Fat Embolism Syndrome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Young Adult with Post-Traumatic Breathlessness, Unconsciousness and Rash
Shihan Mahmud Redwanul Huq 1, Ahmad Mursel Anam1, Nayeema Joarder1, Mohammed Momrezul Islam1, Raihan Rabbani2, Abdul Kader Shaikh3,4 [email protected] Case report A young adult with post-traumatic breathlessness, unconsciousness and rash Cite as: Huq SMR, A 23-year-old Bangladeshi male was referred to our with back slab at the previous healthcare facility. Anam AM, Joarder N, et al. hospital for gradual worsening of breathlessness During presentation at the emergency department, A young adult with post- over 3 h, developed following a road-accident he was conscious and oriented (Glasgow coma scale traumatic breathlessness, about 14 h previously. He had a close fracture of 15/15), tachycardic (heart rate 132 per min), blood unconsciousness and rash. mid-shaft of his right tibia, which was immobilised pressure 100/70 mmHg, tachypnoeic (respiratory Breathe 2019; 15: e126–e130. rate 34 per min) with oxygen saturation 89% on room air, and afebrile. Chest examination revealed a) b) restricted chest movement, hyper-resonant percussion notes and reduced breath sound on the left, and diffuse crackles on both sides. He was fit before the accident with no known medical illness. Oxygen supplementation (up to 8 L·min−1) and intravenous fluids were provided as required. Simultaneously, a portable anteroposterior radiograph of chest was performed (figure 1). Task 1 Analyse the chest radiograph. Figure 1 Chest radiography: a) anteroposterior view; b) magnified view of same image showing the clear margin of a pneumothorax on the left-hand side (dots and arrow). @ERSpublications Can you diagnose this young adult with post-traumatic breathlessness, unconsciousness and rash? http://bit.ly/2LlpkiV e126 Breathe | September 2019 | Volume 15 | No 3 https://doi.org/10.1183/20734735.0212-2019 A young adult with post-traumatic breathlessness Answer 1 a) b) The bilateral patchy opacities are likely due to pulmonary contusion or acute respiratory distress syndrome (ARDS) along with the left- sided traumatic pneumothorax. -
T5 Spinal Cord Injuries
Spinal Cord (2020) 58:1249–1254 https://doi.org/10.1038/s41393-020-0506-7 ARTICLE Predictors of respiratory complications in patients with C5–T5 spinal cord injuries 1 2,3 3,4 1,5 1,5 Júlia Sampol ● Miguel Ángel González-Viejo ● Alba Gómez ● Sergi Martí ● Mercedes Pallero ● 1,4,5 3,4 1,4,5 1,4,5 Esther Rodríguez ● Patricia Launois ● Gabriel Sampol ● Jaume Ferrer Received: 19 December 2019 / Revised: 12 June 2020 / Accepted: 12 June 2020 / Published online: 24 June 2020 © The Author(s), under exclusive licence to International Spinal Cord Society 2020 Abstract Study design Retrospective chart audit. Objectives Describing the respiratory complications and their predictive factors in patients with acute traumatic spinal cord injuries at C5–T5 level during the initial hospitalization. Setting Hospital Vall d’Hebron, Barcelona. Methods Data from patients admitted in a reference unit with acute traumatic injuries involving levels C5–T5. Respiratory complications were defined as: acute respiratory failure, respiratory infection, atelectasis, non-hemothorax pleural effusion, 1234567890();,: 1234567890();,: pulmonary embolism or haemoptysis. Candidate predictors of these complications were demographic data, comorbidity, smoking, history of respiratory disease, the spinal cord injury characteristics (level and ASIA Impairment Scale) and thoracic trauma. A logistic regression model was created to determine associations between potential predictors and respiratory complications. Results We studied 174 patients with an age of 47.9 (19.7) years, mostly men (87%), with low comorbidity. Coexistent thoracic trauma was found in 24 (19%) patients with cervical and 35 (75%) with thoracic injuries (p < 0.001). Respiratory complications were frequent (53%) and were associated to longer hospital stay: 83.1 (61.3) and 45.3 (28.1) days in patients with and without respiratory complications (p < 0.001). -
Femoral Shaft Fracture Fixation and Chest Injury After Polytrauma
