Inhibition of Microsomal Epoxide Hydrolases by Ureas, Amides, and Amines

Total Page:16

File Type:pdf, Size:1020Kb

Inhibition of Microsomal Epoxide Hydrolases by Ureas, Amides, and Amines Chem. Res. Toxicol. 2001, 14, 409-415 409 Inhibition of Microsomal Epoxide Hydrolases by Ureas, Amides, and Amines Christophe Morisseau, John W. Newman, Deanna L. Dowdy, Marvin H. Goodrow, and Bruce D. Hammock* Department of Entomology and University of California Cancer Center, University of California, Davis, California 95616 Received August 11, 2000 The microsomal epoxide hydrolase (mEH) plays a significant role in the metabolism of xenobiotics such as polyaromatic toxicants. Additionally, polymorphism studies have underlined a potential role of this enzyme in relation to several diseases, such as emphysema, spontaneous abortion, and several forms of cancer. To provide new tools for studying the function of mEH, inhibition of this enzyme was investigated. Inhibition of recombinant rat and human mEH was achieved using primary ureas, amides, and amines. Several of these compounds are more potent than previously published inhibitors. Elaidamide, the most potent inhibitor that is obtained, has a Ki of 70 nM for recombinant rat mEH. This compound interacts with the enzyme forming a noncovalent complex, and blocks substrate turnover through an apparent mix of competitive and noncompetitive inhibition kinetics. Furthermore, in insect cell cultures expressing rat mEH, elaidamide enhances the toxicity effects of epoxide-containing xenobiotics. These inhibitors could be valuable tools for investigating the physiological and toxicological roles of mEH. Introduction Over the past decade, mEH was also described as mediating the transport of bile acid into hepatocytes (14, Epoxides are highly strained three-membered cyclic 15). The mechanism by which mEH participates in bile ethers that are often electrophilically reactive mutagens, absorption is not known. Obtaining potent mEH inhibi- carcinogens, or cytotoxins (1). Epoxide hydrolases (EH, tors will provide new tools for better understanding the EC 3.3.2.3) catalyze the hydrolysis of epoxides or arene multiple roles of this enzyme. oxides to their corresponding diols (2). Microsomal ep- oxide hydrolase (mEH) is a key hepatic enzyme involved Over the years, several mEH inhibitors have been in the metabolism of numerous xenobiotics, such as described, including 1,1,1-trichloro-2,3-epoxypropane (16), polyaromatic hydrocarbons, which undergo cytochrome- cyclohexene oxide (17), several other cycloalkene oxides dependent epoxidation (3, 4). Additionally, mEH is likely (18), and valpromide (19), and more recently, our labora- involved in the extrahepatic metabolism of these agents, tory described mEH inhibition by metals (20). The former such as naphthalene in the lungs (5). Generally, the compounds, which are inefficient in vivo, are in fact conversion of epoxides to diols results in less mutagenic substrates of mEH and give only transient inhibition of or carcinogenic compounds. However, in some cases, as this enzyme in vitro (2). Valpromide affects the normal for benzo[a]pyrene 4,5-oxide, diol formation can lead to metabolism of carbamazepine by inhibiting the mEH in the stabilization of a secondary epoxide, increasing the vivo (19). However, the anticonvulsant properties of mutagenic and carcinogenic potential of the product (6). valpromide could induce undesirable secondary effects The role of mEH in xenobiotic detoxication is also if it is used as a mEH inhibitor. We recently developed supported by recent polymorphism studies showing a new inhibitors for the soluble epoxide hydrolase (sEH), relationship between this enzyme and susceptibility to an enzyme distantly related to mEH (21). These inhibi- emphysema (7) and several forms of cancer (8). Despite tors are based on urea, carbamate, or amide central the fact that mEH knockout mice do not present an functions. These inhibitors act by mimicking a transition obvious phenotype (9), there are several points suggesting state in the enzyme catalytic mechanism of epoxide an endogenous role for this enzyme. A potential role of hydrolysis (22). Because sEH and mEH have similar mEH in sexual development is supported by the facts mechanisms of catalysis (3, 23), one could expect that that androstene oxide is a very good mEH substrate (10), urea