Imx RT1050 Communicator

Total Page:16

File Type:pdf, Size:1020Kb

Imx RT1050 Communicator www.nxp.com i.MX RT Series NXP Communicator Expanding the i.MX RT Series: i.MX RT1064 Industry’s first crossover processor with on-chip Flash memory Featuring ARM Cortex-M7 core with up to 600 MHz frequency, the i.MX RT1064 adds 4MB on-chip memory while keeping pin-to-pin compatibility with i.MX RT1050 and i.MX RT1060. Communicator Date: October 2018 Global Launch Date: November 12th, 2018 Embargo Date: Nov 12th, 2018 NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE,GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, NXP, the NXP logo, AltiVec, C_5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C_Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, Layerscape, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2014–2015 NXP B.V. Crossover Processors Crossover processors are built using applications processors chassis, delivering a high level of integration, high speed peripherals, enhanced security, and engines for enhanced user experience (for example, 2D/3D graphics); but powered by a low-power MCU core running a real-time operating system like RTOS. Crossover processing, therefore, defines a new, much-needed space in the market by helping MCU customers move up to applications processor-level of performance while staying with their current tool chain—and potentially without having to add time, cost, or complexity of Linux (or other higher level operating systems) software development to their product design cycle. Crossover processors is a term defined by NXP in June 2017. NXP is in the unique position to define and “own” this market, given our leadership position in both applications processors and MCUs. i.MX RT Series i.MX RT series is NXP’s line of real-time applications processors. Products are built using i.MX technology and have performance over 400 MHz. The wider Cortex-M portfolio from NXP is still readily available and continues to grow, especially within the popular LPC and Kinetis portfolios of microcontrollers. i.MX RT series bridges the gap between the traditional MCUs and the i.MX space, allowing MCU customers a path for significant performance and integration improvements, without sacrificing ease-of-use. The i.MX RT series was announced in June 2017 and includes products like the i.MX RT1050 (announced June 2017, launched October 2017), i.MX RT1020 (announcement in October 2017, launch in June 2018) and the i.MX RT1060 (announced in February 2018, launch in September 2018). i.MX RT1064 The i.MX RT1064 is the latest addition to the industry's first crossover processor series and expands the i.MX RT series to four scalable families. The i.MX RT1064 doubles has 1MB On-Chip SRAM and 4MB Flash memory, while keeping pin-to-pin compatibility with i.MX RT1050 and i.MX RT1060. The i.MX RT1064 runs on the Arm® Cortex-M7® core at 600 MHz. Target Applications Audio Subsystem—professional microphone, guitar pedals Consumer Products—Smart appliances, cameras, LCDs Home and Building Automation—HVAC climate control, security, lighting control panels, IoT gateways Industrial Computing Designs—EBS, PLCs, factory automation, test and measurement, M2M, HMI control assembly line robotics Motor Control and Power Conversion—3D printers, thermal printers, unmanned autonomous vehicles, robotic vacuum cleaners Block diagram below shows how the i.MX RT is used in an autonomous, connected vacuum cleaner. Vacuum Left Right Motor Brush Brush M M M Mos Mos Mos Driver Driver Driver H-Bridge Left Walker M Motor IR Transmitter i.MX RT H-Bridge Right Walker IR Receiver M Motor Collider sensor etc. IIC RTC / Gyro IO control s II AD Audio Buzzer C C CHG current Motor current voltage Temperature …… BATT CHG UART WIFI / Sensor / Debug S Product Overview i.MX RT1064 Block Diagram Highest performing Arm Cortex-M7 3020 CoreMark/1284 DMIPS @ 600 MHz 4MB On-Chop Flash 1MB On-Chip SRAM - up to 512KB configurable as Tightly Coupled Memory (TCM) Real-time, low-latency response as low as 20 ns Industry’s lowest dynamic power with an integrated DC-DC converter Low-power run modes at 24MHz Advanced multimedia for GUI and enhanced HMI o 2D graphics acceleration engine o Parallel camera sensor interface o LCD display controller (up to WXGA 1366x768) o 3x I2S for high-performance, multi-channel audio Extensive external memory interface options o NAND, eMMC, QuadSPI NOR Flash, and Parallel NOR Flash Wireless connectivity interface for o Wi-Fi®, Bluetooth®, BLE, ZigBee® and