This is an enhanced PDF from The Journal of Bone and Joint Surgery The PDF of the article you requested follows this cover page. Femoral Shaft Fracture Fixation and Chest Injury After Polytrauma Lawrence B. Bone and Peter Giannoudis J Bone Joint Surg Am. 2011;93:311-317. doi:10.2106/JBJS.J.00334 This information is current as of January 25, 2011 Reprints and Permissions Click here to order reprints or request permission to use material from this article, or locate the article citation on jbjs.org and click on the [Reprints and Permissions] link. Publisher Information The Journal of Bone and Joint Surgery 20 Pickering Street, Needham, MA 02492-3157 www.jbjs.org 311 COPYRIGHT Ó 2011 BY THE JOURNAL OF BONE AND JOINT SURGERY,INCORPORATED Current Concepts Review Femoral Shaft Fracture Fixation and Chest Injury After Polytrauma By Lawrence B. Bone, MD, and Peter Giannoudis, MD, FRCS Thirty years ago, the standard of care for the multiply injured tients with multiple injuries, defined as an ISS of ‡18, and patient with fractures was placement of the fractured limb in a patients with essentially an isolated femoral fracture and an splint or skeletal traction, until the patient was considered stable ISS of <18. Pulmonary complications consisting of ARDS, enough to undergo surgery for fracture fixation1. This led to a pulmonary dysfunction, fat emboli, pulmonary emboli, and number of complications2, such as adult respiratory distress pneumonia were present in 38% (fourteen) of thirty-seven syndrome (ARDS), infection, pneumonia, malunion, non- patients in the late fixation/multiple injuries group and 4% union, and death, particularly when the patient had a high (two) of forty-six in the early fixation/multiple injuries group; Injury Severity Score (ISS)3. -
Cerebral Fat Embolism Syndrome After Long Bone Fracture Due to Traffic Accident: a Case Report
Chen et al. Neuroimmunol Neuroinflammation 2018;5:31 Neuroimmunology DOI: 10.20517/2347-8659.2018.23 and Neuroinflammation Case Report Open Access Cerebral fat embolism syndrome after long bone fracture due to traffic accident: a case report Xing-Yong Chen1,#, Jian-Ming Fan2,#, Ming-Feng Deng2, Ting Jiang3, Feng Luo3 1Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Provincial Clinical College, Fuzhou 350001, China. 2Intensive Care Unit, Fujian Provincial Hospital Wuyi Branch Hospital, Wuyishan City Hospital, Wuyishan 354300, China. 3Department of Image Diagnoses, Fujian Provincial Hospital Wuyi Branch Hospital, Wuyishan City Hospital, Wuyishan 354300, China. #Authors contributed equally. Correspondence to: Dr. Xing-Yong Chen, Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Provincial Clinical College, Fuzhou 350001, China. E-mail: [email protected]; Dr. Jian-Ming Fan, Intensive Care Unit, Fujian Provincial Hospital Wuyi Branch Hospital, Wuyishan City Hospital, Wuyishan 354300, China. E-mail: [email protected] How to cite this article: Chen XY, Fang JM, Deng MF, Jiang T, Luo F. Cerebral fat embolism syndrome after long bone fracture due to traffic accident: a case report. Neuroimmunol Neuroinflammation 2018;5:31. http://dx.doi.org/10.20517/2347-8659.2018.23 Received: 26 Apr 2018 First Decision: 11 Jun 2018 Revised: 20 Jun 2018 Accepted: 20 Jun 2018 Published: 1 Aug 2018 Science Editor: Athanassios P. Kyritsis Copy Editor: Jun-Yao Li Production Editor: Cai-Hong Wang Abstract Cerebral fat embolism syndrome (CFES) is an uncommon but serious complication of long bone fracture. We reported a 19-year-old male patient who sustained CFES due to multiple limbs long bone fractures after a traffic accident injury. -
A Patient with Severe Polytrauma with Massive Pulmonary Contusion And
Nagashima et al. Journal of Medical Case Reports (2020) 14:69 https://doi.org/10.1186/s13256-020-02406-9 CASE REPORT Open Access A patient with severe polytrauma with massive pulmonary contusion and hemorrhage successfully treated with multiple treatment modalities: a case report Futoshi Nagashima*†, Satoshi Inoue† and Miho Ohta Abstract Background: The mortality rate is very high for patients with severe multiple trauma with massive pulmonary contusion containing intrapulmonary hemorrhage. Multiple treatment modalities are needed not only for a prevention of cardiac arrest and quick hemostasis against multiple injuries, but also for recovery of oxygenation to save the patient’s life. Case presentation: A 48-year-old Japanese woman fell down stairs that had a height of approximately 4 m. An X- ray showed pneumothorax, pulmonary contusion in her right lung, and an unstable pelvic fracture. A chest drain was inserted and preperitoneal pelvic packing was performed to control