and urea-like compounds would be inhibitors of the and that mEH is an apparent subunit of the anti- mEH also. We describe herein the discovery of new potent estrogen-binding site (11). Such a role could be related and stable inhibitors of mEH and their application in one to the observed relation between mEH polymorphism and in vitro model. spontaneous abortion (12), which has been reported to occur in more than 10% of recognized pregnancies (13). Materials and Methods * To whom correspondence should be addressed: Department of Chemicals. General laboratory reagents were purchased Entomology, University of California, Davis, CA 95616. Phone: (530) from either Aldrich (Milwaukee, WI) or Sigma (St. Louis, MO), 752-7519. Fax: (530) 752-1537. E-mail: [email protected]. and used without further purification. Compounds 15-29, 40, 10.1021/tx0001732 CCC: $20.00 © 2001 American Chemical Society Published on Web 03/10/2001 410 Chem. Res. Toxicol., Vol. 14, No. 4, 2001 Morisseau et al. Table 1. Inhibition of Rat mEH c-SO Hydrolysis by Table 2. Inhibition of RmEH by Several Pharmacophores N-Octylureas a Melting points (mp) are uncorrected. b The enzyme and the inhibitor are incubated together for 5 min at 30 °C before the a Melting points (mp) are uncorrected. “_” indicated that the addition of substrate (c-SO, 50 µM). Results are means ( SD of melting points of the commercial compound were not measured. three separate experiments. b The enzyme and the inhibitor are incubated together for 5 min at 30 °C before the addition of substrate (c-SO, 50 µM). Results ( and 41 were obtained from Aldrich, while compound 37 was are means SD of three separate experiments. purchased from Sigma. Compounds 1-10, 13, and 39 were Table 3. Inhibition of Rat mEH by Amines and Amides synthesized by the condensation of the appropriate isocyanate with Diverse Alkyl Chains and amine, whereas compounds 11 and 12 were synthesized by the condensation of the appropriate isocyanate and alcohol as previously described (21). Compounds 14, 30-36, and 38 were synthesized by the condensation of the appropriate acyl chloride and ammonia as described by Roe et al. (24). Reaction products were purified by recrystallization. Purities of >95% were obtained for all of the compounds that were studied. Assignment of purities was carried out using NMR and mass spectroscopy data. In addition to sharp melting points and single spots on silica gel TLC, the obtained products were characterized using 1H and/or 13C NMR (General Electric QE-300 instrument), infrared, and mass spectroscopy [for GC/MS, Hewlett-Packard 6890 gas chromatograph (San Jose, CA) equipped with a 30 m × 0.25 mm × 0.25 µm film DB-5ms column (J&W Scientific, Folsom, CA) and a 5973 mass spectra detector; for electrospray ionization (ESI-MS), positive mode Fisons Quattro BQ ap- paratus (Altrancham, England), 5 µL/min flow of a 1:1:0.05 (v:v:v) acetonitrile/water/formic acid mixture, with a cone voltage of 50 V; fast atom bombardment mass spectra were generated on a Kratos MS-50 mass spectrometer (Kratos Analytical, Manchester, U.K.)]. Melting point and reaction yields are listed in Tables 1-3. Acquired IR, NMR, and MS data used for structural confirmation can be found as Supporting Information. The detailed syntheses of two ureas and an amide representing these reaction pathways are included below. Compound 1 (N-Octylurea). Octyl isocyanate (0.88 mL, 0.77 g, 5.0 mmol) and 6 mL of 1 M ammonium hydroxide were vigorously shaken for 3 h. The precipitate was collected, washed with water followed by an acetone wash, and vacuum-oven dried to obtain 0.77 g (90%) of 1. The isolated solid had an mp of 96.0- 97.5 °C, which was unchanged by recrystallizations from either a methanol/water mixture (5:2, v:v) or a hexanes/ethyl acetate mixture (4:1, v:v): IR (KBr) 3393 (s, NH), 1657 (s, CdO), 1603 -1 1 (vs), 1537 cm (s, amide II); H NMR (CDCl3) δ 4.5 (m, 1 H, NH), 4.3 (m, 2 H, NH2), 3.15 (dd, J ) 7.0, 6.0 Hz, 2 H, CH2-1), 1.5 (m, 2 H, CH2-2), 1.3 (m, 10 H, CH2-3-7), 0.88 (t, J ) 6.6 Hz, 13 3H,CH3); C NMR (DMSO-d6) δ 158.7 (CdO), 39.3 (C-1), 31.2 (C-2), 30.0 (C-4), 28.8 (C-5 or -6), 28.7 (C-5 or -6), 26.4 (C-3), Compound 7 (N-Cyclopropyl-N′-octylurea). To 0.115 g 22.1 (C-7), 13.8 (C-8); fast atom bombardment MS m/z (relative (2.00 mmol) of cylcopropylamine in 10 mL of hexane were added intensity) 345 (2M + H+, 10%), 173 (M + H+, 100%). 