IAEA BULLETIN INTERNATIONAL ATOMIC ENERGY AGENCY IAEA’S Flagship Publication | June 2020 |

Total Page:16

File Type:pdf, Size:1020Kb

IAEA BULLETIN INTERNATIONAL ATOMIC ENERGY AGENCY IAEA’S Flagship Publication | June 2020 | IAEA BULLETIN INTERNATIONAL ATOMIC ENERGY AGENCY IAEA’s flagship publication | June 2020 | www.iaea.org/bulletin Infectious Diseases Vital testing equipment helps countries fight COVID-19, pg 6 Trained and equipped to fight animal and zoonotic diseases, pg 18 Combatting malaria, dengue and Zika using nuclear technology, pg 22 IAEA BULLETIN INTERNATIONAL ATOMIC ENERGY AGENCY IAEA’s flagship publication | June 2020 | www.iaea.org/bulletin The International Atomic Energy Agency’s mission is to prevent the spread of nuclear weapons and to help all countries — especially in the developing world — benefit from the peaceful, safe and secure use of nuclear science and technology. Infectious Diseases Established as an autonomous organization under the United Vital testing equipment helps countries fight COVID-19, pg 6 Trained and equipped to fight animal and zoonotic diseases, pg 18 Nations in 1957, the IAEA is the only organization within the UN Combatting malaria, dengue and Zika using nuclear technology, pg 22 system with expertise in nuclear technologies. The IAEA’s unique specialist laboratories help transfer knowledge and expertise to IAEA Member States in areas such as human health, food, water, industry and the environment. IAEA BULLETIN is produced by the Office of Public Information The IAEA also serves as the global platform for strengthening and Communication (OPIC) nuclear security. The IAEA has established the Nuclear Security International Atomic Energy Agency Series of international consensus guidance publications on nuclear Vienna International Centre security. The IAEA’s work also focuses on helping to minimize the PO Box 100, 1400 Vienna, Austria risk of nuclear and other radioactive material falling into the hands Phone: (43-1) 2600-0 of terrorists and criminals, or of nuclear facilities being subjected to [email protected] malicious acts. Managing Editor: Nicole Jawerth Editor: Miklos Gaspar The IAEA safety standards provide a system of fundamental Design & Production: Ritu Kenn safety principles and reflect an international consensus on what constitutes a high level of safety for protecting people and the IAEA BULLETIN is available online at environment from the harmful effects of ionizing radiation. The www.iaea.org/bulletin IAEA safety standards have been developed for all types of nuclear Extracts from the IAEA material contained in the facilities and activities that serve peaceful purposes, as well as for IAEA Bulletin may be freely used elsewhere provided protective actions to reduce existing radiation risks. acknowledgement of their source is made. If the attribution indicates that the author is not an IAEA The IAEA also verifies through its inspection system that Member staff member, permission to republish other than for States comply with their commitments under the Nuclear the use of review must be sought from the author or Non-Proliferation Treaty and other non-proliferation agreements originating organization. to use nuclear material and facilities only for peaceful purposes. Views expressed in any signed article appearing in The IAEA’s work is multi-faceted and engages a wide variety the IAEA Bulletin do not necessarily represent those of the International Atomic Energy Agency and the of partners at the national, regional and international levels. IAEA accepts no responsibility for them. IAEA programmes and budgets are set through decisions of its policymaking bodies — the 35-member Board of Governors and Cover: IAEA the General Conference of all Member States. The IAEA is headquartered at the Vienna International Centre. Follow us on Field and liaison offices are located in Geneva, New York, Tokyo and Toronto. The IAEA operates scientific laboratories in Monaco, Seibersdorf and Vienna. In addition, the IAEA supports and provides funding to the Abdus Salam International Centre for Theoretical Physics, in Trieste, Italy. Foreword Pre-empting and preventing infectious disease outbreaks By Rafael Mariano Grossi, Director General, IAEA OVID-19 has been a painful reminder health professionals by providing vetted of how deadly and disruptive a disease advice (page 15). Ccan be. The IAEA has devoted considerable energy and resources to helping countries In this edition of the IAEA Bulletin, you will respond to the pandemic, working closely learn about infectious diseases more generally with key international partners. Our focus has (page 4) and how countries work with the been on the use of nuclear and