Network Routing Network Routing

Total Page:16

File Type:pdf, Size:1020Kb

Network Routing Network Routing Network Routing Network Routing Fundamentals, Applications, and Emerging Technologies Sudip Misra Indian Institute of Technology, Kharagpur, India Sumit Goswami Defence Research and Development Organization New Delhi, India This edition first published 2017 © 2017 John Wiley & Sons Ltd Registered Office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought Library of Congress Cataloging‐in‐Publication Data Names: Misra, Sudip, author. | Goswami, Sumit, author. Title: Network routing : fundamentals, applications and emerging technologies / Sudip Misra, Sumit Goswami. Description: Chichester, West Sussex, United Kingdom : John Wiley & Sons, Inc., [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016028174 | ISBN 9780470750063 (cloth) | ISBN 9781119029380 (epub) | ISBN 9781119029397 (ePdf) Subjects: LCSH: Routing (Computer network management) Classification: LCC TK5105.5487 .M57 2017 | DDC 004.6–dc23 LC record available at https://lccn.loc.gov/2016028174 A catalogue record for this book is available from the British Library. Cover Design: Wiley Cover Images: (Earth) Harvepino/Gettyimages; (Background) amgun/Gettyimages Set in 10/12pt Warnock by SPi Global, Pondicherry, India 10 9 8 7 6 5 4 3 2 1 Sudip dedicates this book to his family. Sumit dedicates this book to the organization in which his father served and in which he grew up – the Border Security Force, India. vii Contents About the Authors xiii Foreword xv Preface xvii About the Companion Website xxi Part I Fundamental Concepts 1 1 Introduction to Network Routing 3 1.1 Introduction to Networks 3 1.2 Network Architecture and Standards 6 1.3 Glimpse at the Network Layer 13 1.4 Addressing in TCP/IP Networks 16 1.5 Overview of Routing 20 1.6 Delivery, Forwarding, Routing, and Switching 21 1.7 Routing Taxonomy 23 1.8 Host Mobility and Routing 26 References 27 Abbreviations/Terminologies 28 Questions 30 Exercises 32 2 Basic Routing Algorithms 35 2.1 Introduction to Routing Algorithms 35 2.2 Routing Strategies 40 2.2.1 Non‐Adaptive Algorithms 43 2.2.2 Adaptive Algorithms 44 2.2.3 Flooding 44 2.3 Static Shortest Path Routing Algorithms 47 2.4 Dynamic Shortest Path Routing Algorithms 50 2.5 Stochastic Routing Algorithms 53 References 55 Abbreviations/Terminologies 55 Questions 56 Exercises 57 viii Contents 3 Fundamental Routing Protocols 59 3.1 Routing Protocols 59 3.2 Distance Vector Routing 61 3.2.1 Working of the Protocol 61 3.2.2 Convergence of Distance Vector Table 62 3.2.3 Issues in Distance Vector Routing 63 3.2.4 Improvements in Distance Vector Routing 67 3.2.5 Advantages and Disadvantages 68 3.3 Link State Routing 68 3.3.1 Working of the Protocol 68 3.3.2 Routing Tables 70 3.4 Path Vector Routing 71 3.4.1 Working of the Protocol 72 3.4.2 Advantages and Disadvantages 74 3.5 Unicast, Multicast, and Broadcast Routing 77 References 82 Abbreviations/Terminologies 83 Questions 83 Exercises 84 Part II Routing with Quality‐of‐Service and Traffic Engineering 89 4 Quality‐of‐Service Routing 91 4.1 Introduction 91 4.2 QoS Measures 95 4.3 Differentiated and Integrated Services 97 4.4 QoS Routing Algorithms 103 4.5 QoS Unicast Routing Protocols 106 4.6 QoS Multicast Routing Protocols 108 4.7 QoS Best‐Effort Routing 112 References 113 Abbreviations/Terminologies 116 Questions 117 5 Routing and MPLS Traffic Engineering 119 5.1 MPLS Fundamentals 119 5.2 Traffic Engineering Routing Algorithms 120 5.3 Minimum Interference Routing Algorithm 121 5.3.1 The Algorithm 122 5.3.2 Limitations of MIRA 123 5.4 Profile‐Based Routing Algorithm 124 5.5 Dynamic Online Routing Algorithm 125 5.6 Wang et al.’s Algorithm 126 5.7 Random Races Algorithm 126 References 127 Contents ix Abbreviations/Terminologies 128 Questions 128 Exercises 129 Part III Routing on the Internet 131 6 Interior Gateway Protocols 133 6.1 Introduction 133 6.2 Distance Vector Protocols 135 6.2.1 Routing Information Protocol 137 