0.310 g (2.00 mmol) of octyl isocyanate and 1 drop of 1,8- Microsomal Epoxide Hydrolase Inhibition Chem. Res. Toxicol., Vol. 14, No. 4, 2001 411 -1 -1 diazabicyclo[5.4.0]undec-7-ene. After 1 day at ambient temper- nmol min mL for the substrate c-SO. Substrate (1.5 < [S]final ature, compound 7 was obtained (0.405 g, 95%) as white < 50 µM) was then added. Velocity was measured as described crystals: mp 57.5-59.0 °C; IR (KBr) 3339 (m, NH), 1626 (vs, under IC50 Assay Conditions. For each inhibitor concentration, -1 1 CdO), 1573 cm (s, amide II); H NMR (CDCl3) δ 5.17 (br, 2 linear relations are produced between the inverse of the velocity H, 2 NH), 3.20 (dt, J ) 6.6, 6.3 Hz, 2 H, CH2-1), 2.4 (m, 1 H, and the inverse substrate concentration (Lineweaver-Burk CH), 1.5 (m, 2 H, CH2-2), 1.3 (m, 10 H, CH2-3-7), 0.88 (t, 3 H, representation).
Recommended publications
  • Functional Properties and Molecular Architecture of Leukotriene A4 Hydrolase, a Pivotal Catalyst of Chemotactic Leukotriene Formation
    Review Article TheScientificWorldJOURNAL (2002) 2, 1734–1749 ISSN 1537-744X; DOI 10.1100/tsw.2002.810 Functional Properties and Molecular Architecture of Leukotriene A4 Hydrolase, a Pivotal Catalyst of Chemotactic Leukotriene Formation Jesper Z. Haeggström1,*, Pär Nordlund2, and Marjolein M.G.M. Thunnissen2 1Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden; 2Department of Biochemistry, University of Stockholm, Arrhenius Laboratories A4, S-106 91 Stockholm, Sweden E-mail: [email protected]; [email protected]; [email protected] Received March 25, 2002; Accepted April 26, 2002; Published June 26, 2002 The leukotrienes are a family of lipid mediators involved in inflammation and allergy. Leukotriene B4 is a classical chemoattractant, which triggers adherence and aggregation of leukocytes to the endothelium at only nM concentrations. In addition, leukotriene B4 modulates immune responses, participates in the host defense against infections, and is a key mediator of PAF-induced lethal shock. Because of these powerful biological effects, leukotriene B4 is implicated in a variety of acute and chronic inflammatory diseases, e.g., nephritis, arthritis, dermatitis, and chronic obstructive pulmonary disease. The final step in the biosynthesis of leukotriene B4 is catalyzed by leukotriene A4 hydrolase, a unique bifunctional zinc metalloenzyme with an anion-dependent aminopeptidase activity. Here we describe the most recent developments regarding our understanding
    [Show full text]
  • Role of Epoxide Hydrolases in Lipid Metabolism
    Biochimie 95 (2013) 91e95 Contents lists available at SciVerse ScienceDirect Biochimie journal homepage: www.elsevier.com/locate/biochi Mini-review Role of epoxide hydrolases in lipid metabolism Christophe Morisseau* Department of Entomology and U.C.D. Comprehensive Cancer Center, One Shields Avenue, University of California, Davis, CA 95616, USA article info abstract Article history: Epoxide hydrolases (EH), enzymes present in all living organisms, transform epoxide-containing lipids to Received 29 March 2012 1,2-diols by the addition of a molecule of water. Many of these oxygenated lipid substrates have potent Accepted 8 June 2012 biological activities: host defense, control of development, regulation of blood pressure, inflammation, Available online 18 June 2012 and pain. In general, the bioactivity of these natural epoxides is significantly reduced upon metabolism to diols. Thus, through the regulation of the titer of lipid epoxides, EHs have important and diverse bio- Keywords: logical roles with profound effects on the physiological state of the host organism. This review will Epoxide hydrolase discuss the biological activity of key lipid epoxides in mammals. In addition, the use of EH specific Epoxy-fatty acids Cholesterol epoxide inhibitors will be highlighted as possible therapeutic disease interventions. Ó Juvenile hormone 2012 Elsevier Masson SAS. All rights reserved. 1. Introduction hydrolyzed by a water molecule [8]. Based on this mechanism, transition-state inhibitors of EHs have been designed (Fig. 1B). Epoxides are three atom cyclic ethers formed by the oxidation of These ureas and amides are tight-binding competitive inhibitors olefins. Because of their highly polarized oxygen-carbon bonds and with low nanomolar dissociation constants (KI) [9] [10].