nuclear-derived IAEA to build their capacity to deal with techniques for virus detection and diagnosis. them (page 18). In Sierra Leone, for example, specialists are drawing on IAEA expertise to It quickly became clear to me that a test whether bats are infected with the Ebola piecemeal approach to COVID-19, and to virus (page 20). In Latin America and the future outbreaks of zoonotic diseases (those Caribbean, IAEA support is helping countries transmitted from animals to humans), would deal with malaria, dengue and Zika as well as be ineffective. That is why, in June 2020, I the mosquitoes that spread these devastating launched the IAEA ZODIAC — ZOonotic illnesses (page 22). Disease Integrated ACtion — initiative to strengthen countries’ capabilities in early By controlling animal diseases, we can help “The IAEA is committed detection, diagnosis, prevention and control to protect livestock, communities and entire to doing everything of zoonotic disease outbreaks. ZODIAC is economies. Nuclear science has already helped about getting all of the capabilities that the countries such as Bulgaria (page 26) and Viet possible to help the IAEA has in zoonotic diseases and related Nam (page 25) to strengthen food security world respond to major areas and bringing them together in a and trade. Thanks to a vaccination campaign challenges to human package to address the deficiencies that many involving nuclear-derived techniques, foot- and animal health, countries face in terms of technical expertise and-mouth disease is now under control in and equipment. This unified platform will Morocco (page 28). Advances in irradiated using nuclear science help the world pre-empt and prevent zoonotic animal vaccines are also making a difference and technology, in the disease outbreaks and protect the health and in Ethiopia (page 30). coming years.” well-being of billions of people (page 5). I am inviting key partners such as the World The IAEA does not work in isolation. — Rafael Mariano Grossi, Health Organization (WHO) and the Food Cooperation with partners such as the WHO, Director General, IAEA and Agriculture Organization of the United the FAO and the World Organisation for Nations (FAO) to join us. Animal Health (OIE) is vital. During the COVID-19 pandemic, the IAEA became part Over 120 countries turned to the IAEA for of the WHO-led COVID-19 United Nations assistance with the virus, and we responded. Crisis Management Team. The IAEA’s Mounting our largest assistance operation ever, efforts have also been supported through we sent hundreds of shipments of vital testing contributions by countries, as well as from equipment and protective gear all over the the private sector, Takeda Pharmaceutical world (page 6). The IAEA provided expertise Company Limited. on the diagnosis and detection of COVID-19 using medical imaging (page 12) and one of The IAEA is committed to doing everything the fastest and most accurate diagnostic tests possible to help the world respond to major available, known as reverse transcription– challenges to human and animal health, polymerase chain reaction (RT–PCR) (page 8). using nuclear science and technology, in the The IAEA and its partners have also supported coming years. (Photos: IAEA) IAEA Bulletin, June 2020 | 1 Contents 1 Pre-empting and preventing infectious disease outbreaks 4 Infectious diseases and how nuclear science can help 6 Vital testing equipment helps countries fight COVID-19 8 How is the COVID-19 virus detected using real time RT-PCR? 12 A window inside the body and COVID-19 Medical imaging during the global pandemic 15 Overcoming the unknowns of COVID-19 18 Trained and equipped to fight animal and zoonotic diseases 20 Hunting for viruses in Sierra Leone with the help of nuclear technology 2 | IAEA Bulletin, June 2020 Contents 22 Combatting malaria, dengue and Zika using nuclear technology 25 Vietnamese authorities control the spread of African swine fever with the use of nuclear-derived technique 26 Bulgaria stops the spread of animal disease with the help of the IAEA and FAO 28 Morocco controls foot-and-mouth disease with the help of nuclear-derived methods 30 Irradiated animal vaccines keep Ethiopia’s animals healthy, helping exports and food security World View 32 We need a global response to the pandemic threat — By Maria Helena Semedo 34 A global victory against COVID-19 requires creative partnerships — By Takako Ohyabu IAEA Updates 36 IAEA News 40 Publications IAEA Bulletin, June 2020 | 3 Infectious Diseases Infectious diseases and how nuclear science can help By Nicole Jawerth nfectious diseases are health conditions pose a persistent threat. New diseases or caused by pathogens — bacteria, viruses, pathogen