bleeding, performing resuscitative endovascular balloon occlusion of the aorta. A computed tomography scan revealed massive lung contusion in the lower lobe of her right lung, pelvic fractures, and multiple fractures and hematoma in other areas. An emergency thoracotomy was performed, and then we performed wide wedge resection of the injured lung, clamping proximal to suture lines with two Satinsky blood vessel clamps. The vessel clamps were left in the right thoracic cavity. The other hemorrhagic areas were embolized by transcatheter arterial embolization. However, since her respiratory functions deteriorated in the intensive care unit, veno-venous extracorporeal membrane oxygenation was used for lung assist. Planned reoperation under veno-venous extracorporeal membrane oxygenation was performed on day 2. -
Blast Injuries – Essential Facts
BLAST INJURIES Essential Facts Key Concepts • Bombs and explosions can cause unique patterns of injury seldom seen outside combat • Expect half of all initial casualties to seek medical care over a one-hour period • Most severely injured arrive after the less injured, who bypass EMS triage and go directly to the closest hospitals • Predominant injuries involve multiple penetrating injuries and blunt trauma • Explosions in confined spaces (buildings, large vehicles, mines) and/or structural collapse are associated with greater morbidity and mortality • Primary blast injuries in survivors are predominantly seen in confined space explosions • Repeatedly examine and assess patients exposed to a blast • All bomb events have the potential for chemical and/or radiological contamination • Triage and life saving procedures should never be delayed because of the possibility of radioactive contamination of the victim; the risk of exposure to caregivers is small • Universal precautions effectively protect against radiological secondary contamination of first responders and first receivers • For those with injuries resulting in nonintact skin or mucous membrane exposure, hepatitis B immunization (within 7 days) and age-appropriate tetanus toxoid vaccine (if not current) Blast Injuries Essential Facts • Primary: Injury from over-pressurization force (blast wave) impacting the body surface — TM rupture, pulmonary damage and air embolization, hollow viscus injury • Secondary: Injury from projectiles (bomb fragments, flying debris) — Penetrating trauma, -
Fracture Complications.Pdf
Musculoskeletal Trauma 1 Fracture Complications Tim Coughlin “A fracture is a soft tissue injury, complicated by a broken fracture as soon as possible. Remember though that the bone”. is is an important concept to remember when condition is rare and other differential diagnoses such a thinking about the potential complications, as many will be pulmonary embolism must be considered. related to soft tissue rather than bony injury. is chapter will be broken down into two sections; Muscle Damage and Rhabdomyolysis general complications and fracture specific complications. Rhabdomyolysis is a condition which occurs when skeletal muscle is rapidly broken down releasing myoglobin into the circulation. is is seen in patients who have suffered a crush General Complications injury and those who have been immobilised on the floor for a significant time period causing a pressure injury. A typical General complications refer to the things you must have in example would be an intoxicated patient who has fallen and your mind when you assess any patient with a fracture. remained on the floor overnight or an elderly patient with a Orthopaedic surgeons are often accused of treating the bone, neck of femur fracture who is unable to get up. the whole bone and nothing but the bone. I would like to think e release of myoglobin can cause acute renal failure to this is not true! ese are the things you should consider develop. e patient will also have local pain in the affected initially when assessing a patient: area and in severe cases compartment syndrome (see below) or pressure sores may develop. -
Factors Associated with Complications in Older Adults with Isolated Blunt Chest Trauma
