Coordination of T Cell Activation and Migration Through Formation of the Immunological Synapse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sialic Acids and Their Influence on Human NK Cell Function
cells Review Sialic Acids and Their Influence on Human NK Cell Function Philip Rosenstock * and Thomas Kaufmann Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany; [email protected] * Correspondence: [email protected] Abstract: Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function. Keywords: sialic acids; sialylation; NK cells; Siglecs; NCAM; CD56; sialyltransferases; NKp44; Nkp46; NKG2D 1. Introduction 1.1. Sialic Acids N-Acetylneuraminic acid (Neu5Ac) is the most common sialic acid in the human organism and also the precursor for all other sialic acid derivatives. The biosynthesis of Neu5Ac begins in the cytosol with uridine diphosphate-N-acetylglucosamine (UDP- Citation: Rosenstock, P.; Kaufmann, GlcNAc) as its starting component [1]. It is important to understand that sialic acid T. Sialic Acids and Their Influence on formation is strongly linked to glycolysis, since it results in the production of fructose-6- Human NK Cell Function. Cells 2021, phosphate (F6P) and phosphoenolpyruvate (PEP). -
The Immunological Synapse and CD28-CD80 Interactions Shannon K
© 2001 Nature Publishing Group http://immunol.nature.com ARTICLES The immunological synapse and CD28-CD80 interactions Shannon K. Bromley1,Andrea Iaboni2, Simon J. Davis2,Adrian Whitty3, Jonathan M. Green4, Andrey S. Shaw1,ArthurWeiss5 and Michael L. Dustin5,6 Published online: 19 November 2001, DOI: 10.1038/ni737 According to the two-signal model of T cell activation, costimulatory molecules augment T cell receptor (TCR) signaling, whereas adhesion molecules enhance TCR–MHC-peptide recognition.The structure and binding properties of CD28 imply that it may perform both functions, blurring the distinction between adhesion and costimulatory molecules. Our results show that CD28 on naïve T cells does not support adhesion and has little or no capacity for directly enhancing TCR–MHC- peptide interactions. Instead of being dependent on costimulatory signaling, we propose that a key function of the immunological synapse is to generate a cellular microenvironment that favors the interactions of potent secondary signaling molecules, such as CD28. The T cell receptor (TCR) interaction with complexes of peptide and as CD2 and CD48, which suggests that CD28 might have a dual role as major histocompatibility complex (pMHC) is central to the T cell an adhesion and a signaling molecule4. Coengagement of CD28 with response. However, efficient T cell activation also requires the partici- the TCR has a number of effects on T cell activation; these include pation of additional cell-surface receptors that engage nonpolymorphic increasing sensitivity to TCR stimulation and increasing the survival of ligands on antigen-presenting cells (APCs). Some of these molecules T cells after stimulation5. CD80-transfected APCs have been used to are involved in the “physical embrace” between T cells and APCs and assess the temporal relationship of TCR and CD28 signaling, as initiat- are characterized as adhesion molecules. -
The New Aspects of Aminoacyl-Trna Synthetases
Vol. 47 No. 3/2000 821–834 QUARTERLY Review The new aspects of aminoacyl-tRNA synthetases. Maciej Szymañski, Marzanna Deniziak and Jan Barciszewski½ Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 60-704 Poznañ, Poland Received: 29 December, 1999; revised: 24 May, 2000; accepted: 02 June, 2000 Key words: aminoacylation, aminoacyl-tRNA synthetases, protein biosynthesis, tRNA Aminoacyl-tRNA synthetases (AARS) are essential proteins found in all living organ- isms. They form a diverse group of enzymes that ensure the fidelity of transfer of ge- netic information from the DNA into the protein. AARS catalyse the attachment of amino acids to transfer RNAs and thereby establish the rules of the genetic code by virtue of matching the nucleotide triplet of the anticodon with its cognate amino acid. Here we summarise the effects of recent studies on this interesting family of multifunctional enzymes. The universal genetic code is established in a only components of the gene expression appa- single aminoacylation reaction of transfer ri- ratus that function at the interface between bonucleic acids (tRNAs). The reaction is nucleic acids and proteins. This leads to three catalysed by the family of aminoacyl-tRNA interesting aspects of studies on amino- synthetases (AARS) each of which activates acyl-tRNA synthetases: (i) the mechanism of an amino acid by binding to ATP and trans- amino acid recognition and chemical activa- fers it to the 3¢ end of the cognate tRNA. The tion, (ii) the specificity of tRNA recognition, conservation of the genetic code suggests that and (iii) the origin and evolution of AARS [3]. -