Thread™ Development tools and Ecosystem MIMXRT1064-EVK The MIMXRT1064-EVK development board is orderable now. This board provides true MCU-usability and the Out-of-box experience (OOBE) will follow the popular Kinetis format with the Getting Started information and videos online at time of launch. Official photos of the board are available in distributor assets link. Below is a snapshot. Processor • Footprint for QSPI Flash • NXP Semiconductors • TF socket for SD card MIMXRT1064, 600MHz ARM Display Cortex-M7 • Parallel LCD connector Memory • Camera Connector • 256 Mbit SDRAM memory Audio • 512Mbit Hyper Flash • Audio Codec RK043FN02H-CT There is also an accessory LCD board that customers can buy separately. It is a 4.3” display, part number RK043FN02H-CT. We estimate that there will be less than a 50% attach rate between the EVK and the LCD. This is the same LCD board that also supports the i.MX RT1050 EVK board, IMXRT1050-EVKB. Software Enablement MCUXpresso SDK o Extensive suite of robust peripheral drivers, stacks, and middleware o Includes software examples demonstrating use of peripheral drivers and middleware ARM® Mbed®-enabled Free RTOS Integrated Development Environments (IDE) o IAR Embedded Workbench (Now) o ARM Keil Microcontroller Development Kit (Now) o MCUXpresso IDE (Now) Graphics o Crank Software Suggested Stocking, Timing, and Attach Products The parts are part of Distributor PriceBook now as well as the EVK board. There is also a companion LCD board that is sold separately (also an NXP part number). Export compliance and additional pricing information can be found in the Excel stocking files attached. The below tables represent the suggested parts to stock for the launch. Attach products are listed in the Attach Products Excel. Embargo Suggested Date for Full For web - Market Stocking "Coming Launch (Y/N?) soon" Date PN Y 12-Nov 12-Nov MIMXRT1064DVL6A MIMXRT1064CVL5A Y 12-Nov 12-Nov Y 12-Nov 12-Nov MIMXRT1064-EVK Y none 2017 RK043FN02H-CT Available Documentation and Useful Links i.MX RT Series Landing Page: http://www.nxp.com/products/microcontrollers-and-processors/arm-based-processors- and-mcus/i.mx-applications-processors/i.mx-rt-series:IMX-RT-SERIES CrossOver Processors whitepaper: http://www.nxp.com/docs/en/white-paper/I.MXRT1050WP.pdf i.MX RT Fact sheet (will be updated to web on Nov 11) https://www.nxp.com/docs/en/fact-sheet/IMXRTSERIESFS.pdf i.MX RT1064 Marketing Assets on Distributor Marketing Extranet (chip shots, BDs, EVK photos) : https://nxp1.sharepoint.com/teams/ext131/distimkt/SitePages/Home.aspx?RootFolder= %2Fteams%2Fext131%2Fdistimkt%2Fdocs%2Fi%2EMX%20RT1064&FolderCTID=0x0 12000FA8B804543DD60418A75C67A9AAEDF07&View=%7B46782C62%2D0189%2D 4F17%2DA227%2DC782920E7EC5%7D i.MX RT 6-Packs: https://nxp1.sharepoint.com/teams/ext96/SitePages/MICR%20Launches.aspx i.MX RT Fighting Guides: https://nxp1.sharepoint.com/teams/ext96/Documents%20NXP/Forms/MICRKillSheets.a spx i.MX presentations: https://nxp1.sharepoint.com/teams/ext96/SitePages/i.MX.aspx MicroCenter Launch materials: https://nxp1.sharepoint.com/teams/ext96/SitePages/MICR%20Launches.aspx MPU Selector Tool: https://nxp1.sharepoint.com/teams/ext96/Documents%20NXP/MPU_Selector.xlsx?d=w b22fece7536b485fb412f653995acec6 Distributor MicroCenter: https://nxp1.sharepoint.com/teams/ext96/SitePages/Microcontrollers_Home.aspx How to Reach Us Home Page: Information in this document is provided solely to enable system and software implementers to www.nxp.com use NXP Semiconductor products. There are no express or implied copyright license granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the Web Support: information in this document. www.nxp.com/support NXP Semiconductors reserves the right to make changes without further notice to any products USA/Europe or Locations Not Listed: herein. NXP Semiconductors makes no warranty, representation or guarantee regarding the NXP Semiconductors suitability of its products for any particular purpose, nor does NXP Semiconductors assume any Technical Information Center, EL516 liability arising out of the application or use of any product or circuit, and specifically disclaims 2100 East Elliot Road any and all liability, including without limitation consequential or incidental damages. “Typical” Tempe, Arizona 85284 parameters which may be provided in NXP Semiconductors data sheets and/or specifications +1-800-521-6274 or +1-480-768-2130 can and do vary in different applications and actual performance may vary over time.
