Fat Embolism Syndrome and Crush Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Fat Embolism Syndrome and Crush Syndrome The Journal of Maharashtra Orthopaedic Association September / December - 2006 Fat Embolism Syndrome And Crush Syndrome Dr. Shivaprasad D. Khot M.S. Orth., D. Orth. ( Mumbai) Dr. Rahul S. Khot M.B.B.S., D. Orth., D.N.B. v Introduction v v Causes v Fat Embolism syndrome is a major cause of FES occurs most commonly as an early morbidity and mortality after multiple long bone complication of fractures of the pelvis and long fractures and is an important cause of ARDS. bones. FES is also reported in other entities: FES may be defined as, “a complex alteration l As a complication of reaming of medullary of homeostasis that occurs as an infrequent canals of long bones complication of fractures of long bones and pelvis l As a complication of reaming and cementation and manifests clinically as acute respiratory during joint replacement ? Massive soft tissue insufficiency”. injury ? Severe burns FES develops when fat emboli become l Liposuction impacted in pulmonary microcirculation and other l Chronic osteomyelitis microvascular beds such as the brain and is l Metabolic disorders characterized by respiratory failure, cerebral l dysfunction and petechiae. In-patients with pre Neoplasms existing pulmonary disease the addition of FES can l Renal transplant be life threatening. FES is an a important cause of l Bone infarcts in hemoglobinopathoies acute respiratory distress syndrome. With prompt l Collagen disease recognition, the treatment of the fat embolism l syndrome has become more specific and less empiric, Diabetes resulting in decrease morbidity and mortality. In l Severe infection recent years prevention of fat embolism syndrome l Inhalation anesthesia by early fracture fixation and patient mobilization l Blood transfusion has become the focus of a wave of clinical v Historical Aspects v investigation. Acute respiratory insufficiency after skeletal FES is a well-known entity as a complication of long bone fractures from one and half centuries. trauma has multiple causes : Zenker in 1861 described fat droplets in the l Fat embolism lung capillaries of a rail-road worker with fatal l Aspiration of gastric contents thoraco-abdominal crush injury. l Pulmonary edema Wagner in 1865 described the pathologic l Airway obstruction features of fat embolism. l Pneumonia Von Bergmann in 1873 was the first to establish FES in a patient with femoral fractures by l Pulmonary contusions postmortem demonstration of a large amount of l Shock lung pulmonary fat. Vol. 5 / 6 - Year 2 - Sept. / Dec. 2006 209 Czerny in 1875 described the symptoms of others proposed a biochemical theory which FES and the importance of fundoscopic examination incriminates free fatty acids. in its diagnosis. According to them, local hydrolysis of Fenger and Salisbury in 1879 made the first triglycerides and neutral fat emboli by pneumocyte clinical diagnosis of FES in a patient with femoral lipase results in increased free fatty acids. fractures and confirmed it by demonstrating massive v Free fatty acids have been shown to be toxic fat emboli in the lung at autopsy. to lung parenchyma and lead to v Incidence v l Disruption of alveolar capillary membrane The exact incidence of FES is not known. The l Decreased surfactant production clinical signs and symptoms develop in 0.5% to 2% l Interstitial hemorrhage and of patients with long bone fractures and in 10% of patients with multiple fractures. The risk of FES l Pulmonary edema resulting in pulmonary increases with the increased incidence of multiple dysfunction. fractures in major automobile accidents. FES is rare Thus, the latent period before clinical in children probably because of low fat content in manifestations appear may be explained by the time their marrow. needed for lipoprotein lipase to convert neutral fat v Pathogenesis And Pathophysiology v to toxic free fatty acids. v Clinical Presentation v This is a subject of conjecture and controversy. The source of embolic fat is thought by most to be Onset of symptoms