White Sands U.S

Total Page:16

File Type:pdf, Size:1020Kb

White Sands U.S National Park Service White Sands U.S. Department of the Interior White Sands National Monument Mars and the Monument Mars White Sands ver since the Mars Rover Opportunity landed on the surface of Mars in 2004, scientists have begun to see the monument Ein a whole new way. This is because when Opportunity landed it found itself in a large playa—a dry lake bed interdunalenvironment similar to that of Lake Lucero at White Sands—called Meridiani Planum. Like White Sands, many of the rocks it has ever existed on Mars. Gypsum research projects. One of the major and dunes in this area are sulfates and is the most common calcium sulfate focuses of these projects is based are composed of gypsum (Calcium mineral. It comes out of seawater and the influence the atmosphere has Sulfate), the same mineral that makes is usually found in evaporated beds on gypsum soils of White Sands and up the snow white dunes of White associated with sedimentary rocks— Mars and what the atmosphere is like Sands. Sent to discover if life has ever just like the gypsum here at White on Mars, both now and in the past. been possible on the red planet, the Sands. Because of the way it is Since Mars has weather patterns, twin rovers Spirit and Opportunity formed, gypsum often holds seasons, and winds just like we do on landed on Mars in January of 2004. microscopic fossils. Professor J. Earth, scientists are also investigating Their first step was to find evidence William Schopf of the University of how dunes migrate on both planets. of liquid water on the Mars surface. California, Los Angeles states that if But that’s all in due time. The Though they were designed to last fossils trapped in gypsum can last for next mission to Mars launched on for only three months, both have millions of years on Earth, it is very November 26, 2011. The new rover, survived their mission well. Though likely that they might also be found on Curiosity, is about the size of a small now in hibernation, Spirit gathered the dry seabeds of Mars. SUV and features the most up-to- data for more than five years in date technology. It is scheduled to bonus extended missions, while Have you ever noticed the crunchy be on Mars for nearly two years Opportunity has worked reliably for tan soils that fills the areas between investigating Gale Crater for evidence seven years. Opportunity is still fully the dunes at White Sands? That soil is of conditions that were favorable for functional and continues to operate composed of a living organism known microbial life. It will be exciting to see on Mars’ surface. Both rovers have Evaporative areas where water once what it reveals next! made important discoveries about flowed on as cyanobacteria, or blue- wet environments on ancient Mars green algae. This is similar to another that may have been able to support important find that the rovers have microbial life. Just like on Earth, vast revealed on Mars—a form of pond areas of Mars are made of gypsum scum, one the building blocks of that form dunefields similar to those life. The existence of this pond here at White Sands. scum along with sulfates is a strong indication that there was once water Data from these dunefields suggests on Mars and perhaps life. that the vast field of gypsum on Mars This new relationship to Mars has is a likely place to find traces of life if brought about many new and exciting Mars Rover Opportunity Revised 04/04/2016.
Recommended publications
  • ENVIRONMENTAL RISK ASSESSMENT for GYPSUM TELLS POSITIVE STORY by Karen Bernick
    CCPs in Agriculture ENVIRONMENTAL RISK ASSESSMENT FOR GYPSUM TELLS POSITIVE STORY By Karen Bernick mending soils with !ue “…the risk assessment has shown that FGD gypsum gas desulfurization (FGD) contains extremely low concentrations of most trace gypsum o"ers a host of promising bene#ts to elements, about the same as found in mined gypsum agriculture, and this bene#cial use and, in most cases, lower than background soils.” providesA an opportunity for power plants to reduce disposal costs. lead and arsenic trouble spots; and other Chaney says the only risk he has iden- But is it safe? contaminant risks in plant uptake and food. tified occurs if livestock producers He is the lead USDA researcher on the FGD allow ruminants to eat large quanti- $e answer appears to be a resounding gypsum risk assessment. ties of stockpiled gypsum. “If livestock “yes” according to early reports from a producers prevent ruminants from eat- comprehensive risk assessment by the $e USDA-EPA assessment exam- ing gypsum by fencing in stockpiles, U.S. Department of Agriculture (USDA) ines what Chaney calls “new” FGD and limit grazing until after a rainfall to and U.S. Environmental Protection gypsum, a high quality form of syn- wash adhering FGD gypsum from for- Agency (EPA). $e assessment, likely thetic gypsum sought by agricultural age leaves, the sulfate risk is prevented,” to be concluded in 2013, addresses crop producers for its soil improvement he says. potential risks that land applications of bene#ts, calcium and sulfur supplies, FGD gypsum could pose to human health purity and relative low cost versus mined RISK ASSESSMENT or the environment.