Recommended publications
  • Arm Cortex-R52
    Arm Cortex-R52 Product Brief Benefits Overview 1. Software Separation The Cortex-R52 is the most advanced processor in the Cortex-R family delivering real-time Robust hardware-enforced software performance for functional safety. As the first Armv8-R processor, Cortex-R52 introduces separation provides confidence that support for a hypervisor, simplifying software integration with robust separation to protect software functions can’t interfere with safety-critical code, while maintaining real-time deterministic operation required in high each other. For safety-related tasks, dependable control systems. this can mean less code needs to be certified, saving time, cost and effort. Cortex-R52 addresses a range of applications such as high performance domain controllers for vehicle powertrain and chassis systems or as a safety island providing 2. Multiple OS upportS protection in complex ADAS and Autonomous Drive systems. Virtualization support gives developers flexibility, readily allowing consolidation Safety Ready of applications using multiple operating systems within a single CPU. This eases Arm Cortex-R52 is part of Arm’s Safety Ready portfolio, a collection of Arm IP that the addition of functionality without have been through various and rigorous levels of functional safety systematic flows growing the number of electronic and development. control units. Learn more at www.arm.com/safety 3. Real-Time Performance High-performance multicore clusters of Cortex-R52 CPUs deliver real-time responsiveness for deterministic systems with the lowest Cortex-R latency. 1 Specifications Architecture Armv8-R Arm and Thumb-2. Supports DSP instructions and a configurable Floating-Point Unit either with Instruction Set single-precision or double precision and Neon.
    [Show full text]
  • Atmel SMART | SAM V7: Cortex-M7 Tutorial Using the SAMV7 Xplained ULTRA Evaluation Board ARM Keil MDK 5 Toolkit Summer 2017 V 1.83 [email protected]
    Atmel SMART | SAM V7: Cortex-M7 Tutorial Using the SAMV7 Xplained ULTRA evaluation board ARM Keil MDK 5 Toolkit Summer 2017 V 1.83 [email protected] Introduction: The latest version of this document is here: www.keil.com/appnotes/docs/apnt_274.asp The purpose of this lab is to introduce you to the Atmel Cortex®-M7 processor using the ARM® Keil® MDK toolkit featuring the IDE μVision®. We will demonstrate all debugging features available on this processer including Serial Wire Viewer and ETM instruction trace. At the end of this tutorial, you will be able to confidently work with these processors and Keil MDK. We recommend you obtain the new Getting Started MDK 5: from here: www.keil.com/gsg/. Keil Atmel Information Page: See www.keil.com/atmel. Keil MDK supports and has examples for most Atmel ARM processors and boards. Check the Keil Device Database® on www.keil.com/dd2 for the complete list. Additional information is listed in www.keil.com/Atmel/. Linux: Atmel ARM processors running Linux and Android are supported by ARM DS-5™. http://www.arm.com/ds5. Keil MDK-Lite™ is a free evaluation version that limits code size to 32 Kbytes. Nearly all Keil examples will compile within this 32K limit. The addition of a valid license number will turn it into a commercial version. Contact Keil Sales for details. Atmel 8051 Processors: Keil has development tools for many Atmel 8051 processors. See www.keil.com/Atmel/ for details. Atmel | Start: µVision is compatible with the Atmel | START configuration program.
