Summary of Opportunities in the Fusion Energy Sciencesprogram

Total Page:16

File Type:pdf, Size:1020Kb

Summary of Opportunities in the Fusion Energy Sciencesprogram Summary of Opportunities in the Fusion Energy Sciences Program Prepared by the Fusion Energy Sciences Advisory Committee For the Office of Science of the U.S. Department of Energy SUMMARY OF OPPORTUNITIES IN THE FUSION ENERGY SCIENCES PROGRAM November 1999 Prepared by the Fusion Energy Sciences Advisory Committee for the Office of Science of the U.S. Department of Energy Fusion Energy Sciences Advisory Committee Panel * Charles C. Baker, University of California, San Diego Stephen O. Dean, Fusion Power Associates † N. Fisch, Princeton Plasma Physics Laboratory Jeffrey P. Freidberg,* Massachusetts Institute of Technology Richard D. Hazeltine,* University of Texas G. Kulcinski, University of Wisconsin John D. Lindl,* Lawrence Livermore National Laboratory Gerald A. Navratil,* Columbia University Cynthia K. Phillips,* Princeton Plasma Physics Laboratory S. C. Prager, University of Wisconsin D. Rej, Los Alamos National Laboratory John Sheffield,* Oak Ridge National Laboratory, Coordinator J. Soures, University of Rochester R. Stambaugh, General Atomics R. D. Benson, ORNL Support J. Perkins, LLNL Support J. A. Schmidt, PPPL Support N. A. Uckan, ORNL Support * Member of FESAC. † Ex-Member of FESAC. ii Fusion Energy Sciences Advisory Committee 1998–1999 Members Dr. Charles C. Baker, University of California, San Diego Dr. Richard J. Briggs, Science Applications International Corporation Dr. Robert W. Conn, University of California, San Diego Professor Jeffrey P. Freidberg, Massachusetts Institute of Technology Dr. Katharine B. Gebbie, National Institute of Standards and Technology Professor Richard D. Hazeltine, University of Texas at Austin Professor Joseph A. Johnson III, Florida A&M University Dr. John D. Lindl, Lawrence Livermore National Laboratory Dr. Gerald A. Navratil, Columbia University Dr. Cynthia K. Phillips, Princeton Plasma Physics Laboratory Dr. Marshall N. Rosenbluth, University of California, San Diego Dr. John Sheffield (Chair), Oak Ridge National Laboratory Dr. Tony S. Taylor, General Atomics Ex-Officios Dr. Clement Wong (GAT), American Nuclear Society [Previously, Dr. Wayne Houlberg (ORNL)] Professor Miklos Porkolab (MIT), American Physical Society Dr. Ned R. Sauthoff (PPPL), Institute of Electrical and Electronics Engineers Staff Robert Benson (ORNL) PREFACE This document has been prepared in response to a charge to the Fusion Energy Sciences Advisory Committee (FESAC) from Dr. Martha Krebs, Director of the Department of Energy’s Office of Science: ... to make final a program plan for the fusion energy science program by the end of 1999 (FY). Such a program plan needs to include paths for both energy and science goals taking into account the expected overlap between them. The plan must also address the needs for both magnetic and inertial confinement options. It will have to be specific as to how the U.S. program will address the various overlaps, as well as international colla- boration and funding constraints. Finally, this program plan must be based on a ‘working’ consensus (not unanimity) of the community, otherwise we can’t move forward. Thus I am turning once again to FESAC. I would like to ask FESAC’s help in two stages. First, please prepare a report on the opportunities and the requirements of a fusion energy science program, including the technical requirements of fusion energy. In preparing the report, please consider three time-scales: near-term, e.g., 5 years; mid-term, e.g., 20 years; and the longer term. It would also be useful to have an assessment of the technical status of the various elements of the existing program. This document should not exceed 70 pages and should be completed by the end of December 1998, if at all possible. I would expect to use this work, as it progresses, as input for the upcoming SEAB review of the magnetic and Inertial Fusion Energy Programs. A FESAC Panel was set up to prepare the document. The Panel decided to follow the approach used in the preparation of the reports from the Yergin Task Force on Strategic Energy Research and Develop- ment of June 1995 and from the National Laboratory Directors on Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions of October 1997. As a first step, a two-page description of each of the main topical areas of fusion energy sciences was obtained from key researchers in that area. The descriptions give the status and prospects for each area in the near-term, midterm, and longer term, discussing both opportunities and issues. These two-pagers are published as a separate report. The two-pagers were used as background information in the preparation of this overview, Opportunities in Fusion Energy Sciences Program. FESAC thanks all of those who participated in this work. These two reports have been published and appear on the World Wide Web at the following URL: http://wwwofe.er.doe.gov/More_HTML/FESAC_Charges_Report.html. This document is the 70-page summary of these reports. The preparation of this summary document was undertaken mainly by C. C. Baker, R. Goldston, R. D. Hazeltine, J. D. Lindl, C. K. Phillips, D. Rej, N. R. Sauthoff, and J. Sheffield. iii Page Intentionally Blank CONTENTS Page PREFACE............................................................................................................................................ iii EXECUTIVE SUMMARY................................................................................................................. vii 1. INTRODUCTION........................................................................................................................ 1-1 1.1 THE SCIENCE OF FUSION .............................................................................................. 1-1 1.2 THE STRATEGIC ROLE OF FUSION ENERGY RESEARCH..................................... 