is usually within 12 to 72 the bone marrow. Bone marrow elements have been hours but may manifest as early as 6 hours and as demonstrated in lung sections, indicating that late as 10 days. mechanical fat embolization does occur. Two Arterial hypoxemia is the hallmark of FES and theories have been offered for the pathogenesis of the clinical manifestations are a result of reduced FES: blood flow to the lungs and brain (a) Mechanical theory : This classic theory Early symptoms are : postulates that triglyceride particles from injured fat l Shortness of breath marrow enter the circulation and obstruct the pulmonary micro vessels. Fat globules vary in size l Restlessness from 2 to 200 microns and most get lodged in vessels l Confusion less than 75 microns in diameter. The classic triad of FES involves : v The blockage of pulmonary capillaries l Pulmonary dysfunction results in : l Cerebral dysfunction and l Venoarterial shunting l Cutaneous changes. l Hypoxemia and Pulmonary Dysfunction l Alveolar hypoperfusion leading to pulmonary dysfunction. Features of pulmonary insufficiency are the earliest signs of FES and include : (B) Biochemical Theory : As FES has also l been documented in non traumatic disorders, the Tachypnoea with respiratory rate more than mechanical theory cannot adequately explain the 30 per minute phenomenon. Alternative or additional mechanisms l Dyspnoea have therefore been suggested. Peltier, Barie and l Cyanosis Vol. 5 / 6 - Year 2 - Sept. / Dec. 2006 210 l Rales and rhonchi Sevitt classified FES into 3 distinguishable clinical l Respiratory failure and ARDS presentations : l l Occasionally hemoptysis and pulmonary Sub clinical FES edema l Non fulminant FES l Cerebral Dysfunction Fulminant FES Features include : Sub clinical FES l Restlessness l Probably occurs in almost all long bone fractures of the lower extremity and fractures l Confusion and disorientation of the pelvis l Irritability and delirium l Characterised by decreased PaO2, decreased l Stupor and coma Hb% and decreased platelets. No clinical l Convulsions signs and symptoms of respiratory insufficiency. l Diffuse neurological deficit. The neurological features in FES appear to Non-fulminant FES change periodically and may sometimes progress l Clinical signs and symptoms are clearly very rapidly. evident. l Cutaneous Changes Respiratory insufficiency, cerebral symptoms and petechiae appear classically Are characterized by : l Typical radiological and haematological l Petechiael rashes located in the upper anterior changes can be detected chest, axilla, neck, oral mucous membrane and conjunctiva. Fulminant FES l Appear on the second to third day l Rarer form and appears within hours of injury l May occur periodically with accompanying l Characterised by severe respiratory failure and attacks of coma altered mental status and convulsions. l Resolve within 7 days FES should be Strongly Suspected if the Patient The distribution of petechiae is theorized to has the related fat particles floating in the aortic arch l Unexplained Dyspnoea and Tachycardia and embolising to non-depended skin areas via l Unexplained confusion and cerebral subclavian and carotid arteries. dysfunction The other signs of FES include : l Petechiae in the upper half of the body. l Pyrexia : Fracture fever / haematoma fever Often the signs and symptoms may be masked l Tachycardia: pulse rate more than 140 per by shock, coma, head injury and anesthetic drugs. minute v Diagnosis v l Retinal changes which include edema, The diagnosis of FES is essentially by clinical hemorrhage or intravascular fat globules as features and there are no pathognomonic tests for seen on fundoscopy confirmation. However certain laboratory and x-ray l Renal changes like lipuria features aid in the diagnosis of FES. l Hepatic changes like jaundice Laboratory Investigations l Urinary incontinence l Sustained reduction in PaO2 levels (partial Vol. 5 / 6 - Year 2 - Sept. / Dec. 2006 211 pressure of oxygen in arterial blood) below w Cerebral dysfunction w Tachycardia 60 mm of Hg as detected by arterial blood gas w Petechiael rash w