strains can emerge, and old ones Ior other microorganisms, such as parasites can disappear only to re-emerge later. Some or fungi. After invading the body, pathogens diseases and pathogens have several strains, multiply and disrupt how the body works. or variations. As diseases are constantly evolving, science and medicine have to keep The types and severity of disease symptoms evolving too. depend on the pathogens and host, namely a person or animal. In the case of COVID- When a disease strikes, it impacts human and/ 19, for example, some people show no signs or animal health, and can damage livelihoods or symptoms or only have mild ones, such and hurt economies. The effects are often as fatigue and body aches, but others have disproportionately felt by vulnerable groups, severe and debilitating symptoms that, in such as children, the poor, the elderly and/or some cases, can lead to death. people with compromised immune systems.
Recommended publications
  • Peste Des Petits Ruminants in Africa: Meta-Analysis of the Virus Isolation in Molecular Epidemiology Studies
    Onderstepoort Journal of Veterinary Research ISSN: (Online) 2219-0635, (Print) 0030-2465 Page 1 of 15 Review Article Peste des petits ruminants in Africa: Meta-analysis of the virus isolation in molecular epidemiology studies Authors: Peste des petits ruminant (PPR) is a highly contagious, infectious viral disease of small 1,2 Samuel E. Mantip ruminant species which is caused by the peste des petits ruminants virus (PPRV), the David Shamaki2 Souabou Farougou1 prototype member of the Morbillivirus genus in the Paramyxoviridae family. Peste des petits ruminant was first described in West Africa, where it has probably been endemic in sheep and Affiliations: goats since the emergence of the rinderpest pandemic and was always misdiagnosed with 1 Department of Animal rinderpest in sheep and goats. Since its discovery PPR has had a major impact on sheep and Health and Production, University of Abomey-Calavi, goat breeders in Africa and has therefore been a key focus of research at the veterinary Abomey Calavi, Benin research institutes and university faculties of veterinary medicine in Africa. Several key discoveries were made at these institutions, including the isolation and propagation of African 2Viral Research Division, PPR virus isolates, notable amongst which was the Nigerian PPRV 75/1 that was used in the National Veterinary Research scientific study to understand the taxonomy, molecular dynamics, lineage differentiation of Institute, Vom, Nigeria PPRV and the development of vaccine seeds for immunisation against PPR. African sheep and Corresponding author: goat breeds including camels and wild ruminants are frequently infected, manifesting clinical Samuel E. Mantip, signs of the disease, whereas cattle and pigs are asymptomatic but can seroconvert for PPR.
    [Show full text]
  • Bulgaria Stops the Spread of Animal Disease with the Help of the IAEA and FAO by Laura Gil
    Infectious Diseases Bulgaria stops the spread of animal disease with the help of the IAEA and FAO By Laura Gil Bulgarian authorities at a n 2018, Bulgaria halted the spread of peste Although not transmittable to humans, local farm carrying out des petits ruminants (PPR) — a disease PPR can have a severe impact on livestock, their disease control work. Ithat can devastate livestock — thanks in part killing between 50 and 80% of infected (Photo: S. Slavchev/IAEA) to the support of the IAEA and the Food animals, mostly sheep and goats. Its high and Agriculture Organization of the United economic impact makes PPR one of the Nations (FAO). This was the first time PPR most significant livestock diseases. Also had been recorded in the European Union, known as ovine rinderpest or sheep and which made halting its spread early an goat plague, PPR originated in Africa but important goal for the region. has also been reported in Asia and the Middle East. Summer outbreak “Most European laboratories are generally In the summer of 2018, cattle breeders on neither familiar with nor prepared to deal the farms of Voden in south-eastern Bulgaria with this disease,” said Giovanni Cattoli, noticed that their animals were suffering from Head of the Animal Production and Health a disease. Soon after, authorities reported that Laboratory at the Joint FAO/IAEA Division the country was facing an outbreak of PPR. of Nuclear Techniques for Food and Within days, two Bulgarian scientists came to Agriculture. “It is exotic, off their radar. But, the IAEA to receive training and materials to luckily, Bulgaria reacted quickly, and we rapidly detect and characterize the PPR virus stepped up to support them.” using nuclear-derived techniques.