    [Show full text]
  • Designing Application-Aware Networking Equipment with the Powerquicc™ III MPC8572E
    Freescale Semiconductor White Paper Designing Application-Aware Networking Equipment with the PowerQUICC™ III MPC8572E Document Number: MPC8572EWP Rev 0 1/2007 Doc Order # Rev 0 Overview Freescales PowerQUICC™ families of processors have long established themselves as the premier communications processors in the market, widely used in a variety of numerous networking devices including switches, routers and network security equipment. The MPC8572E, the first PowerQUICC III processor with an integrated pattern matcher, is specifically designed to satisfy additional application-aware requirements of high-performance networking devices. This white paper describes how high-performance, cost-effective application-aware networking equipment can be designed with the MPC8572E. Contents 1 Application-Aware Networking 4.5.2 Stateful Rule............. 11 Overview ........................................... 1 4.5.3 Matching Across 1.1 Application-Aware Packet Boundaries.................. 11 Networking Examples................... 1 4.5.4 Performance Minimally 1.1.1 Application-Aware Data Dependent on the Number of Forwarding ................................ 1 Signatures ............................... 12 1.1.2 Application-Aware 4.6 Performance Advantages of Security .................................... 2 the MPC8572E in Data Path...... 12 1.1.3 Application-Based 4.6.1 Packet I/O ................ 12 Traffic Management.................. 2 4.6.2 Packet Processing... 12 1.1.4 Application-Based 4.6.3 Traffic Management. 12 Statistics Collection..................
    [Show full text]
  • Insider's Guide STM32
    The Insider’s Guide To The STM32 ARM®Based Microcontroller An Engineer’s Introduction To The STM32 Series www.hitex.com Published by Hitex (UK) Ltd. ISBN: 0-9549988 8 First Published February 2008 Hitex (UK) Ltd. Sir William Lyons Road University Of Warwick Science Park Coventry, CV4 7EZ United Kingdom Credits Author: Trevor Martin Illustrator: Sarah Latchford Editors: Michael Beach, Alison Wenlock Cover: Wolfgang Fuller Acknowledgements The author would like to thank M a t t Saunders and David Lamb of ST Microelectronics for their assistance in preparing this book. © Hitex (UK) Ltd., 21/04/2008 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or photocopying, recording or otherwise without the prior written permission of the Publisher. Contents Contents 1. Introduction 4 1.1 So What Is Cortex?..................................................................................... 4 1.2 A Look At The STM32 ................................................................................ 5 1.2.1 Sophistication ............................................................................................. 5 1.2.2 Safety ......................................................................................................... 6 1.2.3 Security ....................................................................................................... 6 1.2.4 Software Development ..............................................................................
    [Show full text]
  • ARM Architecture
    ARM Architecture Comppgzuter Organization and Assembly ygg Languages Yung-Yu Chuang with slides by Peng-Sheng Chen, Ville Pietikainen ARM history • 1983 developed by Acorn computers – To replace 6502 in BBC computers – 4-man VLSI design team – Its simp lic ity comes from the inexper ience team – Match the needs for generalized SoC for reasonable power, performance and die size – The first commercial RISC implemenation • 1990 ARM (Advanced RISC Mac hine ), owned by Acorn, Apple and VLSI ARM Ltd Design and license ARM core design but not fabricate Why ARM? • One of the most licensed and thus widespread processor cores in the world – Used in PDA, cell phones, multimedia players, handheld game console, digital TV and cameras – ARM7: GBA, iPod – ARM9: NDS, PSP, Sony Ericsson, BenQ – ARM11: Apple iPhone, Nokia N93, N800 – 90% of 32-bit embedded RISC processors till 2009 • Used especially in portable devices due to its low power consumption and reasonable performance ARM powered products ARM processors • A simple but powerful design • A whlhole filfamily of didesigns shiharing siilimilar didesign principles and a common instruction set Naming ARM •ARMxyzTDMIEJFS – x: series – y: MMU – z: cache – T: Thumb – D: debugger – M: Multiplier – I: EmbeddedICE (built-in debugger hardware) – E: Enhanced instruction – J: Jazell e (JVM) – F: Floating-point – S: SthiiblSynthesizible version (source code version for EDA tools) Popular ARM architectures •ARM7TDMI – 3 pipe line stages (ft(fetc h/deco de /execu te ) – High code density/low power consumption – One of the most used ARM-version (for low-end systems) – All ARM cores after ARM7TDMI include TDMI even if they do not include TDMI in their labels • ARM9TDMI – Compatible with ARM7 – 5 stages (fe tc h/deco de /execu te /memory /wr ite ) – Separate instruction and data cache •ARM11 ARM family comparison year 1995 1997 1999 2003 ARM is a RISC • RISC: simple but powerful instructions that execute within a single cycle at high clock speed.