Lymphocyte-Activation Gene 3 (LAG-3) Immune Pathway
Lymphocyte-Activation Gene 3 (LAG-3) About LAG-3 LAG-3 Lymphocyte-activation gene 3 (LAG-3) is an immune checkpoint receptor protein found on the cell surface of effector T cells and regulatory T cells (Tregs) and functions to control T cell response, activation and growth.1 TCR T cells are a type of white blood cell that are part of the immune system. Activation of cytotoxic T cells by antigens enables them to 1 kill unhealthy or foreign cells. Inactive T cell Antigen MHC Dendritic cell (APC) LAG-3 and LAG-3 and LAG-3 and Immune Function T Cell Exhaustion Cancer • After a T cell is activated to kill its • However, in certain situations where T • Because of its critical role in regulating target cell, LAG-3 expression is cells experience prolonged exposure to an exhaustion of cytotoxic T cells and Treg increased to turn off the immune antigen, such as cancer or chronic function, LAG-3 has become a target of response, so that the T cell does not go infection, the T cells become desensitized study in the cancer field. on to attack healthy cells.2 and lose their ability to activate and multiply in the presence of the antigen.4 • In cancer, LAG-3 expressing exhausted • Inhibition of the immune response is cytotoxic T cells and Tregs expressing accomplished through activation of • The desensitized T cell will also LAG-3 gather at tumor sites.5,6 the LAG-3 pathway, which can occur progressively fail to produce cytokines via binding of LAG-3 to a type of (proteins that assist in the immune • Preclinical studies suggest that inhibiting antigen-presenting complex called response) and kill the target cells.4 LAG-3 allows T cells to regain their MHC II. -
Dissociation the Immunological Synapse Upon Cellular T Cells
Peptide-Specific Intercellular Transfer of MHC Class II to CD4 + T Cells Directly from the Immunological Synapse upon Cellular Dissociation This information is current as of September 26, 2021. Scott A. Wetzel, Timothy W. McKeithan and David C. Parker J Immunol 2005; 174:80-89; ; doi: 10.4049/jimmunol.174.1.80 http://www.jimmunol.org/content/174/1/80 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2004/12/16/174.1.80.DC1 Material http://www.jimmunol.org/ References This article cites 53 articles, 34 of which you can access for free at: http://www.jimmunol.org/content/174/1/80.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Peptide-Specific Intercellular Transfer of MHC Class II to CD4؉ T Cells Directly from the Immunological Synapse upon Cellular Dissociation1 Scott A. -
An in Vitro Approach to Detect Metabolite Toxicity Due to CYP3A4
Toxicology 216 (2005) 154–167 An in vitro approach to detect metabolite toxicity due to CYP3A4-dependent bioactivation of xenobiotics Luisella Vignati ∗, Elisa Turlizzi 1, Sonia Monaci, Pietro Grossi, Ruben de Kanter, Mario Monshouwer 2 Department of Pre-Clinical Development, Nerviano Medical Sciences S.r.l., V.le Pasteur, 10, 20014, Nerviano, MI, Italy Received 22 June 2005; received in revised form 3 August 2005; accepted 3 August 2005 Available online 19 September 2005 Abstract Many adverse drug reactions are caused by the cytochrome P450 (CYP) dependent activation of drugs into reactive metabolites. In order to reduce attrition due to metabolism-mediated toxicity and to improve safety of drug candidates, we developed two in vitro cell-based assays by combining an activating system (human CYP3A4) with target cells (HepG2 cells): in the first method we incubated microsomes containing cDNA-expressed CYP3A4 together with HepG2 cells; in the second approach HepG2 cells were transiently transfected with CYP3A4. In both assay systems, CYP3A4 catalyzed metabolism was found to be comparable to the high levels reported in hepatocytes. Both assay systems were used to study ten CYP3A4 substrates known for their potential to form metabolites that exhibit higher toxicity than the parent compounds. Several endpoints of toxicity were evaluated, and the measurement of MTT reduction and intracellular ATP levels were selected to assess cell viability. Results demonstrated that both assay systems are capable to metabolize the test compounds leading to increased toxicity, compared to their respective control systems. The co-incubation with the CYP3A4 inhibitor ketoconazole confirmed that the formation of reactive metabolites was CYP3A4 dependent. -
Vaccine Immunology Claire-Anne Siegrist