    [Show full text]
  • Assessment of Oxidative Stress in Peste Des Petits Ruminants (Ovine Rinderpest) Affected Goats
    Media Peternakan, December 2012, pp. 170-174 Online version: ISSN 0126-0472 EISSN 2087-4634 http://medpet.journal.ipb.ac.id/ Accredited by DGHE No: 66b/DIKTI/Kep/2011 DOI: 10.5398/medpet.2012.35.3.170 Assessment of Oxidative Stress in Peste des petits ruminants (Ovine rinderpest) Affected Goats A. K. Kataria* & N. Kataria Apex Centre for Animal Disease Investigation, Monitoring and Surveillance College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner – 334 001, Rajasthan, India (Received 28-06-2012; Reviewed 03-08-2012; Accepted 30-08-2012) ABSTRACT The aim of the present investigation was to evaluate oxidative stress in goats affected with peste des petits ruminants (PPR). The experiment was designed to collect blood samples from PPR affected as well as healthy goats during a series of PPR outbreaks which occurred during February to April 2012 in different districts of Rajasthan state (India). Out of total 202 goats of various age groups and of both the sexes, 155 goats were PPR affected and 47 were healthy. Oxidative stress was evaluated by determining various serum biomarkers viz. vitamin A, vitamin C, vitamin E, glutathione, cata- lase, superoxide dismutase, glutathione reductase and xanthine oxidase, the mean values of which were 1.71±0.09 µmol L-1, 13.02±0.14 µmol L-1, 2.22±0.09 µmol L-1, 3.03±0.07 µmol L-1, 135.12±8.10 kU L-1, 289.13±8.00 kU L-1, 6.11± 0.06 kU L-1 and 98.12±3.12 mU L-1, respectively.
    [Show full text]
  • Ukraine of Live Animals, Their Reproductive Material, Food Products of Animal Origin and Products Not Intended for Human Consumption
    2 MINISTRY OF AGRARIAN POLICY AND FOOD OF UKRAINE EXECUTIVE ORDER ______________________ Kyiv No. ______ On approving the Requirements for importing (sending) into the customs territory of Ukraine of live animals, their reproductive material, food products of animal origin and products not intended for human consumption. In execution of Articles 3 and 30 of the Law of Ukraine "On Veterinary Medicine," Article 15 of the Law of Ukraine "On Main Principles and Requirements to Safety and Quality of Food Products," Articles 3, 4, 6 and 8 of the WTO Agreement on Sanitary and Phytosanitary Measures, Articles 59, 64 and 65 of the Association Agreement between Ukraine, on the one hand, and the European Union, the European Atomic Energy Community and their Member States, on the other hand, paragraph 34 of the Action Plan for implementation of Title IV “Trade and Trade Related Matters” of the Association Agreement between Ukraine, on the one hand, and the European Union, the European Atomic Energy Community and their Member States, on the other hand for 2016-2019 approved by Resolution of the Cabinet of Ministers of Ukraine of 18 February 2016 No. 217-r , subparagraph 2 of paragraph 4 of the Regulation on the Ministry of Agrarian Policy and Food of Ukraine approved by Resolution of the Cabinet of Ministers of Ukraine of 25 November 2015 No. 1119 I HEREBY ORDER: 1. To approve the Requirements for importing (sending) into the customs territory of Ukraine of live animals, their reproductive material, food products of animal origin and products 3 not intended for human consumption.