6.2.2 Interior Gateway Routing Protocol 141 6.3 Link State Protocols 143 6.3.1 Open Shortest Path First Protocol 144 6.3.2 Intermediate System to Intermediate System Protocol 148 References 152 Abbreviations/Terminologies 152 Questions 153 Exercises 155 7 Exterior Gateway Protocol 159 7.1 Introduction 159 7.1.1 Hosts vs Gateways 161 7.1.2 Gateway‐to‐Gateway Protocol 162 7.1.3 Autonomous System 163 7.1.4 Characteristics of EGP 165 7.2 Exterior Gateway Protocol 166 7.2.1 Evolution of EGP Standards 166 7.2.2 EGP Terminology and Topology 166 7.2.3 EGP Operation Model 167 7.3 Border Gateway Protocol 169 7.3.1 Router Connectivity and Terminology 169 7.3.2 Routing Information Base 181 7.3.3 BGP Operation 182 7.3.4 Decision Process 184 7.3.5 Route Selection Process 185 References 188 Abbreviations/Terminologies 189 Questions 190 Exercises 191 Part IV Other Routing Contexts 195 8 Routing in ATM Networks 197 8.1 Introduction 197 8.1.1 ATM Frames 199 x Contents 8.1.2 ATM Connection 199 8.1.3 ATM Architecture 203 8.1.4 Service Categories 204 8.2 PNNI Routing 206 8.2.1 PNNI Interface 207 8.2.2 PNNI Hierarchy 207 8.2.3 Building the Network Topology 209 8.2.4 Peer Group Leader 210 8.2.5 Advertizing Topology 211 8.2.6 Setting up Connection 212 References 213 Abbreviations/Terminologies 213 Questions 214 Exercises 216 9 Routing in Cellular Wireless Networks 219 9.1 Introduction 219 9.2 Basics of Cellular Wireless Networks 220 9.3 Resource Allocation 229 9.4 Routing in GSM Networks 231 9.4.1 Architecture 232 9.4.2 Call Routing 234 9.5 Challenges in Mobile Computing 235 References 238 Abbreviations/Terminologies 240 Questions 241 Exercises 242 10 Routing in Wireless Ad Hoc Networks 245 10.1 Introduction 245 10.1.1 Basics of Wireless Ad Hoc Networks 248 10.1.2 Issues with Existing Protocols 256 10.2 Table‐Driven (Proactive) Routing Protocols 258 10.3 On‐Demand (Reactive) Routing Protocols 260 10.4 Hybrid Routing Protocols 266 10.5 Hierarchical Routing Protocols 267 10.6 Geographic Routing Protocols 268 10.7 Power‐Aware Routing Protocols 274 References 276 Abbreviations/Terminologies 278 Questions 280 Exercises 281 11 Routing in Wireless Sensor Networks 285 11.1 Basics of Wireless Sensor Networks 285 11.1.1 Hardware Architecture of Sensor Node 287 Contents xi 11.1.2 Network Topology 289 11.1.3 Design Factors 290 11.1.4 Classification of Routing Protocol 292 11.2 Routing Challenges in Wireless Sensor Networks 293 11.2.1 Self‐Healing Networks 295 11.2.2 Security Threats 296 11.3 Flat Routing Protocols 297 11.4 Hierarchical Routing Protocols 303 11.5 Location‐Based Routing Protocols 308 11.6 Multipath Routing Protocols 310 11.7 Query‐Based Routing Protocols 312 11.8 Negotiation‐Based Routing Protocols 314 11.9 QoS Routing Protocols 315 11.9.1 Challenges 316 11.9.2 Approach to QoS Routing 316 11.9.3 Protocols 317 References 317 Abbreviations/Terminologies 321 Questions 322 Exercises 324 12 Routing in 6LoWPAN 327 12.1 Introduction 327 12.1.1 IP for Smart Objects 328 12.1.2 6LoWPAN 329 12.1.3 ZigBee 330 12.1.4 ZigBee vs 6LoWPAN 330 12.2 6LoWPAN Fundamentals 331 12.2.1 Architecture 332 12.2.2 Header Format and Compression 332 12.2.3 Network Topology 335 12.2.4 Neighbor Discovery 335 12.2.5 Routing 336 12.3 Interoperability of 6LoWPAN 337 12.4 Applications 338 12.5 Security Considerations and Research Areas 341 References 342 Abbreviations/Terminologies 345 Questions 346 Exercises 348 Part V Advanced Concepts 349 13 Security in Routing 351 13.1 Introduction 351 13.1.1 Network Sniffer 353 xii Contents 13.1.2 Denial of Service Attack 357 13.1.3 Social Engineering 358 13.1.4 Packet Filtering 359 13.2 Attack Surface 360 13.2.1 Types of Attack Surface 361 13.2.2 Attack Surface and System Resources 361 13.2.3 Attack Surface Metric 362 13.2.4 Reduction in Attack Surface 362 13.3 Networked Battlefield
Recommended publications
  • The Interplanetary Internet a New Way of Thinking About Deep Space Communications"