1-1 1.3 TWO PATHWAYS TO FUSION ENERGY ..................................................................... 1-2 1.4 THE DOE AND WORLD FUSION PROGRAMS............................................................ 1-3 1.5 THE FUTURE PROGRAM ................................................................................................ 1-4 2 FUSION ENERGY SCIENCE AND TECHNOLOGY.............................................................. 2-1 2.1 INTRODUCTION ............................................................................................................... 2-1 2.1.1 Fusion Fuel Cycles ............................................................................................... 2-1 2.1.2 Environmental and Safety Aspects of Fusion Energy Production...................... 2-2 2.1.3 Progress in Fusion Energy Research.................................................................... 2-2 2.2 MAGNETIC FUSION ENERGY ....................................................................................... 2-4 2.2.1 Introduction........................................................................................................... 2-4 2.2.2 Physics of Magnetic Confinement ....................................................................... 2-5 2.2.3 Path to Magnetic Fusion Energy.......................................................................... 2-10 2.2.4 Opportunities in MFE........................................................................................... 2-19 2.3 THE INERTIAL FUSION PATHWAY TO FUSION ENERGY ..................................... 2-25 2.3.1 Introduction........................................................................................................... 2-25 2.3.2 ICF Target Physics ............................................................................................... 2-26 2.3.3 An IFE Development Pathway for Lasers and Ion Beams ................................. 2-35 2.3.4 IFE Drivers ........................................................................................................... 2-37 2.3.5 IFE Fusion Target Concepts and Design ............................................................. 2-41 2.4 TECHNOLOGY OPPORTUNITIES.................................................................................. 2-43 2.4.1 Overview and Recent Progress ............................................................................ 2-43 2.4.2 The Technology Portfolio .................................................................................... 2-45 2.4.3 IFE Chamber and Target Technology R&D........................................................ 2-48 3. SCIENTIFIC CONTEXT OF FUSION RESEARCH ................................................................ 3-1 3.1 INTRODUCTION ............................................................................................................... 3-1 3.1.1 Plasma Science ..................................................................................................... 3-1 3.1.2 Conceptual Tools.................................................................................................. 3-1 3.1.3 Evolution of Fusion Science ................................................................................ 3-2 3.2 MAJOR TOPICAL AREAS IN PLASMA SCIENCE....................................................... 3-2 3.2.1 Hamiltonian Dynamics......................................................................................... 3-2 3.2.2 Long Mean-Free Path Plasmas............................................................................. 3-3 3.2.3 Turbulence ............................................................................................................ 3-3 3.2.4 Dynamo and Relaxation ......................................................................................
Recommended publications
  • Superconducting Magnets Research for a Viable US Fusion Program Joseph V
    Superconducting Magnets Research for a Viable US Fusion Program Joseph V. Minervini1, Leslie Bromberg1, Peter J. Lee2, David C. Larbalestier2, Introduction Magnet systems are the ultimate enabling technology for magnetic confinement fusion devices. Powerful magnetic fields are required for confinement of the plasma, and, depending on the magnetic configuration, dc and/or pulsed magnetic fields are required for plasma initiation, ohmic heating, inductive current drive, plasma shaping, equilibrium and stability control. Almost all design concepts for power producing commercial fusion reactors rely on superconducting magnets for efficient and reliable production of these magnetic fields. Future superconducting magnets for fusion applications require improvements in materials, components, and configurations to significantly enhance the feasibility and practicality of fusion reactors as an energy source. A demonstration of large-scale demountable High Temperature Superconducting (HTS) magnets could revolutionize fusion energy development, dramatically reducing program cost and development time. Background OFES established and maintained a robust magnet technology development for several decades. Until the end of the ITER EDA (1998), the magnet technology R&D program was arguably the most successful of all enabling magnet technology programs. Most of the laboratories and universities performing superconducting magnet R&D had robust programs. A major milestone was the first (and only) successful operation of the massive superconducting magnet system for MFTF-B at LLNL in 1986. The high point was the successful completion (1999) and operation (2000) of the ITER CS Model Coil (CSMC). Since that time, funding for the development of superconducting magnets and almost all other enabling technologies has been on a steady decline, leading to the proposed magnet technology budget for FY 2013 of $765,000 or 0.19% of the total fusion budget.