    [Show full text]
  • Prevelance of Peste Des Petits Ruminants Virus In
    PREVELANCE OF PESTE DES PETITS RUMINANTS VIRUS IN THE BLUE NILE STATE By Raja Eltahir Haj Omer B.V.Sc. (1996) University of Khartoum Supervisor Professor Abdel Rahim El Sayed Karrar co-Supervisor Dr. Yahia Hassan Ali A thesis submitted to the University of Khartoum in partial fulfillment of the requirements for the Degree of Master of Veterinary Medicine (M.V.M) Department of Medicine, Toxicology and Pharmacology Faculty of Veterinary Medicine University of Khartoum 2011 ﺑﺴــﻢ اﷲ اﻟﺮﺣـﻤـﻦ اﻟﺮﺣـﻴﻢ ﻗﺎل ﺗﻌﺎﻟﻰ: (ﺳـﺒﺤـﺎن اﻟﺬي ﺳـﺨﺮ ﻟﻨﺎ هﺬا وﻣﺎ آـﻨﺎ ﻟﻪ ﻣـﻘﺮﻧﲔ) ﺻﺪق اﷲ اﻟﻌﻈﻴﻢ ﺳﻮرة اﻟﺰﺧﺮف - ﺁﻳﺔ (13) LIST OF CONTENTS Page Dedication…………………………………………………………… ix Acknowledgements…………………………………………………. iix English Summary…………………………………………………….. x Arabic summary ……………………………………………………. xi List of Contents……………………………………………………… i List of Tables ……………………………………………………….. vi List of Figures………………………………………………………. vii Introduction…………………………………………………………….. 1 iii Page CHAPTER ONE: LITERATURE REVIEW 1.1. Definition………………………………………………………………. 4 1.2. Etiology………………………………………………………………… 5 1.2.1. Virus structure…………………………………………………………... 5 1.2.2. Relationship between the PPR virus and rinderpest virus………………. 6 1.3. Host Range and species variation………………………………………… 6 1.4. Historical Background……………………………………………………. 7 1.5. Epidemiology of PPR…………………………………………………… 9 1.5.1 Geographical Distribution…………………………………………….. 9 1.5.2. Transmission…………………………………………………………….. 10 1.5.3. Lineages of PPRV……………………………………………………… 11 1.5.4. Morbidity and Mortality……………………………………………… 12 1.6 Pathology………………………………………………………………… 13 1.6.1 Gross lesions…………………………………………………………… 13 1.6.2 Microscopic lesions (histopathology)………………………………… 14 1.7. Clinical Signs…………………………………………………................. 14 1.7.1. Per acute Syndrome………………………………………………… 15 page 1.7.2. Acute Syndrome…………………………………………………….. 15 1.7.3. Sub acute Syndrome………………………………………………… 17 1.8. Resistance and immunity……………………………………………… 17 1.8.1 Innate and passive immunity………………………………………… 17 1.8.2 Active immunity…………………………………………………….
    [Show full text]
  • Ppr) in in the White Nile State, Sudani
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KhartoumSpace SURVEY AND SEROLOGICAL INVESTIGATIONS ON PESTE DES PETITS RUMINANTS (PPR) IN IN THE WHITE NILE STATE, SUDANI By Wifag Abdalla Mohamed Ali B.V.Sc. (1989) University of Khartoum Supervisor Dr. Abdelwahid Saeed Ali Babiker A thesis submitted to the University of Khartoum in partial fulfillment of the requirements for the Degree of Master of Tropical Animal Health (M.T.A.H) Department of Preventive Medicine and Veterinary Public Health Faculty of Veterinary Medicine University of Khartoum June 2009 To the soul of my father To my lovely children To my great mother Rawan To my dearest sisters, Sara Brothers and husband Ahmed With warm wide wishes with keen kind kisses i ACKNOWLEDGEMENTS First of all my thanks and praise to almighty Allah for the most beneficent, merciful for giving me health, strength and willpower to complete this study. Sincere gratitude to my supervisor Dr. Abdelwahid Saeed Ali Babiker for his guidance, advice ,attention ,kindness and unlimited help. I am grateful to Dr. Khitma Elmalik the coordinator of the master program. Department of Preventive Medicine. Faculty of Veterinary Medicine .for her encouragement and kindness during the master course. My kind regard and thanks to Dr. Yahia Hassan Ali and Dr . Intisar Kamil Saeed, Department of Virology, the Central Veterinary Research Laboratory( CVRL) Soba ,for performing ELISA. I would like to express my thanks to general directorate of Animal Resources in White Nile State, for giving me this chance and the leave of the study.