    ”The InterPlaNetary Internet a new way of thinking about deep space communications" Scott Burleigh Ed Greenberg Adrian J. Hooke InterPlanetary Network and Information Systems Directorate DESCANSO Seminar, JPL, Pasadena 19 July, 2001 May 1974 In the beginning…. 1970 1980 1990 2000 NASA Telemetry Standardization “Packet” Spacecraft Telemetry and Telecommand NASA/ESA Working Group Basic Space/Ground Communications Standards for Consultative Committee for Space Data Systems (CCSDS) Space Missions } Extension of International Standards for Space More Complex Station Space Missions } Extension of the Terrestrial Internet Evolution of space standards into Space Evolution of the terrestrial Internet Model of Space/Ground Communications User Applications A1 A2 An A1 A2 An Constrained Weight, power, Applications volume: Your • CPU Father’s • Storage Space Ground Internet Terrestrial • Reliability Onboard Ground • Cost to qualify Constrained Networks NetworkingHighly NetworksInternet Resource Constrained Environment • Delay Telemetry • Noise • Asymmetry Radio Constrained Radio Links Links Links Telecommand Current Standardization Options Space Constrained Task Applications Force IPNRG Constrained Networking Constrained Links The Consultative Committee for Member Agencies Space Data Systems (CCSDS) is an Agenzia Spaziale Italiana (ASI)/Italy. British National Space Centre (BNSC)/United Kingdom. international voluntary consensus Canadian Space Agency (CSA)/Canada. organization of space agencies and Central Research Institute of Machine Building industrial associates interested in (TsNIIMash)/Russian Federation. Centre National d'Etudes Spatiales (CNES)/France. mutually developing standard data Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. (DLR)/Germany. handling techniques to support space European Space Agency (ESA)/Europe. Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil. research, including space science and National Aeronautics and Space Administration (NASA HQ)/USA.
    [Show full text]
  • EFFICIENT ROUTING PROTOCOL in DELAY TOLERANT NETWORKS (Dtns)
    Degree Programme in Communication Engineering MORTEZA KARIMZADEH EFFICIENT ROUTING PROTOCOL IN DELAY TOLERANT NETWORKS (DTNs) MASTER OF SCIENCE THESIS Examiners: Prof. Yevgeni Koucheryavy Dr. Dmitri Moltchanov Examiners and topic approved in the Computing and Electrical Engineering Faculty Council meeting on 6th April, 2011 II Abstract TAMPERE UNIVERSITY OF TECHNOLOGY Master’s Degree Programme in Information Technology, Department of Communication Engineering Karimzadeh, Morteza: Efficient Routing Protocol in Delay Tolerant Networks (DTNs) Master of Science Thesis, 47 pages May 2011 Major: Communication Engineering Examiners: Professor Yevgeni Koucheryavy and Dr. Dmitri Moltchanov Keywords: Delay Tolerant Networks, Opportunistic networking, Forwarding mechanism, Routing protocol, Epidemic routing, Network coding Modern Internet protocols demonstrate inefficient performance in those networks where the connectivity between end nodes has intermittent property due to dynamic topology or resource constraints. Network environments where the nodes are characterized by opportunistic connectivity are referred to as Delay Tolerant Networks (DTNs). Highly usable in numerous practical applications such as low-density mobile ad hoc networks, command/response military networks and wireless sensor networks, DTNs have been one of the growing topics of interest characterized by significant amount of research efforts invested in this area over the past decade. Routing is one of the major components significantly affecting the overall performance of DTN networks in terms of resource consumption, data delivery and latency. Over the past few years a number of routing protocols have been proposed. The focus of this thesis is on description, classification and comparison of these protocols. We discuss the state-of- the-art routing schemes and methods in opportunistic networks and classify them into two main deterministic and stochastic routing categories.