Retinal changes analysis indicates FES. Serial determination of PaO2 levels is necessary. Clinical features w Jaundice appear only when the levels fall below 65 mm w Renal changes of Hg. l Thrombocytopenia; platelets below 150000 Laboratory Features (at least one) cell per cubic millimeter is commonly seen. w Fat macroglobulinemia l Detection of fat globules in urine, sputum, w Anemia CSF and blood; usually difficult to do. Gurd w Thrombocytopenia suggested detection of pathological fat in filtered venous blood. Cryostat frozen section w High ESR of clotted blood may reveal fat globules. They proposed that if any one major and four l Biopsy of petechiael skin lesions may reveal minor features are present after a latent period after presence of fat. injury, then a diagnosis of FES could be made. l Elevated serum lipase and free fatty acid levels Schonfeld et al proposed a quantitative means l Broncho alveolar lavage and detection of fat of diagnosing FES droplets within cells recovered by lavage may v Schonfelds Fat Embolism Index v aid in rapid diagnosis of FES. v ECG v Symptoms Score Show only non-specific changes like T wave w Petechiae 5 inversion, prominent S waves and occasional w Diffuse alveolar infiltrates 4 arrhythmias. w Hypoxemia (PaO2 less than 9.3 kPa) 3 X-ray w Confusion 1 Chest X-ray reveals a diffuse fluffy bilateral w Fever (more than 38’C) 1 infiltrate classically called “snow storm” appearance. w Tachycardia 1 This may progress to widespread airspace (more than 120 beats per min) consolidation caused by alveolar hemorrhage and edema. w Tachypnea (more than 30 per min) 1 A differential diagnosis of cardiogenic edema A cumulative score greater than 5 is necessary and traumatic lung contusion must be kept in mind. for a positive diagnosis of FES. Since there are no definitive and pathogn- v Differential Diagnosis v omonic features of FES, several authors have Since FES involves respiratory insufficiency suggested some aids in diagnosing FES.
Recommended publications
  • A Young Adult with Post-Traumatic Breathlessness, Unconsciousness and Rash
    Shihan Mahmud Redwanul Huq 1, Ahmad Mursel Anam1, Nayeema Joarder1, Mohammed Momrezul Islam1, Raihan Rabbani2, Abdul Kader Shaikh3,4 [email protected] Case report A young adult with post-traumatic breathlessness, unconsciousness and rash Cite as: Huq SMR, A 23-year-old Bangladeshi male was referred to our with back slab at the previous healthcare facility. Anam AM, Joarder N, et al. hospital for gradual worsening of breathlessness During presentation at the emergency department, A young adult with post- over 3 h, developed following a road-accident he was conscious and oriented (Glasgow coma scale traumatic breathlessness, about 14 h previously. He had a close fracture of 15/15), tachycardic (heart rate 132 per min), blood unconsciousness and rash. mid-shaft of his right tibia, which was immobilised pressure 100/70 mmHg, tachypnoeic (respiratory Breathe 2019; 15: e126–e130. rate 34 per min) with oxygen saturation 89% on room air, and afebrile. Chest examination revealed a) b) restricted chest movement, hyper-resonant percussion notes and reduced breath sound on the left, and diffuse crackles on both sides. He was fit before the accident with no known medical illness. Oxygen supplementation (up to 8 L·min−1) and intravenous fluids were provided as required. Simultaneously, a portable anteroposterior radiograph of chest was performed (figure 1). Task 1 Analyse the chest radiograph. Figure 1 Chest radiography: a) anteroposterior view; b) magnified view of same image showing the clear margin of a pneumothorax on the left-hand side (dots and arrow). @ERSpublications Can you diagnose this young adult with post-traumatic breathlessness, unconsciousness and rash? http://bit.ly/2LlpkiV e126 Breathe | September 2019 | Volume 15 | No 3 https://doi.org/10.1183/20734735.0212-2019 A young adult with post-traumatic breathlessness Answer 1 a) b) The bilateral patchy opacities are likely due to pulmonary contusion or acute respiratory distress syndrome (ARDS) along with the left- sided traumatic pneumothorax.