    [Show full text]
  • Digital Opportunity: a Review of Intellectual Property and Growth
    Digital Opportunity A Review of Intellectual Property and Growth An Independent Report by Professor Ian Hargreaves May 2011 Contents Page Foreword by Ian Hargreaves 01 Executive Summary 03 Chapter 1 Intellectual Property and Growth 10 Chapter 2 The Evidence Base 16 Chapter 3 The International Context 21 Chapter 4 Copyright Licensing: a Moment of Opportunity 26 Chapter 5 Copyright: Exceptions for the Digital Age 41 Chapter 6 Patents 53 Chapter 7 Designs 64 Chapter 8 Enforcement and Disputes 67 Chapter 9 SMEs and the IP Framework 86 Chapter 10 An Adaptive IP Framework 91 Chapter 11 Impact 97 Annex A Terms of Reference 101 Annex B Stakeholders Met during Review of IP and Growth 102 Annex C Call for Evidence Submissions 105 Annex D List of Supporting Documents 109 Foreword When the Prime Minister commissioned this review in November 2010, he did so in terms which some considered provocative. The Review was needed, the PM said, because of the risk that the current intellectual property framework might not be sufficiently well designed to promote innovation and growth in the UK economy. In the five months we have had to compile the Review, we have sought never to lose sight of David Cameron’s “exam question”. Could it be true that laws designed more than three centuries ago with the express purpose of creating economic incentives for innovation by protecting creators’ rights are today obstructing innovation and economic growth? The short answer is: yes. We have found that the UK’s intellectual property framework, especially with regard to copyright, is falling behind what is needed.
    [Show full text]
  • Gypsum and Carbon Amendment's
    GYPSUM AND CARBON AMENDMENT’S INFLUENCE ON SOIL PROPERTIES, GREENHOUSE GAS EMISSIONS, GROWTH AND NUTRIENT UPTAKE OF RYEGRASS (Lolium perenne) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Maninder Kaur Walia, M.S. Environment and Natural Resources Graduate Program The Ohio State University 2015 Dissertation Committee: Warren A. Dick, Advisor Rattan Lal Brian K. Slater Frederick C. Michel,Jr. Copyrighted by Maninder Kaur Walia 2015 Abstract Gypsum is a source of calcium and sulfur that improves the physical and chemical properties of the soil. With the benefits associated with gypsum use and the increased availability of synthetic gypsum, its application to soil in Ohio and the Midwest is increasing. Several studies have focused on the effect of gypsum on soil properties. However, little is known about how gypsum affects C stocks in soils. In this study, in addition to gypsum, we also treated the soil with glucose to create a high level of CO2 in the soil profile, and contrasted that with the more slowly released C from plant residues. The overall goal of this dissertation research was to evaluate the effect of plant residues, glucose and gypsum on the growth and nutrient uptake of ryegrass, chemical properties (including total and inorganic C stock) and physical properties of two contrasting soils in Ohio (Wooster silt loam and Hoytville clay loam). Specific objectives of this research were to quantify the effect of (1) gypsum and plant residues on greenhouse gas emissions, (2) gypsum and C amendments on quality of leachate water, (3) gypsum and C amendments addition on C fractions in soils, (4) gypsum, plant residues and glucose addition on soil fertility, growth and nutrients concentrations of ryegrass and (5) gypsum, glucose and plant residues on selected soil physical properties and aggregate-associated C and N.