    [Show full text]
  • David D. Clark
    Designs for an Internet David D. Clark Dra Version 3.0 of Jan 1, 2017 David D. Clark Designs for an Internet Status is version of the book is a pre-release intended to get feedback and comments from members of the network research community and other interested readers. Readers should assume that the book will receive substantial revision. e chapters on economics, management and meeting the needs of society are preliminary, and comments are particularly solicited on these chapters. Suggestions as to how to improve the descriptions of the various architectures I have discussed are particularly solicited, as are suggestions about additional citations to relevant material. For those with a technical background, note that the appendix contains a further review of relevant architectural work, beyond what is in Chapter 5. I am particularly interesting in learning which parts of the book non-technical readers nd hard to follow. Revision history Version 1.1 rst pre-release May 9 2016. Version 2.0 October 2016. Addition of appendix with further review of related work. Addition of a ”Chapter zero”, which provides an introduction to the Internet for non-technical readers. Substantial revision to several chapters. Version 3.0 Jan 2017 Addition of discussion of Active Nets Still missing–discussion of SDN in management chapter. ii 178 David D. Clark Designs for an Internet A note on the cover e picture I used on the cover is not strictly “architecture”. It is a picture of the Memorial to the Mur- dered Jews of Europe, in Berlin, which I photographed in 2006.
    [Show full text]
  • JPL Contributes to Chernobyl Analysis
    Laboratory Pasadena, California Vol. 28, No. 16 August 7, 1998 Jet Propulsion Universe Lab to develop interplanetary Internet ‘Father of the Internet’ Dr. Vinton Cerf named JPL Distinguished Visiting Scientist from the Internet community, other NASA cen- By MARK WHALEN ters, universities and the private sector to Internet pioneer Dr. Vinton Cerf has been explore ways to merge the work of the Internet named a Distinguished Visiting Scientist at JPL and space communications communities. to help develop an interplanetary Internet. The first job of the team will develop a new Cerf will serve a two-year post that will be interplanetary Internet architecture that can in addition to his regular duties as senior vice cope with the long transmission delays and president of Internet Architecture and noisy, intermittent data links inherent today in Engineering at MCI Communications Corp. deep space communications. The traditional “It took 20 years for the Internet to take off framework of TCP/IP will have to be radically here on Earth,” said Cerf, widely known as the adapted for interplanetary communications. “Father of the Internet” for co-developing the Other challenges include the construction of TCP/IP protocol, the computer language that interplanetary gateways and perhaps methods gave birth to the communications medium. “It’s to provide for local caching of content—much my guess that in the next 20 years, we will want in the same manner as many World Wide Web to interact with systems and people visiting the sites are mirrored in different geographic areas moon, Mars and possibly other celestial bod- to optimize performance.
    [Show full text]
  • The People Who Invented the Internet Source: Wikipedia's History of the Internet
    The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced.
    [Show full text]
  • Future Architecture of the Interplanetary Internet
    Feature Article: DOI. No. 10.1109/MAES.2019.2927897 The Sky is NOT the Limit Anymore: Future Architecture of the Interplanetary Internet Ahmad Alhilal, Tristan Braud, The Hong Kong University of Science and Technology, Hong Kong Pan Hui, The Hong Kong University of Science and Technology, Hong Kong and University of Helsinki, Finland INTRODUCTION space flight, and aim for near-future Mars exploration. Finally, in 2018, Luxembourg became the first country to Space exploration is not only feeding human curiosity, legislate for asteroid exploration and mining, opening but also allows for scientific advancement in environ- the way for a whole new space industry. However, each mental research, and in finding natural resources [1]. mission operates independently, has its own dedicated Although media exposure reached its peak during the architecture, uses point-to-point communication, and is Apollo programs, space research remains a very active dependent on operator-specific resources. In this paper, domain, with new exploration and observation missions we propose an interoperable infrastructure in a similar every year. fashion to the Internet at stellar scale to simplify the com- Following the Apollo program, public and private munication for upcoming space missions. organizations launched a wide variety of exploration mis- In recent years, space exploration managed to attract a sions with increasingly complex communication con- lot of media attention, resulting in a clear regain of interest strains. In 1977, NASA launched Voyagers 1 and 2 [2] to of the public for space exploration. As a consequence, explore Jupiter, Saturn, Uranus, and Neptune. In Septem- space agencies started to plan several ambitious missions ber 2007, Voyager 1 crossed the termination shock at for the 22nd century, both manned and unmanned.
