Comppgzuter Organization and Assembly ygg Languages Yung-Yu Chuang with slides by Peng-Sheng Chen, Ville Pietikainen ARM history • 1983 developed by Acorn computers – To replace 6502 in BBC computers – 4-man VLSI design team – Its simp lic ity comes from the inexper ience team – Match the needs for generalized SoC for reasonable power, performance and die size – The first commercial RISC implemenation • 1990 ARM (Advanced RISC Mac hine ), owned by Acorn, Apple and VLSI ARM Ltd Design and license ARM core design but not fabricate Why ARM? • One of the most licensed and thus widespread processor cores in the world – Used in PDA, cell phones, multimedia players, handheld game console, digital TV and cameras – ARM7: GBA, iPod – ARM9: NDS, PSP, Sony Ericsson, BenQ – ARM11: Apple iPhone, Nokia N93, N800 – 90% of 32-bit embedded RISC processors till 2009 • Used especially in portable devices due to its low power consumption and reasonable performance ARM powered products ARM processors • A simple but powerful design • A whlhole filfamily of didesigns shiharing siilimilar didesign principles and a common instruction set Naming ARM •ARMxyzTDMIEJFS – x: series – y: MMU – z: cache – T: Thumb – D: debugger – M: Multiplier – I: EmbeddedICE (built-in debugger hardware) – E: Enhanced instruction – J: Jazell e (JVM) – F: Floating-point – S: SthiiblSynthesizible version (source code version for EDA tools) Popular ARM architectures •ARM7TDMI – 3 pipe line stages (ft(fetc h/deco de /execu te ) – High code density/low power consumption – One of the most used ARM-version (for low-end systems) – All ARM cores after ARM7TDMI include TDMI even if they do not include TDMI in their labels • ARM9TDMI – Compatible with ARM7 – 5 stages (fe tc h/deco de /execu te /memory /wr ite ) – Separate instruction and data cache •ARM11 ARM family comparison year 1995 1997 1999 2003 ARM is a RISC • RISC: simple but powerful instructions that execute within a single cycle at high clock speed.
    [Show full text]
  • OMAP-L138 DSP+ARM9™ Development Kit Low-Cost Development Kit to Jump-Start Real-Time Signal Processing Innovation
    OMAP-L138 DSP+ARM9™ Development Kit Low-cost development kit to jump-start real-time signal processing innovation Texas Instruments’ OMAP-L138 development kit is a new, robust low-cost development board designed to spark innovative designs based on the OMAP-L138 processor. Along with TI’s new included Linux™ Software Development Kit (SDK), the OMAP-L138 development kit is ideal for power- optimized, networked applications including industrial control, medical diagnostics and communications. It includes the OMAP-L138 baseboard, SD cards with a Linux demo, DSP/BIOS™ kernel and SDK, and Code Composer Studio™ (CCStudio) Integrated Development Environment (IDE), a power supply and cord, VGA cable and USB cable. Technical details • SATA port (3 Gbps) Key features and benefi ts The OMAP-L138 development kit is based • VGA port (15-pin D-SUB) • OMAP-L138 DSP+ARM9 software and on the OMAP-L138 DSP+ARM9 processor, a • LCD port (Beagleboard-XM connectors) development kit to jump-start real-time low-power applications processor based on • 3 audio ports signal processing innovation an ARM926EJ-S and a TMS320C674x DSP • Reduces design work with downloadable core. It provides signifi cantly lower power • 1 line in and duplicable board schematics and than other members of the TMS320C6000™ • 1 line out design fi les platform of DSPs. The OMAP-L138 processor • 1 MIC in • Fast and easy development of applica- enables developers to quickly design and • Composite in (RCA jack) tions requiring fi ngerprint recognition and develop devices featuring robust operating • Leopard Imaging camera sensor input (32- face detection with embedded analytics systems support and rich user interfaces with pin ZIP connector) • Low-power OMAP-L138 DSP+ a fully integrated mixed-processor solution.