    [Show full text]
  • ERC Implementing Arrangements Call for Expression of Interest 2017
    ERC Implementing Arrangements Call for Expression of Interest 2017 Project ID: Project Acronym: Evaluation Panel: 681178 G-EDIT LS1 Principal Investigator: Dr Mariusz Nowacki Host Institution: Universitat Bern - CH Mechanisms of RNA-guided genome editing in eukaryotes The goal of this project is to contribute to our understanding of RNA-mediated epigenetic mechanisms of genome regulation in eukaryotes. Ciliated protozoa offer a fantastic opportunity to investigate the complex process of trans-generational programming of chromosomal rearrangements, which is thought to serve as a form of immune defense against invasive DNA. Developmental processes in ciliates include extensive rearrangements of the germline DNA, including elimination of transposons and the precise excision of numerous single-copy elements derived from transposons. This process is considered to be maternally controlled because the maternal genome provides essential information in the form of RNA that determines the offspring's genome content and organization. This programmed DNA subtraction, the so-called ‘RNA scanning’ process, is mediated by trans-generational comparison between the germline and the maternal somatic genome. One of the most intriguing questions is how a complex population of small RNAs representing the entire germline genome can be compared to the entire rearranged maternal genome, resulting in the efficient selection of germline-specific RNAs, which are able to target DNA deletions in the developing genome. All this occurs in a very short time and involves a massively coordinated transport of all the components between three types of nuclei. This project focuses on characterizing the molecular machinery that can orchestrate the massive genome rearrangements in ciliates through nucleic acids and protein interactions.
    [Show full text]
  • Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
    Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided.
    [Show full text]
  • The Next Generation of Fusion Energy Research
    THE NEXT GENERATION OF FUSION ENERGY RESEARCH HEARING BEFORE THE SUBCOMMITTEE ON ENERGY AND ENVIRONMENT COMMITTEE ON SCIENCE AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED ELEVENTH CONGRESS FIRST SESSION OCTOBER 29, 2009 Serial No. 111–61 Printed for the use of the Committee on Science and Technology ( Available via the World Wide Web: http://www.science.house.gov U.S. GOVERNMENT PRINTING OFFICE 52–894PDF WASHINGTON : 2010 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE AND TECHNOLOGY HON. BART GORDON, Tennessee, Chair JERRY F. COSTELLO, Illinois RALPH M. HALL, Texas EDDIE BERNICE JOHNSON, Texas F. JAMES SENSENBRENNER JR., LYNN C. WOOLSEY, California Wisconsin DAVID WU, Oregon LAMAR S. SMITH, Texas BRIAN BAIRD, Washington DANA ROHRABACHER, California BRAD MILLER, North Carolina ROSCOE G. BARTLETT, Maryland DANIEL LIPINSKI, Illinois VERNON J. EHLERS, Michigan GABRIELLE GIFFORDS, Arizona FRANK D. LUCAS, Oklahoma DONNA F. EDWARDS, Maryland JUDY BIGGERT, Illinois MARCIA L. FUDGE, Ohio W. TODD AKIN, Missouri BEN R. LUJA´ N, New Mexico RANDY NEUGEBAUER, Texas PAUL D. TONKO, New York BOB INGLIS, South Carolina PARKER GRIFFITH, Alabama MICHAEL T. MCCAUL, Texas STEVEN R. ROTHMAN, New Jersey MARIO DIAZ-BALART, Florida JIM MATHESON, Utah BRIAN P. BILBRAY, California LINCOLN DAVIS, Tennessee ADRIAN SMITH, Nebraska BEN CHANDLER, Kentucky PAUL C. BROUN, Georgia RUSS CARNAHAN, Missouri PETE OLSON, Texas BARON P. HILL, Indiana HARRY E. MITCHELL, Arizona CHARLES A. WILSON, Ohio KATHLEEN DAHLKEMPER, Pennsylvania ALAN GRAYSON, Florida SUZANNE M.