    [Show full text]
  • “Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
    National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target
    [Show full text]
  • Educator's Guide
    EDUCATOR’S GUIDE ABOUT THE FILM Dear Educator, “ROVING MARS”is an exciting adventure that This movie details the development of Spirit and follows the journey of NASA’s Mars Exploration Opportunity from their assembly through their Rovers through the eyes of scientists and engineers fantastic discoveries, discoveries that have set the at the Jet Propulsion Laboratory and Steve Squyres, pace for a whole new era of Mars exploration: from the lead science investigator from Cornell University. the search for habitats to the search for past or present Their collective dream of Mars exploration came life… and maybe even to human exploration one day. true when two rovers landed on Mars and began Having lasted many times longer than their original their scientific quest to understand whether Mars plan of 90 Martian days (sols), Spirit and Opportunity ever could have been a habitat for life. have confirmed that water persisted on Mars, and Since the 1960s, when humans began sending the that a Martian habitat for life is a possibility. While first tentative interplanetary probes out into the solar they continue their studies, what lies ahead are system, two-thirds of all missions to Mars have NASA missions that not only “follow the water” on failed. The technical challenges are tremendous: Mars, but also “follow the carbon,” a building block building robots that can withstand the tremendous of life. In the next decade, precision landers and shaking of launch; six months in the deep cold of rovers may even search for evidence of life itself, space; a hurtling descent through the atmosphere either signs of past microbial life in the rock record (going from 10,000 miles per hour to 0 in only six or signs of past or present life where reserves of minutes!); bouncing as high as a three-story building water ice lie beneath the Martian surface today.
    [Show full text]
  • Moving Forwards
    Recycling Today Magazine ~> Moving Forward Page 1 of 3 recvdin MoVing Forward By: Timothy G. Townsend May 2003 URL: http:llwww.recyclingtoday,com/arficles/article.asp?lD=4759&CafiD=&SubCatlD= Gypsum drywall is a major component of modern buildings, yet it is often one of the least likely components of debris frem building construction, demolition or renovation to be recycled. Gypsum drywall typically makes up 5 percent to 25 percent of the weight of debris from building-related C&D activities, A typical rule of thumb for drywall generation from construction activities is one pound of drywall per cubic foot of construction. The amount of post-consumer drywall generated in Florida C&D debris in 2000 was estimated at nearly 500,000 tons. Most of this was disposed in unlined landfills. Recovery and recycling is always desired in place of lend- filling when feasible, but several environmentel factors (odor, groundwater contamination) create added incentive for recycling d~JwalL While several gypsum drywall recycling operations exist in North America at the current time, in many areas (Florida for example) drywa!l recycling is relatively nonexistent. This paper describe~ some of the issues facing the C&D debris industry and summarizes the current state of gypsum drywall recycling in North America. DRYWALL BASICS Gypsum drywall, often referred to as gypsum wallbeard or sheet rock, replaced gypsum piaster as the major interior wall surface because of its ease of installation and its fire resistant properties. Gypsum drywal! consists of approximately 90 percent gypsum and 10 percent paper facing and backing. Gypsum is a mineral composed of calcium sulfate (CaSOL and water (H20).
