Quadrangle and a Reconnaissance Geologic Map of the Central
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Deschutes National Forest Memorial Day Weekend 2009
Deschutes National Forest Summer Trail Access and Conditions Update KNOW BEFORE YOU GO! Updated August 12, 2012 Summer Trail Summary Very limited late season snow patches may be found along the Cascade crest. Most not an issue, but you may find a drift or two on north aspects at the higher elevations! Blow down levels on trails range from light to heavy with approximately 65- 70% of Deschutes Trails cleared of blowdown for this season. Mosquitos highly variable. Road 370 still closed by late season snow and muddy sections. Estimated opening, later this week. Metolius River restoration projects in progress with some trail closures or detours likely over coming weeks. South Sister Climbers Trail, Moraine and Green Lakes Trails have a few snow patches remaining. A few down trees have not been cleared from these trails. Dogs must be on leash on these trails thru Sept 15. Northwest Youth Corps installing one of several new hiking bridges on Metolius River Trails. Beware of restoration Be aware that a number of trail projects continuing on Metolius Trails into the Fall. bridges have reached the end of their usable life and have been posted closed to stock use…use nearby ford or alternate route. Go prepared with your Ten Essential Systems: Navigation (map and compass) Sun protection (sunglasses/sunscreen) Insulation (extra clothing) Illumination (headlamp/flashlight) First-aid supplies Fire(waterproofmatches/lighter/candles) Repair kit and tools Late melting snow patch on South Sister Climbers Trail at 6,000’. Photo 8/09/12. Wear boots,Take a map… Nutrition (extra food) GO PREPARED! Hydration (extra water) Emergency shelter Reminder: PLEASE, PRACTICE THE SEVEN LEAVE NO TRACE PRINCIPALS: Plan Ahead and Prepare Travel and Camp on Durable Surfaces Dispose of Waste Properly Leave What You Find Minimize Campfire Impacts Respect Wildlife Be Considerate of Other Visitors For details on the 7 LNT Principals: http://lnt.org/learn/7-principles Excerpts from a recent Wilderness Ranger report: Sisters Mirror Lakes continue to see extensive day use. -
Cascades Volcano Observatory Monitoring Cascade Volcanoes
Cascades Volcano Observatory Monitoring Cascade Volcanoes http://volcanoes.usgs.gov/observatories/cvo/cvo_monitoring.html About CVO Monitoring Cascade Volcanoes Volcano Updates Volcano eruption forecasting relies on several disciplines of volcanology. Hazards Active volcanoes are complex natural systems, Monitoring and understanding a volcano's behaviors requires the attention of specialists from many science Seismicity disciplines. It demands a combination of current Deformation knowledge about magma systems, tectonic plate motion, volcano deformation, earthquakes, gases, Volcanic Gas chemistry, volcano histories, processes, and Lahar Detection hazards. Hydrothermal No single tool or technique can adequately monitor or predict volcanic behaviors. Therefore, Innovative Techniques volcanologists rely on an assortment of instruments and techniques to monitor volcanic unrest. This CVO Education requires placement of monitoring instruments both Prepare close to and far away from the primary source of eruptive activity (e.g. in a crater, on the crater rim, Multimedia and on the volcano's flanks). By placing sensitive monitoring instruments at hazardous volcanoes in Regional Volcanism Helicopter dropping off monitoring equipment at Mount St. advance of the unrest, the USGS CVO helps to Helens, Washington. ensure that communities at risk can be forewarned with sufficient time to prepare and implement response plans and mitigation measures. Recommendations for the numbers and types of ground-based sensors were made by an interdisciplinary team of scientists as part of planning for the National Volcano Early Warning System. CVO uses these recommendations to plan monitoring improvements throughout the Cascades. You can watch interviews with volcano scientists (Web Shorts) about their research and monitoring efforts and videos about volcano monitoring techniques in the Multimedia section of this website. -
Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the Re-Opening of Lava Lands Visitor Center Inside
Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the re-opening of Lava Lands Visitor Center Inside.... Be Safe! 2 LAWRENCE A. CHITWOOD Go To Special Places 3 EXHIBIT HALL Lava Lands Visitor Center 4-5 DEDICATED MAY 30, 2009 Experience Today 6 For a Better Tomorrow 7 The Exhibit Hall at Lava Lands Visitor Center is dedicated in memory of Explore Newberry Volcano 8-9 Larry Chitwood with deep gratitude for his significant contributions enlightening many students of the landscape now and in the future. Forest Restoration 10 Discover the Natural World 11-13 Lawrence A. Chitwood Discovery in the Kids Corner 14 (August 4, 1942 - January 4, 2008) Take the Road Less Traveled 15 Larry was a geologist for the Deschutes National Forest from 1972 until his Get High on Nature 16 retirement in June 2007. Larry was deeply involved in the creation of Newberry National Volcanic Monument and with the exhibits dedicated in 2009 at Lava Lands What's Your Interest? Visitor Center. He was well known throughout the The Deschutes and Ochoco National Forests are a recre- geologic and scientific communities for his enthusiastic support for those wishing ation haven. There are 2.5 million acres of forest including to learn more about Central Oregon. seven wilderness areas comprising 200,000 acres, six rivers, Larry was a gifted storyteller and an ever- 157 lakes and reservoirs, approximately 1,600 miles of trails, flowing source of knowledge. Lava Lands Visitor Center and the unique landscape of Newberry National Volcanic Monument. Explore snow- capped mountains or splash through whitewater rapids; there is something for everyone. -
Information Circular 41: Origin of Cascade Landscapes
111ackin I CdrlJ .rc-1J ORIGIN OF CASCADE LANDSCAPES ---=-~--=---------=---- FRONTISPIECE Picket Range in upper Skagit area, Northern Cascade Mountains. Snowfields occupy a former ice-filled cirque. Grass is enroaching on ice-polished rock surfaces. State of Washington DANIEL J. EVANS, Governor Department of Conservation ROY MUNDY, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, SupervisoT Information Circular No. 41 ORIGIN OF CASCADE LANDSCAPES By J. HOOVER MACKIN and ALLENS. CARY STATE PRINTING PLANT, OLYMPIA, WASHINGTON 1965 For sale by Department of Conservation, Olympia, Washington. Price, 50 cents. FOREWORD The Cascade Range has had an important influence on the lives of a great many people ever since man has inhabited the Northwest. The mountains were a barrier to Indian travel; they were a challenge to the westward migration of the early settlers in the area; they posed serious problems for the early railroad builders; and they still constitute an obstruction to east-west travel. A large part of the timber, mineral, and surface water resources of the State come from the Cascades. About 80 percent of the area covered by glaciers in the United States, exclusive of Alaska, is in the Cascades of Washington. This region includes some of the finest mountain scenery in the country and is a popular outdoor recreation area. The Cascade Range is a source of economic value to many, a source of pleasure to many others, and a problem or source of irritation to some. Regardless of their reactions, many people have wondered about the origin of the mountains How and when did the Cascades come into being, and what forces were responsible for the construction job? -This report, "Origin of Cascade Landscapes," gives the answers to these questions. -
First Woman to Climb All Three Sisters in One Day Geologist Ewart Baldwin Breaks New Ground, Turns 90