    [Show full text]
  • 1 Potential Influences on the Prospect of Renewable Energy Development in OPEC Members Hanan Alsadi1 1. Introduction the Global
    1 Potential Influences on the Prospect of Renewable Energy Development in OPEC Members Hanan Alsadi1 1. Introduction The global energy transitioning trend escalates due to the continuous growth of energy consumption and advancing climate change. While the total fossil fuel consumption is increasing twice as fast as the average rate over the last decade, making 70% of the global energy demand, the reckless use of fossil fuel is causing substantial damage to the environment (International Energy Agency, 2018; Šolc, 2013). An effective fix to the problem while dubious is to replace the energy source by alternatives. The renewable energy (RE) offers the most definite prospect for producing clean, sustainable power in substantial quantities, which arouses interest around the world. According to Gielen and Colleagues (2019), the RE’s share of global consumption energy would rise from 15% in 2015 to 63% in 2050. However, if this increasing trend in renewable energies would also prevail among Organization of Petroleum Exporting Countries (OPEC), is subject to debate. They all have abundant potential to invest in renewable energy sources. Yet, some of the Middle Eastern and Arab Gulf OPEC members do not have or have a small amount of renewable energy sources. In contrast, other members have significant renewable energy sources. Researchers have studied some aspects of renewable energy and its relationship to the OPEC countries. For example, Wittmann (2013) looked at the potential for transitioning from petroleum exportation to renewable energy exportation among the OPEC countries. Still, Wittmann does not explain any specific transition strategies or plans for the Middle Eastern OPEC countries.
    [Show full text]
  • Commercialization and Deployment at NREL: Advancing Renewable
    Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]
  • Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism
    OCS Study BOEM 2018-013 Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism US Department of the Interior Bu reau of Ocean Energy Management Office of Renewable Energy Programs OCS Study BOEM 2018-013 Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism March 2018 Authors: George Parsons Jeremy Firestone Prepared under M12AC00017 By University of Delaware 210 Hullihen Hall, Newark, DE 19716-0099 US Department of the Interior Bu reau of Ocean Energy Management Office of Renewable Energy Programs DISCLAIMER Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Environmental Studies Program, Washington, DC, under Agreement Number M12AC00017. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management Data and Information Systems webpage (http://www.boem.gov/Environmental-Studies- EnvData/), click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2018-013. The report is also available at the National Technical Reports Library at https://ntrl.ntis.gov/NTRL/. CITATION Parsons, G. Firestone, J. 2018. Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism.
    [Show full text]
  • 2005 Annual Report American Physical Society
    1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists.
    [Show full text]
  • Fusion Energy Science Opportunities in Emerging Concepts
    Fusion Energy Science Opportunities in Emerging Concepts Los Alamos National Laboratory Report -- LA-UR-99-5052 D. C. Barnes Los Alamos National Laboratory For the Emerging Concepts Working Group Convenors: J. Hammer Lawrence Livermore National Laboratory A. Hassam University of Maryland D. Hill Lawrence Livermore National Laboratory A. Hoffman University of Washington B. Hooper Lawrence Livermore National Laboratory J. Kesner Massachusetts Institute of Technology G. Miley University of Illinois J. Perkins Lawrence Livermore National Laboratory D. Ryutov Lawrence Livermore National Laboratory J. Sarff University of Wisconsin R. E. Siemon Los Alamos National Laboratory J. Slough University of Washington M. Yamada Princeton Plasma Physics Laboratory I. Introduction The development of fusion energy represents one of the few long-term (multi-century time scale) options for providing the energy needs of modern (or postmodern) society. Progress to date, in parameters measuring the quality of confinement, for example, has been nothing short of stellar. While significant uncertainties in both physics and (particularly) technology remain, it is widely believed that a fusion reactor based on the tokamak could be developed within one or two decades. It is also widely held that such a reactor could not compete economically in the projected energy market. A more accurate statement of projected economic viability is that the uncertainty in achieving commercial success is sufficient that the large development costs required for such a program are not justified at this time. While technical progress has been spectacular, schedule estimates for achieving particular milestones along the path of fusion research and development have proven notoriously inaccurate. This inaccuracy reflects two facts.