ORIGINAL RESEARCH Factors Associated with Complications in Older Adults with Isolated Blunt Chest Trauma Shahram Lotfipour, MD, MPH* * University of California, Irvine School of Medicine, Department of Emergency Shawn K. Kaku, MD* Medicine Federico E. Vaca, MD, MPH* † University of California, Irvine School of Medicine, Department of Surgery Chirag Patel, MD† ‡ University of California, Irvine Craig L. Anderson, PhD, MPH* Suleman S. Ahmed, BS, BA‡ Michael D. Menchine, MD, MPH* Supervising Section Editor: Teresita M. Hogan, MD Submission history: Submitted October 28, 2007; Revision Received March 29, 2009; Accepted April 01 2009. Reprints available through open access at www.westjem.org Objective: To determine the prevalence of adverse events in elderly trauma patients with isolated blunt thoracic trauma, and to identify variables associated with these adverse events. Methods: We performed a chart review of 160 trauma patients age 65 and older with significant blunt thoracic trauma, drawn from an American College of Surgeons Level I Trauma Center registry. Patients with serious injury to other body areas were excluded to prevent confounding the cause of adverse events. Adverse events were defined as acute respiratory distress syndrome or pneumonia, unanticipated intubation, transfer to the intensive care unit for hypoxemia, or death. Data collected included history, physical examination, radiographic findings, length of hospital stay, and clinical outcomes. Results: Ninety-nine patients had isolated chest injury, while 61 others had other organ systems injured and were excluded. Sixteen patients developed adverse events [16.2% 95% confidence interval (CI) 9.5-24.9%], including two deaths. Adverse events were experienced by 19.2%, 6.1%, and 28.6% of those patients 65-74, 75-84, and >85 years old, respectively. -
Genesis of Fat Emboli J Clin Pathol: First Published As 10.1136/Jcp.S3-4.1.132 on 1 January 1970
J. clin. Path., 23, Suppl. (Roy. Coll. Path.), 4, 132-142 Genesis of fat emboli J Clin Pathol: first published as 10.1136/jcp.s3-4.1.132 on 1 January 1970. Downloaded from A. J. WATSON University ofNewcastle upon Tyne In pathological terms fat embolism may be Some may be stuck fast, but there is evidence defined as the blockage of blood vessels by liquid that others continue to flow slowly through the fat globules. As Szabo (1970) emphasizes, on small vessels and recirculate, returning eventually page 123 of this issue, a clear distinction must be to the lungs (Scriba, 1880; Scuderi, 1953; Moser drawn between the histopathological findings and Wurnig, 1954). When the lungs are heavily and the much less common clinical syndromes of embolized, the globules passing through the fat embolism. Fat emboli in the lungs have been lung vessels into the systemic circulation may reported in a great variety of associations, but by become very numerous. Possibly this is the mostcopyright. far the most common and the most important serious consequence because of the multifocal association is with major fractures and accom- brain damage which results from cerebral panying soft tissue damage due to severe trauma. embolization (Scriba, 1880; Sevitt, 1962) and Controversy exists regarding the clinical signi- may in turn lead to secondary lung changes. But ficance of the emboli and there is even a sugges- some would give pride of place to the pulmonary tion that they are not essential for the changes changes and regard the cerebral damage as underlying the 'fat-embolism' syndrome. -
Traumatic Brain Injury in Children with Thoracic Injury: Clinical Significance
Pediatric Surgery International (2021) 37:1421–1428 https://doi.org/10.1007/s00383-021-04959-2 ORIGINAL ARTICLE Traumatic brain injury in children with thoracic injury: clinical signifcance and impact on ventilatory management Caroline Baud1 · Benjamin Crulli2 · Jean‑Noël Evain3 · Clément Isola1 · Isabelle Wroblewski1 · Pierre Bouzat3 · Guillaume Mortamet1 Accepted: 29 June 2021 / Published online: 7 July 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Purpose This study aims to describe the epidemiology and management of chest trauma in our center, and to compare patterns of mechanical ventilation in patients with or without associated moderate-to-severe traumatic brain injury (TBI). Methods All children admitted to our level-1 trauma center from February 2012 to December 2018 following chest trauma were included in this retrospective study. Results A total of 75 patients with a median age of 11 [6–13] years, with thoracic injuries were included. Most patients also had extra-thoracic injuries (n = 71, 95%) and 59 (79%) had TBI. A total of 52 patients (69%) were admitted to intensive care and 31 (41%) were mechanically ventilated. In patients requiring mechanical ventilation, there was no diference in tidal volume or positive end-expiratory pressure in patients with moderate-to-severe TBI when compared with those with no-or-mild TBI. Only one patient developed Acute Respiratory Distress Syndrome. A total of 6 patients (8%) died and all had moderate-to-severe TBI. Conclusion In this small retrospective series, most patients requiring mechanical ventilation following chest trauma had associated moderate-to-severe TBI. -