VOLUME 65 MAY 2005 NUMBER 5 Inside This Issue M. "Doris" Jones (1911-2005) Membership Changes 2 Committee News 2 First Woman to Climb Potlucks 3 All Three Sisters in One Day Board Notes 4 Fundraising Focus 7 M. “DORIS” (SIMS) JONES – an Obsidian who was Book Review 10 the first woman ever to climb all Three Sisters in one Raingear Care 11 day -- died in a retirement home in La Pine, OR, on April 8 of age-related natural causes. She was 93. Trip Reports 13-16 There will be a private scattering of ashes by the Upcoming Events 17-19 family at a later date. Climb Schedule 18 Born Margaret Doris on Nov. 30, 1911, to Harry Calendar into June 19 and Hazel (Austin) Osborn in Watertown, SD, she Features by Members grew up in Eugene and graduated from Eugene High Monday Morning Regulars 5 School in 1930. Doris worked as a school secretary Celebrating V-E, V-J Day 8 from 1948 to 1984, retiring to Bend at that time. In Swop ‘til You Drop 9 1960, she married Frank Jones in Yachats. Survivors include her son Jim (Ann) Sims of Springfield; a Conquering Challenges 12 sister, Blanche Bross of Bend; and two grandchildren. Janet’s Trip Sampler 17 DORIS, "PRINCESS WHITE DOVE," completed Dates to Remember 137 Obsidian trips, including 20 climbs. She also enjoyed gardening, sailing and skiing. Her amazing Three Sisters feat on Labor Day weekend in 1949 was May 20 Potluck Continued on Page 8 May 25 CPR Class June 1 Board Meeting June 4 National Trails Day Geologist Ewart Baldwin June 8 Dining at the Dump June 26 Challenge Course Breaks New Ground, Turns 90 Detailed trip schedules at: OBSIDIANS ARE INVITED to an open house celebrating Ewart Baldwin’s 90th www.obsidians.org or birthday at First United Methodist Church (14th & Olive) from 2 to 5 p.m. -
2016 Cascade Volcanoes.Pptx
The Cascade Range Lake Almanor Mt Garibaldi 1 Mt Garibaldi, Brish Columbia 2 hp://volcano.si.edu/Photos/full/027024.jpg Lassen Peak from Lake Almanor, California hps://californiawolves.files.wordpress.com/2015/05/3437400098_5bcbed91d9.jpg 3 Volcanic Activity • Diffuse degassing and fumaroles • Hawaiian eruptions • Lava lakes • Strombolian eruptions • Vulcanian eruptions • Visuvian or sub-plinian eruptions (M‹4) • Plinian eruptions (M=4+) • Pelean eruptions • Hydrovolcanic eruptions 4 5 6 Vent: Any opening at the Earth's surface through which magma erupts or volcanic gases are emied. 7 Vent: Any opening at the Earth's surface through which magma erupts or volcanic gases are emied. Caldera:A large basin-shaped volcanic depression with a diameter many mes larger than included volcanic vents; may range from 2 to 50 km (1 to 30 mi) across. Commonly formed when magma is withdrawn or erupted from a shallow underground magma reservoir. The removal of large volumes of magma may result in loss of structural support for the overlying rock, thereby leading to collapse of the ground and formaon of this type of large depression. Calderas are different from craters, which are smaller, circular depressions created primarily by explosive excavaon of rock during erupons. hps://volcanoes.usgs.gov/vsc/glossary/caldera.html 8 Model of Unzen Volcanic Dome, Japan hp://www.eri.u-tokyo.ac.jp/KOHO/Yoran2003/sec4-5-eng.files/image002.jpg 9 10 Shield Volcanoes Belnap Crater, McKenzie Pass 11 Belnap Crater 12 AA lava flow 13 Medicine Lake Shield volcano 14 15 hp://volcanoes.usgs.gov/volcanoes/medicine_lake/geo_hist_summary.html -
Summer Trail Access and Conditions Update
Summer Trail Access and Conditions Update Updated June 30, 2017 July Fourth Report! Summer Trail Highlights Summer season high use at recreation sites and trails. Fire season in effect. Possessing or discharging of fireworks prohibited on National Forest Lands. Summer trails below 5,800’ elevation are mostly snow free and accessible. Trail clearing (mostly volunteers) in progress on lower/mid elevation trails. Snow lines are rising to 6,000-7-,200 ft. Please avoid using muddy trails. 60-70% of Wilderness trails are blocked by snow! Wilderness permits required. Biking prohibited in Wilderness! Trails near snow lines (approx.6,000-7,000’) are Be aware of weekday (M-F) trail, road likely muddy. Please avoid using muddy trails as and area closures for logging early season use causes erosion and tread damage. operations, south and west of Cascade Higher elevation trails under patchy, sectional to Lks Welcome Station. near solid snow. 70% of PCT under snow. May 15-Sept 15, dog leash requirement in effect on Deschutes River Trails. Northwest Forest Passes required at various trailheads and day use sites. Cascade Lakes Welcome Station and Lava Lands are open 7 days/wk. NW Forest Passes available. Hwy 46 open but June 19-October 31 bridge related construction at Fall Creek and Goose Creek (Sparks Lk area) will have delays. Cultus Lk and Soda Creek campgrounds are closed until further notice. Go prepared with your Ten Essential Trail clearing in progress on snow free trails with Systems. approx. 50-60% of trails are cleared of down trees. Have a safe summer trails season! GENERAL SUMMER TRAIL CONDITIONS AS OF JUNE 30, 2017: Most Deschutes National Forest non-Wilderness summer trails below 6,000’ elevation are snow free and accessible. -