2 Vaccine Immunology Claire-Anne Siegrist To generate vaccine-mediated protection is a complex chal- non–antigen-specifc responses possibly leading to allergy, lenge. Currently available vaccines have largely been devel- autoimmunity, or even premature death—are being raised. oped empirically, with little or no understanding of how they Certain “off-targets effects” of vaccines have also been recog- activate the immune system. Their early protective effcacy is nized and call for studies to quantify their impact and identify primarily conferred by the induction of antigen-specifc anti- the mechanisms at play. The objective of this chapter is to bodies (Box 2.1). However, there is more to antibody- extract from the complex and rapidly evolving feld of immu- mediated protection than the peak of vaccine-induced nology the main concepts that are useful to better address antibody titers. The quality of such antibodies (e.g., their these important questions. avidity, specifcity, or neutralizing capacity) has been identi- fed as a determining factor in effcacy. Long-term protection HOW DO VACCINES MEDIATE PROTECTION? requires the persistence of vaccine antibodies above protective thresholds and/or the maintenance of immune memory cells Vaccines protect by inducing effector mechanisms (cells or capable of rapid and effective reactivation with subsequent molecules) capable of rapidly controlling replicating patho- microbial exposure. The determinants of immune memory gens or inactivating their toxic components. Vaccine-induced induction, as well as the relative contribution of persisting immune effectors (Table 2.1) are essentially antibodies— antibodies and of immune memory to protection against spe- produced by B lymphocytes—capable of binding specifcally cifc diseases, are essential parameters of long-term vaccine to a toxin or a pathogen.2 Other potential effectors are cyto- effcacy. -
553.Full.Pdf
Cutting Edge: DNAX Accessory Molecule 1− Deficient CD8+ T Cells Display Immunological Synapse Defects That Impair Antitumor Immunity This information is current as of October 4, 2021. Kelly M. Ramsbottom, Edwin D. Hawkins, Raz Shimoni, Mairi McGrath, Christopher J. Chan, Sarah M. Russell, Mark J. Smyth and Jane Oliaro J Immunol 2014; 192:553-557; Prepublished online 13 December 2013; Downloaded from doi: 10.4049/jimmunol.1302197 http://www.jimmunol.org/content/192/2/553 Supplementary http://www.jimmunol.org/content/suppl/2013/12/13/jimmunol.130219 http://www.jimmunol.org/ Material 7.DC1 References This article cites 25 articles, 10 of which you can access for free at: http://www.jimmunol.org/content/192/2/553.full#ref-list-1 Why The JI? Submit online. by guest on October 4, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Th eJournal of Cutting Edge Immunology Cutting Edge: DNAX Accessory Molecule 1–Deficient CD8+ T Cells Display Immunological Synapse Defects That Impair Antitumor Immunity Kelly M. -
Immunological Synapse CD28 Signals in the Immature
CD28 Signals in the Immature Immunological Synapse Pietro G. Andres, Kimberly C. Howland, Douglas Dresnek, Samuel Edmondson, Abul K. Abbas and Matthew F. This information is current as Krummel of September 28, 2021. J Immunol 2004; 172:5880-5886; ; doi: 10.4049/jimmunol.172.10.5880 http://www.jimmunol.org/content/172/10/5880 Downloaded from References This article cites 25 articles, 10 of which you can access for free at: http://www.jimmunol.org/content/172/10/5880.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CD28 Signals in the Immature Immunological Synapse1 Pietro G. Andres,2†‡ Kimberly C. Howland,2* Douglas Dresnek,†‡ Samuel Edmondson,†‡ Abul K. Abbas,* and Matthew F. Krummel3* T cell recognition of peptide-MHC complexes on APCs results in the aggregation of TCRs at a central supramolecular activation complex (c-SMAC) within a mature immunological synapse. -
Introduction to Theory of Chemical Reactions
INTRODUCTION TO THEORY OF CHEMICAL REACTIONS BACKGROUND The introductory part of the organic chemistry course has three major modules: Molecular architecture (structure), molecular dynamics (conformational analysis), and molecular transformations (chemical reactions). An understanding of the first two is crucial to an understanding of the third one. The rest of the organic chemistry course will be largely spent on studying different kinds of reactions and mechanisms. A summary of key concepts follows. 1. MOLECULAR ARCHITECTURE - Basic principles of molecular structure. a) Atomic structure b) Orbitals and hybridization c) Covalent bonding d) Lewis structures and resonance forms e) Isomerism, structural and geometric isomers f) Polarity, functional groups, nomenclature systems g) Three-dimensional structures, stereochemistry, stereoisomers. 