    [Show full text]
  • Quantum Chemical Studies of Epoxide- Transforming Enzymes
    Quantum Chemical Studies of Epoxide- Transforming Enzymes Kathrin H. Hopmann Department of Theoretical Chemistry Royal Institute of Technology Stockholm, Sweden, 2007 ii © Kathrin H. Hopmann, 2007 ISBN 978-91-7178-640-1 ISSN 1654-2312 TRITA-BIO-Report 2007:3 Printed by Universitetsservice US-AB, Stockholm, Sweden. iii Abstract Density functional theory is employed to study the reaction mechanisms of different epoxide-transforming enzymes. Calculations are based on quantum chemical active site models, which are build from X-ray crystal structures. The models are used to study conversion of various epoxides into their corresponding diols or substituted alcohols. Epoxide-transforming enzymes from three different families are studied. The human soluble epoxide hydrolase (sEH) belongs to the α/β-hydrolase fold family. sEH employs a covalent mechanism to hydrolyze various epoxides into vicinal diols. The Rhodococcus erythrobacter limonene epoxide hydrolase (LEH) constitutes a novel epoxide hydrolase, which is considered the founding member of a new family of enzymes. LEH mediates transformation of limone-1,2-epoxide into the corresponding vicinal diol by employing a general acid/general base-mediated mechanism. The Agrobacterium radiobacter AD1 haloalcohol dehalogenase HheC is related to the short-chain dehydrogenase/reductases. HheC is able to convert epoxides using various nucleophiles such as azide, cyanide, and nitrite. Reaction mechanisms of these three enzymes are analyzed in depth and the role of different active site residues is studied through in silico mutations. Steric and electronic factors influencing the regioselectivity of epoxide opening are identified. The computed energetics help to explain preferred reaction pathways and experimentally observed regioselectivities. Our results confirm the usefulness of the employed computational methodology for investigating enzymatic reactions.
    [Show full text]
  • Multi-Omic Understanding of the Evolution of Xenobiotic Tolerance in Bacterial Isolates and Communities
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Summer 8-15-2019 Multi-omic Understanding of the Evolution of Xenobiotic Tolerance in Bacterial Isolates and Communities Tayte Paul Campbell Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Bioinformatics Commons, Biology Commons, and the Microbiology Commons Recommended Citation Campbell, Tayte Paul, "Multi-omic Understanding of the Evolution of Xenobiotic Tolerance in Bacterial Isolates and Communities" (2019). Arts & Sciences Electronic Theses and Dissertations. 1888. https://openscholarship.wustl.edu/art_sci_etds/1888 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Plant and Microbial Biosciences Dissertation Examination Committee: Gautam Dantas, Chair Arpita Bose Andrew Kau Audrey Odom-John Himadri Pakrasi Fuzhong Zhang Multi-omic Understanding of the Evolution of Xenobiotic Tolerance in Bacterial Isolates and Communities by Tayte P. Campbell A dissertation presented to The Graduate School of Washington University in partial fulfillment
    [Show full text]
  • Polychlorinated Biphenyls in Pigments
    doi: 10.1111/cote.12167 Polychlorinated biphenyls in pigments: inadvertent production and environmental Coloration significance Technology Lisa Rodenburg,a Jia Guoa and Robert Christieb,* aDepartment of Environmental Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA bSchool of Textiles and Design, Heriot-Watt University, Scottish Borders Campus, Netherdale, Galashiels, TD1 3HF, UK Feature article Email: [email protected] Society of Dyers and Colourists Received: 18 December 2014; Accepted: 26 June 2015 Polychlorobiphenyls are toxic, bioaccumulative, and persistent chemicals whose intentional manufacture has been banned throughout the developed world. Polychlorobiphenyls may be generated inadvertently during the production of certain pigments, including diarylides. This inadvertent production is allowed under various regulatory schemes, such as the Toxic Substances Control Act in the United States and the Stockholm Convention on Persistent Organic Pollutants. Generally, these regulations require polychlorobiphenyl levels in batches of pigment to be less than certain regulatory limits, usually 50 ppm. A growing body of evidence suggests that the use of pigments is dispersing polychlorobiphenyls throughout the environment. Polychlorobiphenyl congeners associated with pigments have been found throughout the United States in sediments and in surface waters at levels exceeding the prevailing water quality standards. A recent Japanese government study reported measured polychlorobiphenyl concentrations well
    [Show full text]
  • Download (2MB)