    [Show full text]
  • Fat Embolism Syndrome
    Crit Care & Shock (2008) 11 : 83-93 Fat Embolism Syndrome Gavin M. Joynt, Thomas ST Li, Joey KM Wai, Florence HY Yap Abstract The classical syndrome of fat embolism is recognition as well as the development of preventive characterized by the triad of respiratory failure, and therapeutic strategies. Early fracture fi xation neurologic dysfunction and the presence of a is likely to reduce the incidence of fat embolism petechial rash. Fat embolism syndrome (FES) syndrome and pulmonary complications; however occurs most commonly following orthopedic the best fi xation technique remains controversial. trauma, particularly fractures of the pelvis or long The use of prophylactic corticosteroids may be bones, however non-traumatic fat embolism has considered to reduce the incidence of FES and in also been known to occur on rare occasions. Because selected high-risk trauma patients but effects on no defi nitive consensus on diagnostic criteria exist, outcome are not proved. New reaming and venting the accurate assessment of incidence, comparative techniques have potential to reduce the incidence research and outcome assessment is diffi cult. A of FES during arthroplasty. Unfortunately, no reasonable estimate of incidence in patients after specifi c therapies have been proven to be of benefi t long bone or pelvic fractures appears to be about in FES and treatment remains supportive with 3-5%. The FES therefore remains an important priority being given to the maintenance of adequate cause of morbidity and mortality and warrants oxygenation. further investigation and research to allow proper Key words: respiratory failure, petechiae, rash, trauma, orthopedic, fracture Introduction The classical syndrome of fat embolism is characterized following orthopedic trauma, particularly fractures of by the triad of respiratory failure, neurologic the pelvis or long bones, however non-traumatic fat dysfunction and the presence of a petechial rash [1,2].
    [Show full text]
  • Crush Injuries Pathophysiology and Current Treatment Michael Sahjian, RN, BSN, CFRN, CCRN, NREMT-P; Michael Frakes, APRN, CCNS, CCRN, CFRN, NREMT-P
    LWW/AENJ LWWJ331-02 April 23, 2007 13:50 Char Count= 0 Advanced Emergency Nursing Journal Vol. 29, No. 2, pp. 145–150 Copyright c 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins Crush Injuries Pathophysiology and Current Treatment Michael Sahjian, RN, BSN, CFRN, CCRN, NREMT-P; Michael Frakes, APRN, CCNS, CCRN, CFRN, NREMT-P Abstract Crush syndrome, or traumatic rhabdomyolysis, is an uncommon traumatic injury that can lead to mismanagement or delayed treatment. Although rhabdomyolysis can result from many causes, this article reviews the risk factors, symptoms, and best practice treatments to optimize patient outcomes, as they relate to crush injuries. Key words: crush syndrome, traumatic rhabdomyolysis RUSH SYNDROME, also known as ology, pathophysiology, diagnosis, and early traumatic rhabdomyolysis, was first re- management of crush syndrome. Cported in 1910 by German authors who described symptoms including muscle EPIDEMIOLOGY pain, weakness, and brown-colored urine in soldiers rescued after being buried in struc- Crush injuries may result in permanent dis- tural debris (Gonzalez, 2005). Crush syn- ability or death; therefore, early recognition drome was not well defined until the 1940s and aggressive treatment are necessary to when nephrologists Bywaters and Beal pro- improve outcomes. There are many known vided descriptions of victims trapped by mechanisms inducing rhabdomyolysis includ- their extremities during the London Blitz ing crush injuries, electrocution, burns, com- who presented with shock, swollen extrem- partment syndrome, and any other pathology ities, tea-colored urine, and subsequent re- that results in muscle damage. Victims of nat- nal failure (Better & Stein, 1990; Fernan- ural disasters, including earthquakes, are re- dez, Hung, Bruno, Galea, & Chiang, 2005; ported as having up to a 20% incidence of Gonzalez, 2005; Malinoski, Slater, & Mullins, crush injuries, as do 40% of those surviving to 2004).