    [Show full text]
  • The Cassini-Huygens Mission
    International Project Management: The Cassini-Huygens Mission NASA Case Study NASA Academy of Program/Project & Engineering Leadership http://appel.nasa.gov How would you explore the moons of Saturn? (watch a video: http://saturn.jpl.nasa.gov/video/videodetails/?videoID=19) http://appel.nasa.gov Cassini-Huygens ¾ U.S. - European mission to explore Saturn ¾ NASA and Italian Space Agency: Cassini spacecraft ¾ European Space Agency: Huygens probe ¾ Launched October 1997 ¾ 6.7 year voyage to Saturn http://appel.nasa.gov Cassini and Huygens Cassini Huygens • Delivered Huygens • Released by Cassini to probe to Titan land on surface of • Remained in orbit Saturn’s moon Titan around Saturn for • Investigated detailed studies of the characteristics of Titan’s planet, its rings and atmosphere and surface satellites (moons) Cassini Huygens Saturn Titan http://appel.nasa.gov Cassini-Huygens: the Complex Project Environment Complex Project-Based Functional Organization Organization Problems Novel Routine Technology New/invented Improved/more efficient Team Global, multidisciplinary Local, homogeneous Cost Life cycle Unit Schedule Project completion Productivity rate Customer Involved at inception Involved at point of sale Survival skill Adaptation Control/stability Discussion point: does this model describe Cassini-Huygens? http://appel.nasa.gov Defining Project Complexity at NASA PROGRAMMATIC TECHNICAL Budget Interfaces/systems engineering • Congressional appropriations • Changing agency Technological readiness constraints and priorities One-of-a-kind
    [Show full text]
  • Historical Painting Techniques, Materials, and Studio Practice
    Historical Painting Techniques, Materials, and Studio Practice PUBLICATIONS COORDINATION: Dinah Berland EDITING & PRODUCTION COORDINATION: Corinne Lightweaver EDITORIAL CONSULTATION: Jo Hill COVER DESIGN: Jackie Gallagher-Lange PRODUCTION & PRINTING: Allen Press, Inc., Lawrence, Kansas SYMPOSIUM ORGANIZERS: Erma Hermens, Art History Institute of the University of Leiden Marja Peek, Central Research Laboratory for Objects of Art and Science, Amsterdam © 1995 by The J. Paul Getty Trust All rights reserved Printed in the United States of America ISBN 0-89236-322-3 The Getty Conservation Institute is committed to the preservation of cultural heritage worldwide. The Institute seeks to advance scientiRc knowledge and professional practice and to raise public awareness of conservation. Through research, training, documentation, exchange of information, and ReId projects, the Institute addresses issues related to the conservation of museum objects and archival collections, archaeological monuments and sites, and historic bUildings and cities. The Institute is an operating program of the J. Paul Getty Trust. COVER ILLUSTRATION Gherardo Cibo, "Colchico," folio 17r of Herbarium, ca. 1570. Courtesy of the British Library. FRONTISPIECE Detail from Jan Baptiste Collaert, Color Olivi, 1566-1628. After Johannes Stradanus. Courtesy of the Rijksmuseum-Stichting, Amsterdam. Library of Congress Cataloguing-in-Publication Data Historical painting techniques, materials, and studio practice : preprints of a symposium [held at] University of Leiden, the Netherlands, 26-29 June 1995/ edited by Arie Wallert, Erma Hermens, and Marja Peek. p. cm. Includes bibliographical references. ISBN 0-89236-322-3 (pbk.) 1. Painting-Techniques-Congresses. 2. Artists' materials- -Congresses. 3. Polychromy-Congresses. I. Wallert, Arie, 1950- II. Hermens, Erma, 1958- . III. Peek, Marja, 1961- ND1500.H57 1995 751' .09-dc20 95-9805 CIP Second printing 1996 iv Contents vii Foreword viii Preface 1 Leslie A.
    [Show full text]
  • SEP Events Observed to Date ('FTO', Ions, Electrons)
    9th International Conference on Mars 25 July 2019 Space Weather at Mars: 4.5 Years of ………… observations This slide package was presented at the Ninth International Conference on Mars and is being shared, with permission from the plenary presenter. The original file has been compressed in size and converted to .pdf – please contact the presenter if interested in the original presentation Christina O. Lee1 J. G. Luhmann1, B. M. Jakosky2, D. A. Brain2 J. S. Halekas3, E. M. B.Thiemann2, P. Chamberlin2 J. Gruesbeck4, J. R. Espley4 A. Rahmati1, P. Dunn1, R. J. Lillis1, D. E. Larson1, S. M. Curry1 1 Space Sciences Lab/UC Berkeley, 2 CU/LASP, 3 U of Iowa, 4 NASA/GSFC Space Weather 101 Solar flares are local bursts of radiation. Coronal mass ejections (CMEs) are magnetized clouds of charged particles that spreads out into space. Video removed - contact presenter if interested SOHO/LASCO C3 Space Weather 101 Solar Energetic Particles (SEPS) are accelerated by the shock fronts created by these explosions. An observer magnetically connected to the shock via the interplanetary magnetic field (IMF) can detect these particles. Image credit: NASA/STEREO mission Without a strong planetary dipole magnetic field or thick atmosphere like Earth, exposure of equipment and explorers to the space environment is relatively direct at Mars. Mars Earth Image: NASA/GSFC In particular, SEP protons of up to several hundred MeV or more can affect orbiting spacecraft, landed systems and human explorers. Here, a solar coronagraph located at Earth’s L1 point experiences a Video removed - contact presenter if interested ‘snowstorm’ of SEPs.