    Enzyme and Microbial Technology 139 (2020) 109592 Contents lists available at ScienceDirect Enzyme and Microbial Technology journal homepage: www.elsevier.com/locate/enzmictec Identification and catalytic properties of new epoxide hydrolases fromthe T genomic data of soil bacteria Gorjan Stojanovskia, Dragana Dobrijevica, Helen C. Hailesb, John M. Warda,* a Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK b Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK ARTICLE INFO ABSTRACT Keywords: Epoxide hydrolases (EHs) catalyse the conversion of epoxides into vicinal diols. These enzymes have extensive Epoxide hydrolase value in biocatalysis as they can generate enantiopure epoxides and diols which are important and versatile Limonene epoxide hydrolase synthetic intermediates for the fine chemical and pharmaceutical industries. Despite these benefits, theyhave Genome mining seen limited use in the bioindustry and novel EHs continue to be reported in the literature. Biotransformation We identified twenty-nine putative EHs within the genomes of soil bacteria. Eight of these EHs wereexplored in terms of their activity. Two limonene epoxide hydrolases (LEHs) and one ⍺/β EH were active on a model compound styrene oxide and its ring-substituted derivatives, with low to good percentage conversions of 18–86%. Further exploration of the substrate scope with enantiopure (R)-styrene oxide and (S)-styrene oxide, showed different epoxide ring opening regioselectivities. Two enzymes, expressed from plasmids pQR1984and pQR1990 de-symmetrised the meso-epoxide cyclohexene oxide, forming the (R,R)-diol with high enantioselec- tivity. Two LEHs, from plasmids pQR1980 and pQR1982 catalysed the hydrolysis of (+) and (−) limonene oxide, with diastereomeric preference for the (1S,2S,4R)- and (1R,2R,4S)-diol products, respectively.
    [Show full text]
  • Coordination of T Cell Activation and Migration Through Formation of the Immunological Synapse
    Coordination of T Cell Activation and Migration through Formation of the Immunological Synapse MICHAEL L. DUSTIN Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine and the Department of Pathology, New York University School of Medicine, New York, New York 10016, USA ABSTRACT: T cell activation is based on interactions of T cell antigen receptors with MHC-peptide complexes in a specialized cell–cell junction between the T cell and antigen-presenting cell—the immunological synapse. The immunolog- ical synapse coordinates naïve T cell activation and migration by stopping T cell migration with antigen-presenting cells bearing appropriate major histo- compatibility complex (MHC) peptide complexes. At the same time, the immu- nological synapse allows full T cell activation through sustained signaling over a period of several hours. The immunological synapse supports activation in the absence of continued T cell migration, which is required for T cell activa- tion through serial encounters. Src and Syk family kinases are activated early in immunological synapse formation, but this signaling process returns to the basal level after 30 min; at the same time, the interactions between T cell re- ceptors (TCRs) and MHC peptides are stabilized within the immunological synapse. The molecular pattern of the mature synapse in helper T cells is a self- stabilized structure that is correlated with cytokine production and prolifera- tion. I propose that this molecular pattern and its specific biochemical constit- uents are necessary
    [Show full text]
  • The New Aspects of Aminoacyl-Trna Synthetases
    Vol. 47 No. 3/2000 821–834 QUARTERLY Review The new aspects of aminoacyl-tRNA synthetases. Maciej Szymañski, Marzanna Deniziak and Jan Barciszewski½ Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 60-704 Poznañ, Poland Received: 29 December, 1999; revised: 24 May, 2000; accepted: 02 June, 2000 Key words: aminoacylation, aminoacyl-tRNA synthetases, protein biosynthesis, tRNA Aminoacyl-tRNA synthetases (AARS) are essential proteins found in all living organ- isms. They form a diverse group of enzymes that ensure the fidelity of transfer of ge- netic information from the DNA into the protein. AARS catalyse the attachment of amino acids to transfer RNAs and thereby establish the rules of the genetic code by virtue of matching the nucleotide triplet of the anticodon with its cognate amino acid. Here we summarise the effects of recent studies on this interesting family of multifunctional enzymes. The universal genetic code is established in a only components of the gene expression appa- single aminoacylation reaction of transfer ri- ratus that function at the interface between bonucleic acids (tRNAs). The reaction is nucleic acids and proteins. This leads to three catalysed by the family of aminoacyl-tRNA interesting aspects of studies on amino- synthetases (AARS) each of which activates acyl-tRNA synthetases: (i) the mechanism of an amino acid by binding to ATP and trans- amino acid recognition and chemical activa- fers it to the 3¢ end of the cognate tRNA. The tion, (ii) the specificity of tRNA recognition, conservation of the genetic code suggests that and (iii) the origin and evolution of AARS [3].