    [Show full text]
  • OMAP 3 Family of Multimedia Applications
    OMAP™ 3 family of multimedia applications processors Revolutionizing entertainment and productivity Key features in wireless handheld commumications • Combines mobile entertainment and high-performance productivity applications. Product Bulletin • Integrates the advanced Superscalar ARM Cortex-A8 RISC core, enabling up to The OMAP™ 3 family of multimedia applications processors from Texas Instruments (TI) 3x gain in performance versus ARM11. introduces a new level of performance that enables laptop-like productivity and advanced • Designed in 45-nm (OMAP36x platform) entertainment in multimedia-enabled handsets. OMAP 3 devices support all levels of and 65-nm (OMAP34x platform) CMOS handsets, from the entry-level multimedia-enabled handsets to high-end Mobile Internet process technologies for less power Devices (MIDs). consumption and increased device performance. Entry-level Mid-level High-end • Includes integrated IVA hardware multimedia-enabled multimedia-enabled multimedia-enabled accelerators to enable multi-standard encode handsets handsets handsets decode up to HD resolution. OMAP3410 OMAP3420 OMAP3430/3440 • Available integrated image signal OMAP3610 OMAP3620 OMAP3630/3640 processor (ISP) enables faster, higher quality image capture, lower system cost TI’s OMAP 3 family of applications processors These devices can operate at a higher and lower power consumption. • Provides seamless connectivity to hard integrate the ARM Cortex-A8 superscalar frequency than previous-generation OMAP diskdrive (HDD) devices for mass storage. microprocessor
    [Show full text]
  • OMAP-L138 DSP+ARM9™ Development Kit Low-Cost Development Kit to Jump-Start Real-Time Signal Processing Innovation
    OMAP-L138 DSP+ARM9™ Development Kit Low-cost development kit to jump-start real-time signal processing innovation Texas Instruments’ OMAP-L138 development kit is a new, robust low-cost development board designed to spark innovative designs based on the OMAP-L138 processor. Along with TI’s new included Linux™ Software Development Kit (SDK), the OMAP-L138 development kit is ideal for power- optimized, networked applications including industrial control, medical diagnostics and communications. It includes the OMAP-L138 baseboard, SD cards with a Linux demo, DSP/BIOS™ kernel and SDK, and Code Composer Studio™ (CCStudio) Integrated Development Environment (IDE), a power supply and cord, VGA cable and USB cable. Technical details • SATA port (3 Gbps) Key features and benefi ts The OMAP-L138 development kit is based • VGA port (15-pin D-SUB) • OMAP-L138 DSP+ARM9 software and on the OMAP-L138 DSP+ARM9 processor, a • LCD port (Beagleboard-XM connectors) development kit to jump-start real-time low-power applications processor based on • 3 audio ports signal processing innovation an ARM926EJ-S and a TMS320C674x DSP • Reduces design work with downloadable core. It provides signifi cantly lower power • 1 line in and duplicable board schematics and than other members of the TMS320C6000™ • 1 line out design fi les platform of DSPs. The OMAP-L138 processor • 1 MIC in • Fast and easy development of applica- enables developers to quickly design and • Composite in (RCA jack) tions requiring fi ngerprint recognition and develop devices featuring robust operating • Leopard Imaging camera sensor input (32- face detection with embedded analytics systems support and rich user interfaces with pin ZIP connector) • Low-power OMAP-L138 DSP+ a fully integrated mixed-processor solution.