Incidence of Fat Embolism Syndrome in Femur Fractures and Its Associated Risk Factors Over Time—A Systematic Review
Journal of Clinical Medicine Review Incidence of Fat Embolism Syndrome in Femur Fractures and Its Associated Risk Factors over Time—A Systematic Review Maximilian Lempert 1,* , Sascha Halvachizadeh 1 , Prasad Ellanti 2, Roman Pfeifer 1, Jakob Hax 1, Kai O. Jensen 1 and Hans-Christoph Pape 1 1 Department of Trauma, University Hospital Zurich, Raemistr. 100, 8091 Zürich, Switzerland; [email protected] (S.H.); [email protected] (R.P.); [email protected] (J.H.); [email protected] (K.O.J.); [email protected] (H.-C.P.) 2 Department of Trauma and Orthopedics, St. James’s Hospital, Dublin-8, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-255-27-55 Abstract: Background: Fat embolism (FE) continues to be mentioned as a substantial complication following acute femur fractures. The aim of this systematic review was to test the hypotheses that the incidence of fat embolism syndrome (FES) has decreased since its description and that specific injury patterns predispose to its development. Materials and Methods: Data Sources: MEDLINE, Embase, PubMed, and Cochrane Central Register of Controlled Trials databases were searched for articles from 1 January 1960 to 31 December 2019. Study Selection: Original articles that provide information on the rate of FES, associated femoral injury patterns, and therapeutic and diagnostic recommendations were included. Data Extraction: Two authors independently extracted data using a predesigned form. Statistics: Three different periods were separated based on the diagnostic and treatment changes: Group 1: 1 January 1960–12 December 1979, Group 2: 1 January 1980–1 December 1999, and Group 3: 1 January 2000–31 December 2019, chi-square test, χ2 test for group comparisons of categorical Citation: Lempert, M.; p n Halvachizadeh, S.; Ellanti, P.; Pfeifer, variables, -value < 0.05. -
Orthopedic Emergencies- Long Bone Fractures, Michael Miranda, MD
CCSU Sports Medicine Symposium Tuesday, March 5, 2019 Orthopedic Emergencies- LONG BONE FRACTURES Michael Miranda MD FAAOS Director of Orthopedic Trauma BJI/ Hartford Hospital No Conflict I have no commercial conflicts with this presentation. Kevin Ware CCSU SPORTS SYMPOSIUM 2019 March 5 2019 4 CCSU Sports Medicine Symposium Tuesday, March 5, 2019 Long bone fractures are attention getters… Confidential and Proprietary Information February 26, 2019 5 Long bone fractures relatively rare in Sport- • Important to recognize the issues that can prolong recovery CCSU SPORTS SYMPOSIUM 2019 March 5 2019 6 Agenda- 30 min •Discuss long bone fractures and identify potential complications that may occur •Understand the prognosis of long bone fractures •Recommendations for return to participation for long bone fractures CCSU SPORTS SYMPOSIUM 2019 March 5 2019 7 CCSU Sports Medicine Symposium Tuesday, March 5, 2019 Agenda • Discuss fractures and what would make them possible emergencies • Discuss the major long bone fractures cases and relevance to sport • Review their prognosis and return to sport potential/timing CCSU SPORTS SYMPOSIUM 2019 March 5 2019 8 Implications of long bone fractures WHY ARE LONG BONE FRACTURES EMERGENCIES? • Blood Loss • Neurovascular damage • Fat embolism • Long term loss of function Confidential and Proprietary Information February 26, 2019 10 CCSU Sports Medicine Symposium Tuesday, March 5, 2019 Physiologic events after long bone fractures and injuries • Local • Sytemic – Immediate – Immediate – Early – early – delayed Immediate Potentail Complications • Systemic immediate Complication • Local immediate complication – hypovolemic shock – Injury to major vessels. – -Injury to muscles and tendons. – -Injury to joints. – -Injury to nerves. Early Potential Complications Local Systemic • Bleeding /shock • Hypovolemic shock • Compartment syndrome.