Volcano Hazards at Newberry Volcano, Oregon
Volcano Hazards at Newberry Volcano, Oregon By David R. Sherrod1, Larry G. Mastin2, William E. Scott2, and Steven P. Schilling2 1 U.S. Geological Survey, Hawaii National Park, HI 96718 2 U.S. Geological Survey, Vancouver, WA 98661 OPEN-FILE REPORT 97-513 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1997 U.S. Department of the Interior U.S. Geological Survey CONTENTS Introduction 1 Hazardous volcanic phenomena 2 Newberry's volcanic history is a guide to future eruptions 2 Flank eruptions would most likely be basaltic 3 The caldera would be the site of most rhyolitic eruptions—and other types of dangerously explosive eruptions 3 The presence of lakes may add to the danger of eruptions in the caldera 5 The most damaging lahars and floods at Newberry volcano would be limited to the Paulina Creek area 5 Small to moderate-size earthquakes are commonly associated with volcanic activity 6 Volcano hazard zonation 7 Hazard zone for pyroclastic eruptions 7 Regional tephra hazards 8 Hazard zone for lahars or floods on Paulina Creek 8 Hazard zone for volcanic gases 10 Hazard zones for lava flows 10 Large-magnitude explosive eruptions of low probability 11 Monitoring and warnings 12 Suggestions for further reading 12 Endnotes 13 ILLUSTRATIONS Plate 1. Volcano hazards at Newberry volcano, Oregon in pocket Figure 1. Index map showing Newberry volcano and vicinity 1 Figure 2. -
Hydrogeology of the Mckinney Butte Area: Sisters, Oregon
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1-1-2011 Hydrogeology of the McKinney Butte Area: Sisters, Oregon Joshua Andrew Hackett Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Let us know how access to this document benefits ou.y Recommended Citation Hackett, Joshua Andrew, "Hydrogeology of the McKinney Butte Area: Sisters, Oregon" (2011). Dissertations and Theses. Paper 371. https://doi.org/10.15760/etd.371 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Hydrogeology of the McKinney Butte Area: Sisters, Oregon by Joshua Andrew Hackett A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology: Geohydrology Thesis Committee: Robert B. Perkins, Chair Michael Cummings Kenneth Lite, Jr. Portland State University ©2011 Abstract McKinney Butte, a late Tertiary andesite vent and flow complex, is located near the town of Sisters, Oregon, in the upper Deschutes Basin, and is situated along the structural trend that forms the eastern margin of the High Cascades graben (Sisters fault zone and Green Ridge). Rapid development and over appropriated surface water resources in this area have led to an increased dependence upon groundwater resources. A primary concern of resource managers is the potential impact of expanding groundwater use on stream flows and spring discharge. Two sets of springs (McKinney Butte Springs and Camp Polk Springs) discharge to Whychus Creek along the east flank of McKinney Butte, and during low-flow conditions supply a substantial component of the total flow in the creek. -
Volcanic Hazards • Washington State Is Home to Five Active Volcanoes Located in the Cascade Range, East of Seattle: Mt
CITY OF SEATTLE CEMP – SHIVA GEOLOGIC HAZARDS Volcanic Hazards • Washington State is home to five active volcanoes located in the Cascade Range, east of Seattle: Mt. Baker, Glacier Peak, Mt. Rainier, Mt. Adams and Mt. St. Helens (see figure [Cascades volcanoes]). Washington and California are the only states in the lower 48 to experience a major volcanic eruption in the past 150 years. • Major hazards caused by eruptions are blast, pyroclastic flows, lahars, post-lahar sedimentation, and ashfall. Seattle is too far from any volcanoes to receive damage from blast and pyroclastic flows. o Ash falls could reach Seattle from any of the Cascades volcanoes, but prevailing weather patterns would typically blow ash away from Seattle, to the east side