    [Show full text]
  • An Update on the Management of Severe Crush Injury to the Forearm and Hand
    An Update on the Management of Severe Crush Injury to the Forearm and Hand a, Francisco del Piñal, MD, Dr. Med. * KEYWORDS Crush syndrome Hand Compartimental syndrome Free flap Hand revascularization Microsurgery Forzen hand KEY POINTS Microsurgery changes the prognosis of crush hand syndrome. Radical debridement should be followed by rigid (vascularized) bony restoration. Bringing vascularized gliding tissue allows active motion to be restored. Finally, the mangement of the chronic injury is discussed. INTRODUCTION the distal forearm, wrist, or metacarpal area and fingers separately. Severe crush injuries to the hand and fingers often carry an unavoidably bad prognosis, resulting in stiff, crooked, and painful hands or fingers. In ACUTE CRUSH TO THE DISTAL FOREARM, follow-up, osteoporosis is often times seen on ra- WRIST, AND METACARPAL AREA OF THE diographs. A shiny appearance of the skin and HAND complaints of vague pain may lead the surgeon Clinical Presentations and Pathophysiology to consider a diagnosis of reflex sympathetic dys- Two striking features after a severe crush injury are trophy,1 to offer some “explanation” of the gloomy prognosis that a crush injury predicates. Primary 1. The affected joints tend to stiffen and the or secondary amputations are the common end affected tendons tend to stick. options of treatment. 2. The undamaged structures distal to the area of In the authors’ experience, the prompt and pre- injury usually get involved. cise application of microsurgical techniques can The trauma appears to have a “contagious” ef- help alter the often dismal prognosis held by those fect that spreads distally, similar to a fire spreading suffering from severe crush injuries.
    [Show full text]
  • With Crush Injury Syndrome
    Crush Syndrome Made Simple Malta & McConnelsville Fire Department Division of Emergency Medical Service Objectives Recognize the differences between Crush Injury and Crush Syndrome Understand the interventions performed when treating someone with Crush Syndrome Assessing the Crush Injury victim S&S of crush injuries Treatment of crush injury Malta & McConnelsville Fire Department Division of Emergency Medical Service INJURY SYNDROME • Cell Disruption/ • Systemic effects injury at the point of when muscle is impact. RELEASED from Compression • Occurs < 1 hour • Occurs after cells have been under pressure >4 hours* • Suspect Syndrome with lightening strikes Malta & McConnelsville Fire Department Division of Emergency Medical Service CRUSHING MECHANISM OF INJURY • Building and Structure Collapse • Bomb Concussions • MVAs’ and Farm Accidents • Assault with blunt weapon Malta & McConnelsville Fire Department Division of Emergency Medical Service AKA: COMPRESSION SYNDROME First described by Dr. Minami in 1940 Malta & McConnelsville Fire Department Division of Emergency Medical Service INVOLVED ANATOMY Upper Arms Upper Legs Thorax and Buttocks Malta & McConnelsville Fire Department Division of Emergency Medical Service Crush Injuries Crush injuries occur when a crushing force is applied to a body area. Sometimes they are associated with internal organ rupture, major fractures, and hemorrhagic shock. Early aggressive treatment of patients suspected of having a crush injury is crucial. Along with the severity of soft tissue damage and fractures, a major concern of a severe crush injury is the duration of the compression/entrapment. Malta & McConnelsville Fire Department Division of Emergency Medical Service Crush Injuries Prolonged compression of a body region or limb may lead to a dangerous syndrome that can become fatal. Crush Syndrome is difficult to diagnose and treat in the pre-hospital setting because of the many complex variables involved.