2. MOLECULAR DYNAMICS - Basic principles of molecular motion involving rotation around single bonds and no bond breakage. The focus is on conformations and their energy relationships, especially in reference to alkanes and cycloalkanes (conformational analysis). a) Steric interactions b) Torsional strain and Newman projections c) Angle strain in cycloalkanes d) Conformations of cyclohexane and terminology associated with it. 3. MOLECULAR TRANSFORMATIONS - This is the part that comprises the bulk of organic chemistry courses. It is the study of chemical reactions and the principles that rule transformations. There are three major aspects of this module. In organic chemistry I we will focus largely on the first two, and leave the study of synthetic strategy for later. a) Reaction mechanisms - Step by step accounts of how electron movement takes place when bonds are broken and formed, and the conditions that favor these processes (driving forces). An understanding of the basic concepts of thermodynamics and kinetics is important here. -
Biochemistry
Biochemistry 0 Copyright 1995 by the American Chemical Society Volume 34, Number 49 December 12, 1995 New Concepts in Biochemistry Reexamination of Induced Fit as a Determinant of Substrate Specificity in Enzymatic Reactions Carol Beth Post* Department of Medicinal Chemistry, Purdue University, West Lufayette, Indiana 47907-1333 William J. Ray, Jr. Department of Biological Sciences, Purdue University, West Lufayettte, lndiana 47907-1392 Received August 14, 1995; Reuised Manuscript Received October 12, 1995@ ABSTRACT: It has been argued that a substrate-induced conformational change involving the orientation of catalytic groups cannot affect the specificity for two substrates in an enzymatic system where the chemical step is rate limiting, because such an induced fit would alter the catalytic efficiency for both to an equal extent. To the contrary, the generalized induced-fit treatment described here shows that when critical substrate-specific conformational changes in the enzyme persist in the transition state, specificity is linked to conformational differences between the reactive complex for a good substrate and the related complex for a poor one. Conformational differences are a determinant of specificity when the reaction proceeds via an “induced-fit” transition state. Our treatment also shows that such conformational changes can enhance the specificity of an enzyme with suboptimal catalytic efficiency. If substrate-dependent conformational differences in a primative enzyme can enhance specificity, evolutionary pressure to increase specificity could inseparably link enzymatic specificity to induced conformational changes. In a provocative 1958 paper, Koshland suggested that is unique, i.e., that an identical alignment of catalytic groups conformational changes induced by substrate binding could must be achieved in the transition state for any substrate to orient functional groups on an enzyme so as to enhance the react. -
Studies of the Role of Sialyl Lewis X Antigen and E Selectin Ligands in Colorectal Cancer
Fanny Marjolaine Deschepper Mestre em Biologia-Saude Studies of the role of sialyl Lewis X antigen and E selectin ligands in colorectal cancer Dissertação para obtenção do Grau de Doutor em Biologia - Especialidade em Biologia Celular Orientador: Doutora Paula Alexandra Quintela Videira, Profa. Auxiliar, Faculdade de Ciências e Tecnologia - Universidade Nova de Lisboa Co-orientador: Doutor Fabio Dall'Olio, Professor, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale - Università di Bologna Júri: Presidente: Profa. Doutora Isabel Maria Godinho de Sá Nogueira Arguentes: Profa. Doutora Susana Constantino Rosa Santos Invª. Doutora Salomé Soares de Pinho Vogais: Invª. Doutora Maria Angelina de Sá Palma Profa. Doutora Paula Alexandra Quintela Videira Fevereiro 2020 Fanny Marjolaine Deschepper Studies of the role of sialyl Lewis X antigen and E-selectin ligands in colorectal cancer Copyright © Fanny Deschepper, FCT/UNL, UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. iii Acknowledgements To begin, I would like to thank my supervisor Dr Paula Videira for giving me the opportunity to be part of this great project. I am grateful for the confidence and support she gave to me during this PhD project. A special thanks goes to my co-supervisor Fabio Dall’Olio, and to my collaborators, Dr Paul Hensbergen and Dr Daniel Spencer, who welcomed me in their respective laboratories and gave me the opportunity to enlarge my knowledges and scientific skills by teaching me new techniques and analysis approaches.