of the state. However, to underscore this uncertainty, ash deposits from multiple pre-historic eruptions have been found in Seattle, including Glacier Peak (less than 1 inch) and Mt. Mazama/Crater Lake (amount unknown) ash. o The City of Seattle depends on power, water, and transportation resources located in the Cascades and Eastern Washington where ash is more likely to fall. Seattle City Light operates dams directly east of Mt. Baker and in Pend Oreille County in eastern Washington. Seattle’s water comes from two reservoirs located on the western slopes of the Central Cascades, so they are outside the probable path of ashfall. o If heavy ash were to fall over Seattle it would create health problems, paralyze the transportation system, destroy many mechanical objects, endanger the utility networks and cost millions of dollars to clean up. Ash can be very dangerous to aviation. -
USGS Fact Sheet 165-97, Revised 2008
U.S. GEOLOGICAL SURVEY—REDUCING THE RISK FROM VOLCANO HAZARDS Living with Volcanic Risk in the Cascades he Cascade Range of the Pacific TNorthwest has more than a dozen potentially active volcanoes. Cascade volcanoes tend to erupt explosively, and on average two eruptions occur per century—the most recent were at Mount St. Helens, Washington (1980–86 and 2004–8), and Lassen Peak, Cali- fornia (1914–17). To help protect the Pacific Northwest’s rapidly expand- ing population, USGS scientists at the Cascades Volcano Observatory in Vancouver, Washington, monitor and assess the hazards posed by the region’s volcanoes. On May 18, 1980, after 2 months of earthquakes and minor eruptions, Mount St. The more than 1 million residents of the Seattle-Tacoma, Washing- Helens, Washington, exploded in one of the ton, area live in the shadow of 14,411-foot-high Mount Rainier, the most devastating volcanic eruptions of the tallest volcano in the United States outside of Alaska. Several communities near the volcano, built on the 20th century. Although less than 0.1 cubic deposits of giant lahars of volcanic ash and debris that are less than 1,200 years old, are at risk from similar future lahars. Inset photograph shows a U.S. Geological Survey (USGS) scientist monitoring the volcano for mile of molten rock (magma) was erupted, 57 signs of subtle ground movement that might lead to an eruption or landslide. Photos by Lyn Topinka, USGS. people died, and damage exceeded $1 billion. Fortunately, most people in the area were able (pyroclastic flows), lava flows, and landslides eruptions deposited volcanic ash at least as far to evacuate safely before the eruption because can devastate areas 10 or more miles away; away as Wyoming. -
6 IA 6 – Volcano
6 IA 6 – Volcano THIS PAGE LEFT BLANK INTENTIONALLY Table of Contents 1 Purpose ..................................................................... IA 6-1 2 Policies ...................................................................... IA 6-1 3 Situation and Assumptions ..................................... IA 6-2 4 Concept of Operations ............................................. IA 6-9 5 Roles and Responsibilities ...................................... IA 6-9 5.1 Primary Agency: Oregon Emergency Management ................. IA 6-9 5.2 Supporting Agencies .............................................................. IA 6-10 5.3 Adjunct Agencies ................................................................... IA 6-10 6 Hazard Specific Information – Volcano ................. IA 6-10 6.1 Definition ................................................................................ IA 6-10 6.2 Frequency .............................................................................. IA 6-11 6.3 Territory at Risk ...................................................................... IA 6-12 6.4 Effects .................................................................................... IA 6-12 6.5 Predictability ........................................................................... IA 6-13 7 Supporting Documents .......................................... IA 6-13 8 Appendices ............................................................. IA 6-13 IA 6-iii State of Oregon EOP Incident Annexes IA 6. Volcano THIS PAGE LEFT BLANK INTENTIONALLY