    [Show full text]
  • Μc/OS-II™ Real-Time Operating System
    μC/OS-II™ Real-Time Operating System DESCRIPTION APPLICATIONS μC/OS-II is a portable, ROMable, scalable, preemptive, real-time ■ Avionics deterministic multitasking kernel for microprocessors, ■ Medical equipment/devices microcontrollers and DSPs. Offering unprecedented ease-of-use, ■ Data communications equipment μC/OS-II is delivered with complete 100% ANSI C source code and in-depth documentation. μC/OS-II runs on the largest number of ■ White goods (appliances) processor architectures, with ports available for download from the ■ Mobile Phones, PDAs, MIDs Micrium Web site. ■ Industrial controls μC/OS-II manages up to 250 application tasks. μC/OS-II includes: ■ Consumer electronics semaphores; event flags; mutual-exclusion semaphores that eliminate ■ Automotive unbounded priority inversions; message mailboxes and queues; task, time and timer management; and fixed sized memory block ■ A wide-range of embedded applications management. FEATURES μC/OS-II’s footprint can be scaled (between 5 Kbytes to 24 Kbytes) to only contain the features required for a specific application. The ■ Unprecedented ease-of-use combined with an extremely short execution time for most services provided by μC/OS-II is both learning curve enables rapid time-to-market advantage. constant and deterministic; execution times do not depend on the number of tasks running in the application. ■ Runs on the largest number of processor architectures with ports easily downloaded. A validation suite provides all documentation necessary to support the use of μC/OS-II in safety-critical systems. Specifically, μC/OS-II is ■ Scalability – Between 5 Kbytes to 24 Kbytes currently implemented in a wide array of high level of safety-critical ■ Max interrupt disable time: 200 clock cycles (typical devices, including: configuration, ARM9, no wait states).
    [Show full text]
  • SEGGER — the Embedded Experts It Simply Works!
    SEGGER — The Embedded Experts It simply works! Buyout licensing for Embedded Studio No license server, no hardware dongle Monheim, Germany – November 26 th, 2018 It only takes two minutes to install: With unlimited evaluaton and the freedom to use the sofware at no cost for non-commercial purposes, SEGGER has always made it easy to use Embedded Studio. In additon to this and by popular demand from developers in larger corporatons, SEGGER introduces a buyout licensing opton that makes things even easier. The new buyout opton allows usage by an unlimited number of users, without copy protecton, making it very easy to install and use the sofware anywhere: In the ofce, on the road, at customer's site or at home. No license server, no hardware dongle. Developers can fully concentrate on what they do and like best and what they are paid for: Develop sofware rather than deal with copy protecton issues. Being available for Windows, macOS and Linux, it reduces the dependencies on any third party. It is the perfect choice for mid-size to large corporatons with strict licensing policies. In additon to that, Embedded Studio's source code is available. "We are seeing more and more companies adoptng Embedded Studio as their Development Environment of choice throughout their entre organizaton. Listening to our customers, we found that this new opton helps to make Embedded Studio even more atractve. Easier is beter", says Rolf Segger, Founder of SEGGER. Get more informaton on the new SEGGER Embedded Studio at: www.segger.com/embedded-studio.html ### About Embedded Studio SEGGER — The Embedded Experts It simply works! Embedded Studio is a leading Integrated Development Environment (IDE) made by and for embedded sofware developers.