    [Show full text]
  • Lymphocyte-Activation Gene 3 (LAG-3) Immune Pathway
    Lymphocyte-Activation Gene 3 (LAG-3) About LAG-3 LAG-3 Lymphocyte-activation gene 3 (LAG-3) is an immune checkpoint receptor protein found on the cell surface of effector T cells and regulatory T cells (Tregs) and functions to control T cell response, activation and growth.1 TCR T cells are a type of white blood cell that are part of the immune system. Activation of cytotoxic T cells by antigens enables them to 1 kill unhealthy or foreign cells. Inactive T cell Antigen MHC Dendritic cell (APC) LAG-3 and LAG-3 and LAG-3 and Immune Function T Cell Exhaustion Cancer • After a T cell is activated to kill its • However, in certain situations where T • Because of its critical role in regulating target cell, LAG-3 expression is cells experience prolonged exposure to an exhaustion of cytotoxic T cells and Treg increased to turn off the immune antigen, such as cancer or chronic function, LAG-3 has become a target of response, so that the T cell does not go infection, the T cells become desensitized study in the cancer field. on to attack healthy cells.2 and lose their ability to activate and multiply in the presence of the antigen.4 • In cancer, LAG-3 expressing exhausted • Inhibition of the immune response is cytotoxic T cells and Tregs expressing accomplished through activation of • The desensitized T cell will also LAG-3 gather at tumor sites.5,6 the LAG-3 pathway, which can occur progressively fail to produce cytokines via binding of LAG-3 to a type of (proteins that assist in the immune • Preclinical studies suggest that inhibiting antigen-presenting complex called response) and kill the target cells.4 LAG-3 allows T cells to regain their MHC II.
    [Show full text]
  • Development of a Transplantable Liver Graft from a Tiny Partial Liver( Dissertation 全文 )
    Auxiliary xenotransplantation as an in vivo bioreactor - Title Development of a transplantable liver graft from a tiny partial liver( Dissertation_全文 ) Author(s) Masano, Yuki Citation 京都大学 Issue Date 2020-03-23 URL https://doi.org/10.14989/doctor.r13329 Right https://onlinelibrary.wiley.com/journal/13993089 Type Thesis or Dissertation Textversion ETD Kyoto University Received: 27 November 2018 | Revised: 25 May 2019 | Accepted: 27 June 2019 DOI: 10.1111/xen.12545 ORIGINAL ARTICLE Auxiliary xenotransplantation as an in vivo bioreactor— Development of a transplantable liver graft from a tiny partial liver Yuki Masano1 | Shintaro Yagi1 | Yosuke Miyachi1 | Shinya Okumura1 | Toshimi Kaido1 | Hironori Haga2 | Eiji Kobayashi3 | Shinji Uemoto1 1Division of Hepato‐Biliary‐Pancreatic and Transplant Surgery, Department of Surgery, Abstract Graduate School of Medicine, Kyoto Background: We established a completely novel method of auxiliary xenogeneic University, Kyoto, Japan partial liver transplantation and examined whether liver grafts procured from Syrian 2Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan hamsters regenerated in nude rats, which were used as in vivo bioreactors. 3Department of Organ Fabrication, Keio Methods: The hamsters and the rats were all males (n = 10). Partial liver grafts from University School of Medicine, Tokyo, Japan hamsters were transplanted into nude rats in an auxiliary manner. We evaluated liver Correspondence graft injury, rejection, and regeneration during 7 days after auxiliary xenogeneic par- Shintaro Yagi, 54 Kawahara‐cho, Shogoin, Sakyo‐ku, Kyoto, 606‐8507, Japan. tial liver transplantation. Email: [email protected]‐u.ac.jp Results: All rats survived until sacrifice on post‐operative day (POD) 1, 3, and 7. HE‐ Funding information staining showed normal at POD1, mild periportal edema, and slight bile duct and Japan Society for the Promotion of Science, venous endothelial inflammation at POD3, and moderate acute cellular rejection at Grant/Award Number: 17H06814 POD7 without parenchymal necrosis.