    [Show full text]
  • Routing Over the Interplanetary Internet
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering: Theses, Computer Science and Engineering, Department Dissertations, and Student Research of 8-2012 Routing over the Interplanetary Internet Joyeeta Mukherjee University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss Part of the Computer Engineering Commons, and the Computer Sciences Commons Mukherjee, Joyeeta, "Routing over the Interplanetary Internet" (2012). Computer Science and Engineering: Theses, Dissertations, and Student Research. 42. https://digitalcommons.unl.edu/computerscidiss/42 This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ROUTING OVER THE INTERPLANETARY INTERNET by Joyeeta Mukherjee A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfilment of Requirements For the Degree of Master of Science Major: Computer Science Under the Supervision of Professor Byrav Ramamurthy Lincoln, Nebraska August, 2012 ROUTING OVER THE INTERPLANETARY INTERNET Joyeeta Mukherjee, M. S. University of Nebraska, 2012 Adviser: Byrav Ramamurthy Future space exploration demands a Space Network that will be able to connect spacecrafts with one another and in turn with Earth’s terrestrial Internet and hence efficiently transfer data back and forth. The feasibility of this technology would enable common people to directly access telemetric data from distant planets and satellites.
    [Show full text]
  • Syllabus – Internet and Web Journalism
    Syllabus – Internet and Web Journalism 1. Internet –Introduction, History, evolution and development, The Internet is the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link devices worldwide. It is a network of networks that consists of private, public, academic, business, and government networks of local to global scope, linked by a broad array of electronic, wireless, and optical networking technologies. The Internet carries a vast range of information resources and services, such as the inter-linked hypertext documents and applications of the World Wide Web (WWW), electronic mail, telephony, and file sharing. The origins of the Internet date back to research commissioned by the federal government of the United States in the 1960s to build robust, fault-tolerant communication with computer networks. The primary precursor network, the ARPANET, initially served as a backbone for interconnection of regional academic and military networks in the 1980s. The funding of the National Science Foundation Network as a new backbone in the 1980s, as well as private funding for other commercial extensions, led to worldwide participation in the development of new networking technologies, and the merger of many networks. The linking of commercial networks and enterprises by the early 1990s marks the beginning of the transition to the modern Internet, and generated a sustained exponential growth as generations of institutional, personal, and mobile computers were connected to the network. Although the Internet was widely used by academia since the 1980s, the commercialization Incorporated its services and technologies into virtually every aspect of modern life. Most traditional communications media, including telephony, radio, television, paper mail and newspapers are reshaped, redefined, or even bypassed by the Internet, giving birth to new services such as email, Internet telephony, Internet television, online music, digital newspapers, and video streaming websites.
    [Show full text]
  • Reflections on Three Decades in Internet Time Christine Borgman
    This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States of America License. Reflections on Three Decades in Internet Time Christine Borgman, Paul Evan Peters Award Coalition for Networked Information Meeting, San Diego, April 4, 2011 From where did we come? Where are we now? Where might we go from here? Kyoto, 2009 2 From where did we come? 3 World-Wide Web, 1991 ◦ HTTP ◦ HTML ◦ URL http://www.educause.edu/ Professional+Development/ PaulEvanPetersAwardWinnersspan/ Semantic Web, 1999 PaulEvanPeters2000AwardWinner/ 1516 Web science, 2006 http://home.messiah.edu/~ar1314/definitions.html 4 Telecommunications Protocol / Internet protocol -TCP/IP (with Robert Kahn) Internet Society ICANN Interplanetary Internet http://www.educause.edu/ Professional+Development/ PaulEvanPetersAwardWinnersspan/ PaulEvanPeters2002AwardWinner/ 1515 5 http://en.wikipedia.org/wiki/Interplanetary_Internet Internet Archive, 1996- ◦ Web archiving ◦ Book scanning ◦ Contributed content http://www.educause.edu/Professional ◦ Personal digital archiving… +Development/ PaulEvanPetersAwardWinnersspan/ PaulEvanPeters2004AwardWinner/ 1514 http://www.escapefromberkeley.com/race-info/advisory-board/brewster-kahle/ 6 arXiv, 1991- ◦ Preprint distribution ◦ Open access publishing ◦ Institutional repositories http://www.educause.edu/Professional +Development/ PaulEvanPetersAwardWinnersspan/ PaulEvanPeters2006AwardWinner/ 10177 Arxiv.org homepage pi day 2011 7 School of Information, U of Michigan Cyberinfrastructure
    [Show full text]