    [Show full text]
  • Qoriq: High End Industrial and Networking Processing
    TM TechDays 2013 Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MagniV, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, Ready Play, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, SafeAssure, the SafeAssure logo, SMARTMOS, TurboLink, VortiQa and Xtrinsic are PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, trademarks of Freescale Semiconductor, Inc. All other product or service names are the BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MagniV, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, TM property of their respective owners. © 2012 Freescale Semiconductor, Inc. 1 Ready Play, SafeAssure, the SafeAssure logo, SMARTMOS, TurboLink, VortiQa and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All . other product or service names are the property of their respective owners. © 2012 Freescale Semiconductor, Inc. 2013 2011 QorIQ Qonverge QorIQ next-generation platform launch platform based T series 28nm on Layerscape architecture 2008 QorIQ Multicore Platform launch (P series) Accelerating the P series 45nm Network’s IQ 2004 Dual-core
    [Show full text]
  • Μc/OS-II™ Real-Time Operating System
    μC/OS-II™ Real-Time Operating System DESCRIPTION APPLICATIONS μC/OS-II is a portable, ROMable, scalable, preemptive, real-time ■ Avionics deterministic multitasking kernel for microprocessors, ■ Medical equipment/devices microcontrollers and DSPs. Offering unprecedented ease-of-use, ■ Data communications equipment μC/OS-II is delivered with complete 100% ANSI C source code and in-depth documentation. μC/OS-II runs on the largest number of ■ White goods (appliances) processor architectures, with ports available for download from the ■ Mobile Phones, PDAs, MIDs Micrium Web site. ■ Industrial controls μC/OS-II manages up to 250 application tasks. μC/OS-II includes: ■ Consumer electronics semaphores; event flags; mutual-exclusion semaphores that eliminate ■ Automotive unbounded priority inversions; message mailboxes and queues; task, time and timer management; and fixed sized memory block ■ A wide-range of embedded applications management. FEATURES μC/OS-II’s footprint can be scaled (between 5 Kbytes to 24 Kbytes) to only contain the features required for a specific application. The ■ Unprecedented ease-of-use combined with an extremely short execution time for most services provided by μC/OS-II is both learning curve enables rapid time-to-market advantage. constant and deterministic; execution times do not depend on the number of tasks running in the application. ■ Runs on the largest number of processor architectures with ports easily downloaded. A validation suite provides all documentation necessary to support the use of μC/OS-II in safety-critical systems. Specifically, μC/OS-II is ■ Scalability – Between 5 Kbytes to 24 Kbytes currently implemented in a wide array of high level of safety-critical ■ Max interrupt disable time: 200 clock cycles (typical devices, including: configuration, ARM9, no wait states).
    [Show full text]
  • SEGGER — the Embedded Experts It Simply Works!
    SEGGER — The Embedded Experts It simply works! Buyout licensing for Embedded Studio No license server, no hardware dongle Monheim, Germany – November 26 th, 2018 It only takes two minutes to install: With unlimited evaluaton and the freedom to use the sofware at no cost for non-commercial purposes, SEGGER has always made it easy to use Embedded Studio. In additon to this and by popular demand from developers in larger corporatons, SEGGER introduces a buyout licensing opton that makes things even easier. The new buyout opton allows usage by an unlimited number of users, without copy protecton, making it very easy to install and use the sofware anywhere: In the ofce, on the road, at customer's site or at home. No license server, no hardware dongle. Developers can fully concentrate on what they do and like best and what they are paid for: Develop sofware rather than deal with copy protecton issues. Being available for Windows, macOS and Linux, it reduces the dependencies on any third party. It is the perfect choice for mid-size to large corporatons with strict licensing policies. In additon to that, Embedded Studio's source code is available. "We are seeing more and more companies adoptng Embedded Studio as their Development Environment of choice throughout their entre organizaton. Listening to our customers, we found that this new opton helps to make Embedded Studio even more atractve. Easier is beter", says Rolf Segger, Founder of SEGGER. Get more informaton on the new SEGGER Embedded Studio at: www.segger.com/embedded-studio.html ### About Embedded Studio SEGGER — The Embedded Experts It simply works! Embedded Studio is a leading Integrated Development Environment (IDE) made by and for embedded sofware developers.