    [Show full text]
  • Molecular Evolution of Peste Des Petits Ruminants Virus1 Murali Muniraju, Muhammad Munir, Aravindhbabu R
    Molecular Evolution of Peste des Petits Ruminants Virus1 Murali Muniraju, Muhammad Munir, AravindhBabu R. Parthiban, Ashley C. Banyard, Jingyue Bao, Zhiliang Wang, Chrisostom Ayebazibwe, Gelagay Ayelet, Mehdi El Harrak, Mana Mahapatra, Geneviève Libeau, Carrie Batten, and Satya Parida Despite safe and efficacious vaccines against peste endemic to much of Africa, the Middle East, and Asia des petits ruminants virus (PPRV), this virus has emerged (1,2). The causative agent, PPRV virus (PPRV), belongs to as the cause of a highly contagious disease with serious the family Paramyxoviridae, genus Morbillivirus (3) and economic consequences for small ruminant agriculture groups with rinderpest virus (RPV), measles virus (MV), across Asia, the Middle East, and Africa. We used complete and canine distemper virus. Sheep and goats are the major and partial genome sequences of all 4 lineages of the virus hosts of PPRV, and infection has also been reported in a few to investigate evolutionary and epidemiologic dynamics of PPRV. A Bayesian phylogenetic analysis of all PPRV lin- wild small ruminant species (2). Researchers have specu- eages mapped the time to most recent common ancestor lated that RPV eradication has further enabled the spread and initial divergence of PPRV to a lineage III isolate at the of PPRV (4,5). Transmission of PPRV from infected goats beginning of 20th century. A phylogeographic approach esti- to cattle has been recently reported (6), and PPRV antigen mated the probability for root location of an ancestral PPRV has been detected in lions (7) and camels (8). These reports and individual lineages as being Nigeria for PPRV, Senegal suggest that PPRV can switch hosts and spread more read- for lineage I, Nigeria/Ghana for lineage II, Sudan for lineage ily in the absence of RPV (4,6,8).
    [Show full text]
  • Godfrey B. Tangwa · Akin Abayomi Samuel J. Ujewe Nchangwi Syntia Munung Editors
    Godfrey B. Tangwa · Akin Abayomi Samuel J. Ujewe Nchangwi Syntia Munung Editors Socio-cultural Dimensions of Emerging Infectious Diseases in Africa An Indigenous Response to Deadly Epidemics Socio-cultural Dimensions of Emerging Infectious Diseases in Africa [email protected] Godfrey B. Tangwa • Akin Abayomi Samuel J. Ujewe • Nchangwi Syntia Munung Editors Socio-cultural Dimensions of Emerging Infectious Diseases in Africa An Indigenous Response to Deadly Epidemics [email protected] Editors Godfrey B. Tangwa Akin Abayomi Department of Philosophy Global Emerging Pathogen Treatment University of Yaounde 1 Consortium (GET) Consortium Yaounde, Cameroon Lagos, Nigeria Cameroon Bioethics Initiative (CAMBIN) Nigerian Medical Research Institute Yaounde, Cameroon (NIMR) Lagos, Nigeria Global Emerging Pathogen Treatment Consortium (GET) Consortium Faculty of Medicine and Health Sciences Lagos, Nigeria University of Stellenbosch Stellenbosch, South Africa Samuel J. Ujewe Global Emerging Pathogens Treatment Nchangwi Syntia Munung Consortium Department of Medicine Lagos, Nigeria University of Cape Town Cape Town, South Africa Canadian Institute for Genomics and Society Global Emerging Pathogen Treatment Toronto, ON, Canada Consortium (GET) Consortium Lagos, Nigeria ISBN 978-3-030-17473-6 ISBN 978-3-030-17474-3 (eBook) https://doi.org/10.1007/978-3-030-17474-3 © Springer Nature Switzerland AG 2019 Open Access Chapter 18 is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see licence information in the chapter. This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifcally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microflms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