    [Show full text]
  • Magnetoshell Aerocapture: Advances Toward Concept Feasibility
    Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics & Astronautics University of Washington 2018 Committee: Uri Shumlak, Chair Justin Little Program Authorized to Offer Degree: Aeronautics & Astronautics c Copyright 2018 Charles L. Kelly University of Washington Abstract Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly Chair of the Supervisory Committee: Professor Uri Shumlak Aeronautics & Astronautics Magnetoshell Aerocapture (MAC) is a novel technology that proposes to use drag on a dipole plasma in planetary atmospheres as an orbit insertion technique. It aims to augment the benefits of traditional aerocapture by trapping particles over a much larger area than physical structures can reach. This enables aerocapture at higher altitudes, greatly reducing the heat load and dynamic pressure on spacecraft surfaces. The technology is in its early stages of development, and has yet to demonstrate feasibility in an orbit-representative envi- ronment. The lack of a proof-of-concept stems mainly from the unavailability of large-scale, high-velocity test facilities that can accurately simulate the aerocapture environment. In this thesis, several avenues are identified that can bring MAC closer to a successful demonstration of concept feasibility. A custom orbit code that dynamically couples magnetoshell physics with trajectory prop- agation is developed and benchmarked. The code is used to simulate MAC maneuvers for a 60 ton payload at Mars and a 1 ton payload at Neptune, both proposed NASA mis- sions that are not possible with modern flight-ready technology. In both simulations, MAC successfully completes the maneuver and is shown to produce low dynamic pressures and continuously-variable drag characteristics.
    [Show full text]
  • China's Energy Situation and Its Future and the New Energy Security Concept
    ThirdThird OPECOPEC InternationalInternational SeminarSeminar ChinaChina’’ss EnergyEnergy SituationSituation andand itsits FutureFuture aandnd thethe NewNew EnergyEnergy SecuritySecurity ConceptConcept Ambassador TANG Guoqiang Permanent Mission of the People’s Republic of China to the United Nations and other International Organizations in Vienna Vienna September 12th, 2006 OutlinesOutlines I.I. TheThe CurrentCurrent EnergyEnergy SituationSituation inin ChinaChina II.II. ChinaChina’’ss FutureFuture EnergyEnergy PolicyPolicy III.III. ChinaChina’’ss NewNew EnergyEnergy SecuritySecurity ConceptConcept I.I. CurrentCurrent EnergyEnergy SituationSituation inin ChinaChina China has become one of the world largest energy producers and consumers and in 2005 Primary energy production: equivalent to 2.06 billion tons of standard coal, increased 9.5% over the previous year Coal production: 38 % of the world the 1st largest producer Crude oil production: 180 million tons ranking the 6th in the world Hydro-electricity: 401 billion kw hours ranking 1st in the world 93% Consumption: equivalent to 2.22 billion tons of standard coal Energy self-sufficiency rate: 93 % Energy self-sufficiency rate: 93 % Energy Self-sufficiency Rate HugeHuge exploitativeexploitative potentialpotential inin ChinaChina By the end of 2005 Total conventional energy recourses: 823 billion standard tons of coal Proven recoverable deposits : 139.2 billion standard tons of coal 10.1 % of the world Proven coal deposit: 12 % of the world No. 1 rank the 3rd of the world No.
    [Show full text]
  • A Fusion Test Facility for Inertial Fusion
    A Fusion Test Facility for Inertial Fusion The Fusion Test Facility would be part of an integrated IFE program where the essential elements are developed and implemented as systems in progressively more capable IFE oriented facilities. Fusion Test Facility (FTF) Direct laser drive Sub-megaJoule laser energy Goal of ~150 MW fusion power High flux neutron source Development path to a power plant Presented by Stephen Obenschain U.S. Naval Research Laboratory September 27 2006 Fusion Power Associates Meeting Introduction The scientific underpinnings for ICF has and is being developed via large single shot facilities. The IFE application, while greatly benefiting from this effort, requires a different and broader perspective. • Development of sufficiently efficient and durable high repetition rate drivers. • High gain target designs consistent with the energy application. • Development of economical mass production techniques for targets. • Precision target injection, tracking & laser beam steering. • Reaction chamber design and materials for a harsh environment. • Operating procedures (synchronizing a complex high duty cycle operation) • Overall economics, development time and costs. Individual IFE elements have conflicts in their optimization, and have to be developed in concert with their own purpose-built facilities. HAPL= $25M/yr High Average Power Laser program administered by NNSA See presentations by John Sethian and John Caird this afternoon. Typical GW (electrical )designs have >3 MJ laser drivers @ 5-10 Hz Target Factory Electricity
    [Show full text]