    [Show full text]
  • The Cortex-M Series: Hardware and Software
    The Cortex-M Chapter Series: Hardware 2 and Software Introduction In this chapter the real-time DSP platform of primary focus for the course, the Cortex M4, will be introduced and explained. in terms of hardware, software, and development environments. Beginning topics include: • ARM Architectures and Processors – What is ARM Architecture – ARM Processor Families – ARM Cortex-M Series – Cortex-M4 Processor – ARM Processor vs. ARM Architectures • ARM Cortex-M4 Processor – Cortex-M4 Processor Overview – Cortex-M4 Block Diagram – Cortex-M4 Registers ECE 5655/4655 Real-Time DSP 2–1 Chapter 2 • The Cortex-M Series: Hardware and Software What is ARM Architecture • ARM architecture is a family of RISC-based processor archi- tectures – Well-known for its power efficiency; – Hence widely used in mobile devices, such as smart phones and tablets – Designed and licensed to a wide eco-system by ARM • ARM Holdings – The company designs ARM-based processors; – Does not manufacture, but licenses designs to semiconduc- tor partners who add their own Intellectual Property (IP) on top of ARM’s IP, fabricate and sell to customers; – Also offer other IP apart from processors, such as physical IPs, interconnect IPs, graphics cores, and development tools 2–2 ECE 5655/4655 Real-Time DSP ARM Processor Families ARM Processor Families • Cortex-A series (Application) Cortex-A57 Cortex-A53 – High performance processors Cortex-A15 Cortex-A9 Cortex-A Cortex-A8 capable of full Operating Sys- Cortex-A7 Cortex-A5 tem (OS) support; Cortex-R7 Cortex-R5 Cortex-R – Applications include smart- Cortex-R4 Cortex-M4 New!: Cortex-M7, Cortex-M33 phones, digital TV, smart Cortex-M3 Cortex-M1 Cortex-M Cortex-M0+ books, home gateways etc.
    [Show full text]
  • SEWIP Program Leverages COTS P 36 P 28 an Interview with Deon Viergutz, Vice President of Cyber Solutions at Lockheed Martin Information Systems & Global Solutions
    @military_cots John McHale Obsolescence trends 8 Special Report Shipboard displays 44 Mil Tech Trends Predictive analytics 52 Industry Spotlight Aging avionics software 56 MIL-EMBEDDED.COM September 2015 | Volume 11 | Number 6 RESOURCE GUIDE 2015 P 62 Navy SEWIP program leverages COTS P 36 P 28 An interview with Deon Viergutz, Vice President of Cyber Solutions at Lockheed Martin Information Systems & Global Solutions Military electronics market overview P 14 Volume 11 Number 6 www.mil-embedded.com September 2015 COLUMNS BONUS – MARKET OVERVIEW Editor’s Perspective 14 C4ISR funding a bright spot in military 8 Tech mergers & military electronics electronics market obsolescence By John McHale, Editorial Director By John McHale Q&A EXECUTIVE OUTLOOK Field Intelligence 10 Metadata: When target video 28 Defending DoD from cyberattacks, getting to data is not enough the left of the boom By Charlotte Adams 14 An interview with Deon Viergutz, Vice President of Cyber Solutions at Lockheed Martin Information Mil Tech Insider Systems & Global Solutions 12 Broadwell chip boosts GPU performance for COTS SBCs 32 RF and microwave innovation drives military By Aaron Frank radar and electronic warfare applications An interview with Bryan Goldstein, DEPARTMENTS General Manager of the Aerospace and Defense, Analog Devices 22 Defense Tech Wire By Mariana Iriarte SPECIAL REPORT 60 Editor’s Choice Products Shipboard Electronics 112 University Update 36 U.S. Navy’s electronic warfare modernization On DARPA’s cybersecurity radar: 36 effort centers on COTS Algorithmic and side-channel attacks By Sally Cole, Senior Editor By Sally Cole 114 Connecting with Mil Embedded 44 Key to military display technologies: Blog – The fascinating world of System integration By Tom Whinfrey, IEE Inc.
    [Show full text]