    [Show full text]
  • ARM Roadmap Spring 2017
    ARM Roadmap Spring 2017 Robert Boys [email protected] Version 9.0 Agenda . Roadmap . Architectures ARM1™ die . Issues . What is NEW ! . big.LITTLE™ . 64 Bit . Cortex®-A15 . 64 BIT . DynamIQ 3 © ARM 2017 In the Beginning… . 1985 32 years ago in a barn.... 12 engineers . Cash from Apple and VLSI . IP from Acorn Computers . Proof of concept . No patents, no independent customers, product not ready for mass market. A barn, some energy, experience and belief: “We’re going to be the Global Standard” 4 © ARM 2017 The Cortex Processor Roadmap in 2008 Application Real-time Microcontroller Cortex-A9 Cortex-A8 ARM11 Cortex-R4F ARM9 Cortex-R4 ARM7TDMI ARM7 Cortex-M3 SC300 Cortex-M1 5 © ARM 2017 5 Cortex-A73 ARM 2017 Processor Roadmap Cortex-A35 Cortex-A32 Cortex-A72 Cortex-A57 ARM 7, 9, 11 Cortex-A17 Application Cortex-A53 Cortex-A15 Real-time Not to scale to Not Cortex-A9 (Dual) Microcontroller Cortex-A9 (MPCore) Cortex-A8 Cortex-A7 ARM11(MP) Cortex-A5 MMU ARM926EJ-S Cortex-R52 No MMU Cortex-R8 200+ MHz Cortex-R7 ARM9 Cortex-R5 Cortex-R4 Cortex-M7 200+ MHz Cortex-M33 ARM7TDM 72 – 150 + MHz Cortex-M4 Cortex-M3 ARM7I SC300 Cortex-M23 DesignStart™ Cortex-M1 SC000 Cortex-M0+ Cortex-M0 6 © ARM 2017 6 Versions, cores and architectures ? Family Architecture Cores ARM7TDMI ARMv4T ARM7TDMI(S) ARM9 ARM9E ARMv5TE ARM926EJ-S, ARM966E-S ARM11 ARMv6 (T2) ARM1136(F), 1156T2(F)-S, 1176JZ(F), ARM11 MPCore™ Cortex-A ARMv7-A Cortex-A5, A7, A8, A9, A12, A15, A17 Cortex-R ARMv7-R Cortex-R4(F), Cortex-R5, R7, R8 … Cortex-M ARMv7-M Cortex-M3, M4, M7 (M7 is ARMv7-ME) ARMv6-M Cortex-M1, M0, M0+ NEW ! ARMv8-A 64 Bit: Cortex-A35/A53/57/A72 Cortex-A73 Cortex-A32 NEW ! ARMv8-R 32 Bit: Cortex-R52 NEW ! ARMv8-M 32 Bit: Cortex-M23 & M33 TrustZone® 7 © ARM 2017 What is New ? DynamIQ ! .
    [Show full text]
  • J-Flash User Guide of the Stand-Alone Flash Programming Software
    J-Flash User guide of the stand-alone flash programming software Document: UM08003 Software Version: 7.50 Date: July 1, 2021 A product of SEGGER Microcontroller GmbH www.segger.com 2 Disclaimer Specifications written in this document are believed to be accurate, but are not guaranteed to be entirely free of error. The information in this manual is subject to change for functional or performance improvements without notice. Please make sure your manual is the latest edition. While the information herein is assumed to be accurate, SEGGER Microcontroller GmbH (SEG- GER) assumes no responsibility for any errors or omissions. SEGGER makes and you receive no warranties or conditions, express, implied, statutory or in any communication with you. SEGGER specifically disclaims any implied warranty of merchantability or fitness for a particular purpose. Copyright notice You may not extract portions of this manual or modify the PDF file in any way without the prior written permission of SEGGER. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. © 2004-2018 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany Trademarks Names mentioned in this manual may be trademarks of their respective companies. Brand and product names are trademarks or registered trademarks of their respective holders. Contact address SEGGER Microcontroller GmbH Ecolab-Allee 5 D-40789 Monheim am Rhein Germany Tel. +49-2173-99312-0 Fax. +49-2173-99312-28 E-mail: [email protected] Internet: www.segger.com J-Flash User Guide (UM08003) © 2004-2018 SEGGER Microcontroller GmbH 3 Manual versions This manual describes the current software version.