    [Show full text]
  • NST110: Advanced Toxicology Lecture 4: Phase I Metabolism
    Absorption, Distribution, Metabolism and Excretion (ADME): NST110: Advanced Toxicology Lecture 4: Phase I Metabolism NST110, Toxicology Department of Nutritional Sciences and Toxicology University of California, Berkeley Biotransformation The elimination of xenobiotics often depends on their conversion to water-soluble chemicals through biotransformation, catalyzed by multiple enzymes primarily in the liver with contributions from other tissues. Biotransformation changes the properties of a xenobiotic usually from a lipophilic form (that favors absorption) to a hydrophilic form (favoring excretion in the urine or bile). The main evolutionary goal of biotransformation is to increase the rate of excretion of xenobiotics or drugs. Biotransformation can detoxify or bioactivate xenobiotics to more toxic forms that can cause tumorigenicity or other toxicity. Phase I and Phase II Biotransformation Reactions catalyzed by xenobiotic biotransforming enzymes are generally divided into two groups: Phase I and phase II. 1. Phase I reactions involve hydrolysis, reduction and oxidation, exposing or introducing a functional group (-OH, -NH2, -SH or –COOH) to increase reactivity and slightly increase hydrophilicity. O R1 - O S O sulfation O R2 OH Phase II Phase I R1 R2 R1 R2 - hydroxylation COO R1 O O glucuronidation OH R2 HO excretion OH O COO- HN H -NH2 R R1 R1 S N 1 Phase I Phase II COO O O oxidation glutathione R2 OH R2 R2 conjugation 2. Phase II reactions include glucuronidation, sulfation, acetylation, methylation, conjugation with glutathione, and conjugation with amino acids (glycine, taurine and glutamic acid) that strongly increase hydrophilicity. Phase I and II Biotransformation • With the exception of lipid storage sites and the MDR transporter system, organisms have little anatomical defense against lipid soluble toxins.
    [Show full text]
  • Regioselectivity Engineering of Epoxide Hydrolase: Near-Perfect Enantioconvergence Through a Single Site Mutation
    Letter Cite This: ACS Catal. 2018, 8, 8314−8317 pubs.acs.org/acscatalysis Regioselectivity Engineering of Epoxide Hydrolase: Near-Perfect Enantioconvergence through a Single Site Mutation † # † ‡ # † † § † Fu-Long Li, , Xu-Dong Kong, , , Qi Chen, Yu-Cong Zheng, Qin Xu, Fei-Fei Chen, † ‡ ‡ † † Li-Qiang Fan, Guo-Qiang Lin, Jiahai Zhou,*, Hui-Lei Yu,*, and Jian-He Xu*, † State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China ‡ Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China § State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China *S Supporting Information ABSTRACT: An epoxide hydrolase from Vigna radiata (VrEH2) affords partial enantioconvergence (84% ee)intheenzymatic hydrolysis of racemic p-nitrostyrene oxide (pNSO), mainly due to ffi α β insu cient regioselectivity for the (S)-enantiomer (rS = S/ S = 7.3). To improve the (S)-pNSO regioselectivity, a small but smart library of VrEH2 mutants was constructed by substituting each of four key residues lining the substrate binding site with a simplified amino acid alphabet of Val, Asn, Phe, and Trp. Among the mutants, M263N attacked almost exclusively at Cα in the (S)-epoxide ring with satisfactory regioselectivity (rS = 99.0), without compromising the original high regioselectivity for the (R)-epoxide (rR = 99.0), resulting in near-perfect enantioconvergence (>99% analytical yield, 98% ee). Structural and conformational analysis showed that the introduced Asn263 formed additional hydrogen bonds with the nitro group in substrate, causing a shift in the substrate binding pose.
    [Show full text]