    [Show full text]
  • Cerebral Fat Embolism Syndrome After Long Bone Fracture Due to Traffic Accident: a Case Report
    Chen et al. Neuroimmunol Neuroinflammation 2018;5:31 Neuroimmunology DOI: 10.20517/2347-8659.2018.23 and Neuroinflammation Case Report Open Access Cerebral fat embolism syndrome after long bone fracture due to traffic accident: a case report Xing-Yong Chen1,#, Jian-Ming Fan2,#, Ming-Feng Deng2, Ting Jiang3, Feng Luo3 1Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Provincial Clinical College, Fuzhou 350001, China. 2Intensive Care Unit, Fujian Provincial Hospital Wuyi Branch Hospital, Wuyishan City Hospital, Wuyishan 354300, China. 3Department of Image Diagnoses, Fujian Provincial Hospital Wuyi Branch Hospital, Wuyishan City Hospital, Wuyishan 354300, China. #Authors contributed equally. Correspondence to: Dr. Xing-Yong Chen, Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Provincial Clinical College, Fuzhou 350001, China. E-mail: [email protected]; Dr. Jian-Ming Fan, Intensive Care Unit, Fujian Provincial Hospital Wuyi Branch Hospital, Wuyishan City Hospital, Wuyishan 354300, China. E-mail: [email protected] How to cite this article: Chen XY, Fang JM, Deng MF, Jiang T, Luo F. Cerebral fat embolism syndrome after long bone fracture due to traffic accident: a case report. Neuroimmunol Neuroinflammation 2018;5:31. http://dx.doi.org/10.20517/2347-8659.2018.23 Received: 26 Apr 2018 First Decision: 11 Jun 2018 Revised: 20 Jun 2018 Accepted: 20 Jun 2018 Published: 1 Aug 2018 Science Editor: Athanassios P. Kyritsis Copy Editor: Jun-Yao Li Production Editor: Cai-Hong Wang Abstract Cerebral fat embolism syndrome (CFES) is an uncommon but serious complication of long bone fracture. We reported a 19-year-old male patient who sustained CFES due to multiple limbs long bone fractures after a traffic accident injury.
    [Show full text]
  • Approach to the Trauma Patient Will Help Reduce Errors
    The Approach To Trauma Author Credentials Written by: Nicholas E. Kman, MD, The Ohio State University Updated by: Creagh Boulger, MD, and Benjamin M. Ostro, MD, The Ohio State University Last Update: March 2019 Case Study “We have a motor vehicle accident 5 minutes out per EMS report.” 47-year-old male unrestrained driver ejected 15 feet from car arrives via EMS. Vital Signs: BP: 100/40, RR: 28, HR: 110. He was initially combative at the scene but now difficult to arouse. He does not open his eyes, withdrawals only to pain, and makes gurgling sounds. EMS placed a c-collar and backboard, but could not start an IV. What do you do? Objectives Upon completion of this self-study module, you should be able to: ● Describe a focused rapid assessment of the trauma patient using an organized primary and secondary survey. ● Discuss the components of the primary survey. ● Discuss possible pathology that can occur in each domain of the primary survey and recommend treatment/stabilization measures. ● Describe how to stabilize a trauma patient and prioritize resuscitative measures. ● Discuss the secondary survey with particular attention to head/central nervous system (CNS), cervical spine, chest, abdominal, and musculoskeletal trauma. ● Discuss appropriate labs and diagnostic testing in caring for a trauma patient. ● Describe appropriate disposition of a trauma patient. Introduction Nearly 10% of all deaths in the world are caused by injury. Trauma is the number one cause of death in persons 1-50 years of age and results in significant life years lost. According to the National Trauma Data Bank, falls were the leading cause of trauma followed by motor vehicle collisions (MVCs) and firearm related injuries with an overall mortality rate of 4.39% in 2016.