    [Show full text]
  • Nexus Based Multi-Core Debug
    Nexus Based Multi-Core Debug Dr. Neal Stollon MIPS Technologies / First Silicon Solutions [email protected] Rich Collins Freescale Semiconductor [email protected] Impact of Debug Strategy Copyright © 2003 Novas Software, Inc. Yes! but. half of what??? Copyright © 2003 Novas Software, Inc. Prototype silicon to production Debug cost can get even bigger for new sets release is 6-9 months. of debug problems for multi-core designs Much of cost of debug driven by architecture limitations and debug learning curve But what if SoC internals are more visible, accessible? Debug implementations become standardized ? SoC Debug Evolution ICE BDM JTAG Embedded Multi-Core Embedded (Scan, BIST Processor / System Debug Run Control) Logic Trace 50K Platform SoC (Multi-Core) 20K SoC Debug- (RISC+IP Nexus +RAM) Difficulty 8K ASICS System FPGA Domain (gates/pins) (PLD+RISC IP) Embedded 2.5K Systems Single FPGAs 1K processor 1980s 1990s 2000s The New Frontier Embedded Debug Complexity keeps increasing • Gates increase geometrically - Pins increase linearly • Significant debug difficulties for leading architectures • More complex debug needs better Instrumentation What is Nexus? • Nexus is a standard for industry level instrumentation with real time interface for embedded system debug • “Nexus” is synonymous with the IEEE-ISTO 5001 std. • Supported by over 20 Member Companies • Specification freely available at http://www.nexus5001.org • Nexus is a toolbox of defined ways for processor debug: • Defines JTAG and Auxiliary bus debug interfaces • Defines simple
    [Show full text]
  • Chapter 1 Microcontrollers
    Chapter 1 Microcontrollers: Yesterday, Today, and Tomorrow 1.1 Defining Microcontrollers It is said that from the definition everything true about the con- cept follows. Therefore, at the outset let us take a brief review of how the all-pervasive microcontroller has been defined by various technical sources. A microcontroller (or MCU) is a computer-on-a-chip used to con- trol electronic devices. It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC). A typical microcontroller con- tains all the memory and interfaces needed for a simple application, whereas a general purpose microprocessor requires additional chips to provide these functions. .(Wikipedia [1]) A highly integrated chip that contains all the components compris- ing a controller. Typically this includes a CPU, RAM, some form of ROM, I/O ports, and timers. Unlike a general-purpose computer, which also includes all of these components, a microcontroller is designed for a very specific task – to control a particular system. As a result, the parts can be simplified and reduced, which cuts down on production costs. (Webopedia [2]) A {microprocessor} on a single {integrated circuit} intended to ope- rate as an {embedded} system. As well as a {CPU}, a microcontroller typically includes small amounts of {RAM} and {PROM} and timers and I/O ports. .(Define That [3]) A single chip that contains the processor (the CPU), non-volatile memory for the program (ROM or flash), volatile memory for input and output (RAM), a clock and an I/O control unit.