    [Show full text]
  • Act on Domestic Animal Infectious Diseases Control
    Act on Domestic Animal Infectious Diseases Control (May 31, 1951, Act No. 166) (Amendment: May 8, 2012 Act No. 30) Table of Contents Chapter I General Provisions (Article 1-Article 3-2) Chapter II Preventing the Outbreak of Domestic Animal Infectious Diseases (Article 4-Article 12-7) Chapter III Preventing the Spread of Domestic Animal Infectious Diseases (Article 13-Article 35-2) Chapter IV Export and Import Quarantine, etc. (Article 36-Article 46-4) Chapter V Measures Concerning the Possession of Pathogens (Article 46-5- Article 46-22 Chapter VI Miscellaneous Provisions (Article 47-Article 62-6) Chapter VII Penal Provisions (Article 63-Article 69) Supplementary Provisions Chapter I General Provisions (Purpose) Article 1 The purpose of this Act shall be to promote the livestock industry by preventing the outbreak or spread of domestic animal infectious diseases among (including parasitic diseases; the same shall apply hereinafter). (Definitions) Article 2 (1) In this Act, "domestic animal infectious diseases" shall refer to the infectious diseases listed in the left-hand column of the following Table as pertaining to the domestic animals listed in the corresponding row of the right- hand column, and other domestic animals specified for each infectious disease by Cabinet Order. Type of infectious disease Species of domestic animal (1) Rinderpest Cattle, sheep, goats, swine (2) Contagious bovine pleuropneumonia Cattle (3) Foot-and-mouth disease Cattle, sheep, goats, swine (4) Infectious encephalitis Cattle, horses, sheep, goats, swine
    [Show full text]
  • Peste Des Petits Ruminants Virus Infection of Small Ruminants: a Comprehensive Review
    Viruses 2014, 6, 2287-2327; doi:10.3390/v6062287 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Peste Des Petits Ruminants Virus Infection of Small Ruminants: A Comprehensive Review Naveen Kumar 1,* Sunil Maherchandani 2, Sudhir Kumar Kashyap 2, Shoor Vir Singh 1, Shalini Sharma 3, Kundan Kumar Chaubey 1 and Hinh Ly 4 1 Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India; E-Mails: [email protected] (S.V.S.); [email protected] (K.K.C.) 2 Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India; E-Mails: [email protected] (S.M.); [email protected] (S.K.K.) 3 Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India; E-Mail: [email protected] 4 Veterinary and Biomedical Sciences Department, University of Minnesota, 1988 Fitch Ave., Ste 295, Saint Paul, MN 55108, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +91-565-2763260; Fax: +91-565-2763246. Received: 13 March 2014; in revised form: 26 May 2014 / Accepted: 28 May 2014 / Published: 6 June 2014 Abstract: Peste des petits ruminants (PPR) is caused by a Morbillivirus that belongs to the family Paramyxoviridae. PPR is an acute, highly contagious and fatal disease primarily affecting goats and sheep, whereas cattle undergo sub-clinical infection. With morbidity and mortality rates that can be as high as 90%, PPR is classified as an OIE (Office International des Epizooties)-listed disease.