    [Show full text]
  • Fracture Complications.Pdf
    Musculoskeletal Trauma 1 Fracture Complications Tim Coughlin “A fracture is a soft tissue injury, complicated by a broken fracture as soon as possible. Remember though that the bone”. is is an important concept to remember when condition is rare and other differential diagnoses such a thinking about the potential complications, as many will be pulmonary embolism must be considered. related to soft tissue rather than bony injury. is chapter will be broken down into two sections; Muscle Damage and Rhabdomyolysis general complications and fracture specific complications. Rhabdomyolysis is a condition which occurs when skeletal muscle is rapidly broken down releasing myoglobin into the circulation. is is seen in patients who have suffered a crush General Complications injury and those who have been immobilised on the floor for a significant time period causing a pressure injury. A typical General complications refer to the things you must have in example would be an intoxicated patient who has fallen and your mind when you assess any patient with a fracture. remained on the floor overnight or an elderly patient with a Orthopaedic surgeons are often accused of treating the bone, neck of femur fracture who is unable to get up. the whole bone and nothing but the bone. I would like to think e release of myoglobin can cause acute renal failure to this is not true! ese are the things you should consider develop. e patient will also have local pain in the affected initially when assessing a patient: area and in severe cases compartment syndrome (see below) or pressure sores may develop.
    [Show full text]
  • Ad Ult T Ra Uma Em E Rgen Cies
    Section SECTION: Adult Trauma Emergencies REVISED: 06/2017 4 ADULT TRAUMA EMERGENCIES TRAUMA ADULT 1. Injury – General Trauma Management Protocol 4 - 1 2. Injury – Abdominal Trauma Protocol 4 - 2 (Abdominal Trauma) 3. Injury – Burns - Thermal Protocol 4 - 3 4. Injury – Crush Syndrome Protocol 4 - 4 5. Injury – Electrical Injuries Protocol 4 - 5 6. Injury – Head Protocol 4 - 6 7. Exposure – Airway/Inhalation Irritants Protocol 4 - 7 8. Injury – Sexual Assault Protocol 4 - 8 9. General – Neglect or Abuse Suspected Protocol 4 - 9 10. Injury – Conducted Electrical Weapons Protocol 4 - 10 (i.e. Taser) 11. Injury - Thoracic Protocol 4 - 11 12. Injury – General Trauma Management Protocol 4 – 12 (Field Trauma Triage Scheme) 13. Spinal Motion Restriction Protocol 4 – 13 14. Hemorrhage Control Protocol 4 – 14 Section 4 Continued This page intentionally left blank. ADULT TRAUMA EMERGENCIES ADULT Protocol SECTION: Adult Trauma Emergencies PROTOCOL TITLE: Injury – General Trauma Management 4-1 REVISED: 06/2015 PATIENT TRAUMA ASSESSMENT OVERVIEW Each year, one out of three Americans sustains a traumatic injury. Trauma is a major cause of disability in the United States. According to the Centers for Disease Control (CDC) in 2008, 118,021 deaths occurred due to trauma. Trauma is the leading cause of death in people under 44 years of age, accounting for half the deaths of children under the age of 4 years, and 80% of deaths in persons 15 to 24 years of age. As a responder, your actions within the first few moments of arriving on the scene of a traumatic injury are crucial to the success of managing the situation.
    [Show full text]
  • Genesis of Fat Emboli J Clin Pathol: First Published As 10.1136/Jcp.S3-4.1.132 on 1 January 1970
    J. clin. Path., 23, Suppl. (Roy. Coll. Path.), 4, 132-142 Genesis of fat emboli J Clin Pathol: first published as 10.1136/jcp.s3-4.1.132 on 1 January 1970. Downloaded from A. J. WATSON University ofNewcastle upon Tyne In pathological terms fat embolism may be Some may be stuck fast, but there is evidence defined as the blockage of blood vessels by liquid that others continue to flow slowly through the fat globules. As Szabo (1970) emphasizes, on small vessels and recirculate, returning eventually page 123 of this issue, a clear distinction must be to the lungs (Scriba, 1880; Scuderi, 1953; Moser drawn between the histopathological findings and Wurnig, 1954). When the lungs are heavily and the much less common clinical syndromes of embolized, the globules passing through the fat embolism. Fat emboli in the lungs have been lung vessels into the systemic circulation may reported in a great variety of associations, but by become very numerous. Possibly this is the mostcopyright. far the most common and the most important serious consequence because of the multifocal association is with major fractures and accom- brain damage which results from cerebral panying soft tissue damage due to severe trauma. embolization (Scriba, 1880; Sevitt, 1962) and Controversy exists regarding the clinical signi- may in turn lead to secondary lung changes. But ficance of the emboli and there is even a sugges- some would give pride of place to the pulmonary tion that they are not essential for the changes changes and regard the cerebral damage as underlying the 'fat-embolism' syndrome.