    [Show full text]
  • ARM Microcontrollers for Space Applications
    ARM Microcontrollers for Space Applications Emre Ozer, R&D Nov 4, 2010 1 Outline .What does ARM do? .ARM CPU Portfolio .ARM Embedded CPUs and Microcontrollers .ARM in Space/Aerospace 2 What does ARM do? . Designs and Licenses IP Software 3 The ARM Business Model . Global leader in the development of semiconductor IP . R&D outsourcing for semiconductor companies . Innovative business model yields high margins . Upfront license fee – flexible licensing models . Ongoing royalties – typically based on a percentage of chip price . Technology reused across multiple applications . Long-term, scalable growth markets Base of over 660 licenses Grows by 60-90 every year More than 220 potential royalty payers ~4 billion ARM technology based chips each year 4 ARM Connected Community – 700+ Connect, Collaborate, Create – accelerating innovation 5 ARM Classic CPU Portfolio . Classic, market-proven processor technology . 220+ partners ARMv6 x1-4 ARM11™ MPCore™ . 660+ licenses ARM1176JZ(F)-S™ ARM1156T2(F)-S™ . 18Bu+ shipped ARM1136J(F)-S™ ARMv5 ARM968E-S™ ARM926EJ-S™ ARM946E-S™ ARM7EJ-S™ ARMv4 ARM922T™ SC100™ ARM7TDMI(S)™ 6 ARM Cortex Advanced Processors Architectural innovation, compatibility across diverse application spectrum . ARM Cortex-A family: x1-4 Cortex-A9 . Applications processors for smartphone, ...2GHz mobile computing, infrastructure, consumer Cortex-A8 electronics, netbooks and servers x1-4 Cortex-A5 ARM Cortex-R family: . Cortex-R4(F) . Embedded processors for real-time signal processing, hard drives and Cortex-M4 SC300™ mission-critical
    [Show full text]
  • STM32 More Than a Core
    2804003-Cantrell.qxp 3/7/2008 10:45 AM Page 80 SILICON UPDATE by Tom Cantrell More Than a Core While examining 32-bit microcontrollers last month, Tom decided that the STMicroelectronics STM32 was worth a second look. With the new ARM Cortex M3 core, good peripherals, integration, and energy efficiency, this could be just the MCU for your next project. Having covered the territory last debates have become less relevant, thought these shining stars would month (“More Bits, Less Filling,” especially for blue-collar embedded burn out so fast? Circuit Cellar 212, 2008), it’s not my apps. Maybe it’s just battle fatigue, The microprocessor was barely born intention to get stuck on the topic of having seen so many architectures before it headed into battle. Early 8-bit 32-bit MCUs. Believe me, there’s march off to war. Remember way back skirmishes foreshadowed the epic plenty of other neat stuff going on in the mainframe years (1960–1970s) struggle between the Intel ’x86 and with FPGAs, wireless, sensors, and when companies like Univac, the then Motorola 68K, a battle that other wonders of the silicon age. Burroughs, and Honeywell challenged counted a myriad of upstart architec- Nevertheless, if you have anything to IBM with “better” architectures? All tures as collateral casualties. May the do with embedded systems, you need dead and gone. 88K, i860, Clipper, 29K, and all of the to stay up to speed with the latest hot Then there were the fabulous mini- others rest in peace. rod chips or you’ll get left behind.
    [Show full text]
  • ARM Low-Power Processors and Architectures
    ARM Low-power Processors and Architectures Dan Millett Verification Enablement Processor Division 1 Agenda . Introduction to ARM Ltd ARM Architecture/Programmers Model Data Path and Pipelines System Design Development Tools 2 ARM Ltd . Founded in November 1990 . Spun out of Acorn Computers . Initial funding from Apple, Acorn and VLSI . Designs the ARM range of RISC processor cores . Licenses ARM core designs to semiconductor partners who fabricate and sell to their customers . ARM does not fabricate silicon itself . Also develop technologies to assist with the design- in of the ARM architecture . Software tools, boards, debug hardware . Application software . Bus architectures . Peripherals, etc 3 ARM’s Activities Connected Community Development Tools Software IP Processors memory System Level IP: Data Engines SoC Fabric 3D Graphics Physical IP 4 ARM Connected Community – 700+ 5 5 Huge Range of Applications IR Fire Detector Exercise Utility Intelligent Machines Energy Efficient Appliances Intelligent toys Meters Vending Tele-parking Equipment Adopting 32-bit ARM Microcontrollers 6 How many ARM’s Do You Have? Mobile phones Smartphones Mobile Computers Digital TVs Ultra Low Cost Ultra Low Cost Ultra Low Cost ~100% 3x 100% 5x 100% 35% market share market share market share market share Disk Drives PC Peripherals Cars Microcontrollers Ultra Low Cost Ultra Low Cost Ultra Low Cost Ultra Low Cost ~75% 40% 5x 50% 35% market share market share market share market share 7 Huge Opportunity For ARM Technology 25+ 100+ billion billion cores accumulated
    [Show full text]