    [Show full text]
  • Universita' Degli Studi Di Parma
    UNIVERSITA’ DEGLI STUDI DI PARMA DOTTORATO DI RICERCA IN “SCIENZE MEDICO-VETERINARIE” CICLO XXXII Bovine Herpesvirus-4 vectored-based vaccine for Ovine Rinderpest Coordinatore: Chiar.mo Prof. PAOLO MARTELLI Tutore: Chiar.mo Prof. SANDRO CAVIRANI Co-Tutori: Chiar.mo Prof. GAETANO DONOFRIO Dott.ssa VALENTINA FRANCESCHI Dottoranda: Dott.ssa FRANCESCA MACCHI Anni Accademici 2016/2017 – 2018/2019 The research reported in this PhD thesis has been published in an international scientific journal: Bovine Herpesvirus-4-Based Vector Delivering Peste des Petits Ruminants Virus Hemagglutinin ORF Induces both Neutralizing Antibodies and Cytotoxic T Cell Responses Francesca Macchi, José Manuel Rojas, Andrea Elizabeth Verna, Noemí Sevilla, Valentina Franceschi, Giulia Tebaldi, Sandro Cavirani, Verónica Martín, Gaetano Donofrio Front Immunol . 2018 Mar 5;9:421. doi: 10.3389/fimmu.2018.00421. eCollection 2018. Abstract Ovine Rinderpest is an endemic infectious disease, aslo globally known as Peste des Petits Ruminants (PPR), affecting both wild type and domestic small ruminants. PPR has first appeared in West Africa in the 1940s, and since then it has been spreading across North and East Africa, and to the Near and Middle East, reaching the South and East Asia, where it has been reported in China in 2007. More recently, in 2016, it has also emerged in Europe. PPR is caused by a virus belonging to the Morbillivirus genus (Paramyxoviridae family), named Peste des Petits Ruminants Virus (PPRV), a negative single stranded RNA-based virus, primarly targeting goats and sheep. Fever, oral lesions, diarrhea, pneumonia and, often, death are all PPR characteristic symptons manifested by affected animals. The disease is thus particularly concerning for underdeveloped countries, whose economy is mainly based on small ruminants livestock, and where PPR causes drastic economic losses.
    [Show full text]
  • PESTE DES PETITS RUMINANTS (PPR) Technical Information Reporting Guide
    UNCLASSIFIED//FOUO PESTE DES PETITS RUMINANTS (PPR) Technical Information Reporting Guide UNCLASSIFIED//FOUO UNCLASSIFIED//FOUO Information cut-off, June 30, 2013 This document is copyright controlled by the National Agricultural Biosecurity Center (NABC) to promote a better technical understanding of the subject, to stimulate collaborative and mutually beneficial multilateral activities associated with monitoring and preventing occurrences of this disease, and to provide information concerning measures taken to respond to outbreaks of the disease. UNCLASSIFIED//FOUO UNCLASSIFIED//FOUO Peste des Petits Ruminants (PPR) Technical Information Reporting Guide Introduction to peste des petits ruminants in China. It is feasible the PPR virus is spreading, although Peste des petits ruminants (PPR) is a highly contagious, an increased level of recognition also might explain the infectious, and often fatal viral disease that affects domes- expanding geographic range. tic and wild small ruminants. It is also known as Ovine A severe, fast-spreading disease, PPR is characterized by Rinderpest, Pest of Small Ruminants, Pest of Sheep and the sudden onset of fever, depression, discharge from the Goats, Stomatitis-Pneumoenteritis Complex or Syndrome, eyes and nose, sores in the mouth, disturbed breathing Pseudorinderpest of Small Ruminants, Kata, Goat Plague, and cough, foul-smelling diarrhea, and death. The virus is and Contagious Pustular Stomatitis. not transmittable to humans. The magnitude of the disease Animals capable of being infected by the PPR virus include: has only become apparent in recent years and is still being antelopes, buffalo, camels, cattle, deer, gazelles, giraffes, clarified because PPR can be asymptomatic or misdiagnosed llamas, yaks, and wild and domestic sheep and goats.
    [Show full text]