    [Show full text]
  • Crush Injury Management
    Crush Injury Management In the Underground Environment Background • 1910 - Messina Earthquake • WW2 - Air Raid Shelters fell on people crushing limbs - First time called Crush Syndrome • Granville Rail Disaster - Sydney Australia • Chain Valley Bay Colliery fatality 2011 What is it? Definition: Crush Injury • Injury that occurs because of pressure from a heavy object onto a body part • Squeezing of a body part between two objects Definition: Crush Syndrome The shock-like state following release of a limb or limbs, trunk and pelvis after a prolonged period of compression Crush Syndrome Basic Science • Muscle groups are covered by a tough membrane (fascia) that does not readily expand • Damage to these muscle groups cause swelling and/or bleeding; due to inelasticity of fascia, swelling occurs inward resulting in compressive force • Compressive force leads to vascular compromise with collapse of blood vessels, nerves and muscle cells • Without a steady supply of oxygen and nutrients, nerve and muscle cells die in a matter of hours • Problem is local to a limb or body area Traumatic • Crush syndrome - loss of blood to supply muscle tissue rhabdomyolysis toxins produced from muscle metabolism without oxygen as well as normal intracellular contents • Muscles can withstand approx. 4 hours without blood flow before cell death occurs • Toxins may continue to leak into body for as long as 60 hours after release of crush injury • The major problem is not recognising the potential for its existence, then removing the compressive force prior to arrival
    [Show full text]
  • Incidence of Fat Embolism Syndrome in Femur Fractures and Its Associated Risk Factors Over Time—A Systematic Review
    Journal of Clinical Medicine Review Incidence of Fat Embolism Syndrome in Femur Fractures and Its Associated Risk Factors over Time—A Systematic Review Maximilian Lempert 1,* , Sascha Halvachizadeh 1 , Prasad Ellanti 2, Roman Pfeifer 1, Jakob Hax 1, Kai O. Jensen 1 and Hans-Christoph Pape 1 1 Department of Trauma, University Hospital Zurich, Raemistr. 100, 8091 Zürich, Switzerland; [email protected] (S.H.); [email protected] (R.P.); [email protected] (J.H.); [email protected] (K.O.J.); [email protected] (H.-C.P.) 2 Department of Trauma and Orthopedics, St. James’s Hospital, Dublin-8, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-255-27-55 Abstract: Background: Fat embolism (FE) continues to be mentioned as a substantial complication following acute femur fractures. The aim of this systematic review was to test the hypotheses that the incidence of fat embolism syndrome (FES) has decreased since its description and that specific injury patterns predispose to its development. Materials and Methods: Data Sources: MEDLINE, Embase, PubMed, and Cochrane Central Register of Controlled Trials databases were searched for articles from 1 January 1960 to 31 December 2019. Study Selection: Original articles that provide information on the rate of FES, associated femoral injury patterns, and therapeutic and diagnostic recommendations were included. Data Extraction: Two authors independently extracted data using a predesigned form. Statistics: Three different periods were separated based on the diagnostic and treatment changes: Group 1: 1 January 1960–12 December 1979, Group 2: 1 January 1980–1 December 1999, and Group 3: 1 January 2000–31 December 2019, chi-square test, χ2 test for group comparisons of categorical Citation: Lempert, M.; p n Halvachizadeh, S.; Ellanti, P.; Pfeifer, variables, -value < 0.05.
    [Show full text]