  • Overview of the Interplanetary Internet
    Overview of the InterPlanetary Internet BroadSkyBroadSky WorkshopWorkshop 10th Ka and Broadband Communications Conference Vicenza, Italy 01 October 2004 Adrian J. Hooke Interplanetary Network Directorate Jet Propulsion Laboratory, California Institute of Technology 818.354.3063 [email protected] Roadmap of International Space Data Systems Standardization 1980 1990 2000 2010 Basic Space/Ground “Packet” Spacecraft Telemetry and Telecommand communications 02 January, 1996 STRV-1b standards for } Baselined by International IP address: all space missions Space Station and GN 192.48.114.156 Consultative Committee for Space Data Systems (CCSDS) CCSDS Advanced Orbiting Systems The File Transfer: FTAM Dark File Transfer: FTP Transport: TP4 Age Transport: TCP Space Internetworking Of CCSDS in richly connected, Network: ISO 8473 GOSIP Network: IP. Mobile IP Proximity-1 short delay, stressed space environments NASA/DOD/CCSDS } Space Communications Next Generation Protocol Standards Space Internet (CCSDS-SCPS) Project (NGSI) Project Space Internetworking in sparsely connected, CCSDS File Delay Tolerant long delay, stressed Delivery Protocol Networking space environments } Standardized Space CCSDS Space Link Extension CCSDS Spacecraft Mission Operations and Service Management Monitor & Control Services } Technical Areas of International Space Standardization Space Internetworking Spacecraft Services Onboard Interface Services Mission Operations and Information Management Services Space Link Services Cross Support Systems Services Engineering
    [Show full text]
  • 1 What Is the Internet (And What Makes It Work)
    What Is The Internet (And What Makes It Work) - December, 1999 By Robert E. Kahn and Vinton G. Cerf In this issue: INTRODUCTION THE EVOLUTION OF THE INTERNET THE INTERNET ARCHITECTURE GOVERNMENT S HISTORICAL ROLE A DEFINITION FOR THE INTERNET WHO RUNS THE INTERNET WHERE DO WE GO FROM HERE? This paper was prepared by the authors at the request of the Internet Policy Institute (IPI), a non-profit organization based in Washington, D.C., for inclusion in their upcoming series of Internet related papers. It is a condensation of a longer paper in preparation by the authors on the same subject. Many topics of potential interest were not included in this condensed version because of size and subject matter constraints. Nevertheless, the reader should get a basic idea of the Internet, how it came to be, and perhaps even how to begin thinking about it from an architectural perspective. This will be especially important to policy makers who need to distinguish the Internet as a global information system apart from its underlying communications infrastructure. INTRODUCTION As we approach a new millennium, the Internet is revolutionizing our society, our economy and our technological systems. No one knows for certain how far, or in what direction, the Internet will evolve. But no one should underestimate its importance. Over the past century and a half, important technological developments have created a global environment that is drawing the people of the world closer and closer together. During the industrial revolution, we learned to put motors to work to magnify human and animal muscle power.
    [Show full text]
  • A Reliable Low Bandwidth Email-Based Communication Protocol
    A Reliable Low Bandwidth Email-based Communication Protocol by Janelle Kenty-Joan Prevost S.B., Mathematics Massachusetts Institute of Technology (2000) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degrees of Bachelor of Science in Computer Science and Engineering and Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2001 Lim 1I @ Janelle Kenty-Joan Prevost, MMI. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document BARKER in whole or in part. MASSACRUSETTS INSTITUT OF TECHNOLOGY JU L 11 Z001 A uth or ................... ........................... ...........LIBRARIES Department of El ctrical Engineering and Computer Science May 29, 2001 Certified by. ..................... Lynn Andrea Stein Associate Professor 4''hepj, Supervisor Accepted by....................... Arthur C. Smith Chairman, Department Committee on Graduate Students 2 A Reliable Low Bandwidth Email-based Communication Protocol by Janelle Kenty-Joan Prevost Submitted to the Department of Electrical Engineering and Computer Science on May 29, 2001, in partial fulfillment of the requirements for the degrees of Bachelor of Science in Computer Science and Engineering and Master of Engineering in Electrical Engineering and Computer Science Abstract In many places in the world, network infrastructure is characterized by intermittent connectivity, low-bandwidth and errors. As a result, web-browsing is slow. Because users frequently pay for each minute that they are connected, browsing the web can be an expensive proposition. In these places, what is needed is a communication protocol that can provide reliable end-to-end data delivery even in the face of episodic connectivity and low-bandwidth routes.
    [Show full text]