    [Show full text]
  • Insight Brief Racing to Accelerate Electric Vehicle Adoption 02
    M OUN KY T C A I insightO briefN Racing to Accelerate Electric Vehicle Adoption 1 R Racing to Accelerate Electric Vehicle Adoption: I N E STIT U T Decarbonizing Transportation with Ridehailing insight brief January 2021 Authors HIGHLIGHTS Ross McLane Rocky Mountain Institute The race is on to deploy well over 50 million battery and plug-in hybrid electric vehicles (EVs) EJ Klock-McCook in the United States by 2030. This—in addition to reducing vehicle miles traveled, strategically Rocky Mountain Institute redesigning urban areas, and improving public transit and nonmotorized transport—is Shenshen Li necessary if we are to limit global temperature rise to 1.5°C. To achieve this scale of ambition, Rocky Mountain Institute every opportunity for acceleration must be exploited. John Schroeder Rocky Mountain Institute Why then do we turn our attention to transportation network company (TNC) vehicles, which represent a very small portion of total miles in the United States? We believe they offer key Contributors catalytic opportunities: Alex Keros A full-time TNC driver travels approximately three times as many miles per year as the average General Motors EV/AV Program • American and therefore has a lot to gain from lower battery EV operating costs. RMI Data Science Team Rocky Mountain Institute • Concentrated fleets of electric TNC vehicles can serve as critical anchor tenants for much-needed high-speed public charging, helping to enable broader deployment in more diverse parts of cities. Contacts • Each vehicle serves many passengers, which, if electric, provides a valuable public education Ross McLane and awareness opportunity. [email protected] EJ Klock-McCook Rocky Mountain Institute collaborated with General Motors (GM) to better understand the [email protected] challenges and opportunities of TNC electrification by evaluating a year of actual operational data—of both EVs and internal combustion engine (ICE) vehicles operating in TNC services.
    [Show full text]
  • Dawn Mission to Vesta and Ceres Symbiosis Between Terrestrial Observations and Robotic Exploration
    Earth Moon Planet (2007) 101:65–91 DOI 10.1007/s11038-007-9151-9 Dawn Mission to Vesta and Ceres Symbiosis between Terrestrial Observations and Robotic Exploration C. T. Russell Æ F. Capaccioni Æ A. Coradini Æ M. C. De Sanctis Æ W. C. Feldman Æ R. Jaumann Æ H. U. Keller Æ T. B. McCord Æ L. A. McFadden Æ S. Mottola Æ C. M. Pieters Æ T. H. Prettyman Æ C. A. Raymond Æ M. V. Sykes Æ D. E. Smith Æ M. T. Zuber Received: 21 August 2007 / Accepted: 22 August 2007 / Published online: 14 September 2007 Ó Springer Science+Business Media B.V. 2007 Abstract The initial exploration of any planetary object requires a careful mission design guided by our knowledge of that object as gained by terrestrial observers. This process is very evident in the development of the Dawn mission to the minor planets 1 Ceres and 4 Vesta. This mission was designed to verify the basaltic nature of Vesta inferred both from its reflectance spectrum and from the composition of the howardite, eucrite and diogenite meteorites believed to have originated on Vesta. Hubble Space Telescope observations have determined Vesta’s size and shape, which, together with masses inferred from gravitational perturbations, have provided estimates of its density. These investigations have enabled the Dawn team to choose the appropriate instrumentation and to design its orbital operations at Vesta. Until recently Ceres has remained more of an enigma. Adaptive-optics and HST observations now have provided data from which we can begin C. T. Russell (&) IGPP & ESS, UCLA, Los Angeles, CA 90095-1567, USA e-mail: [email protected] F.
    [Show full text]
  • Delta II Dawn Mission Booklet
    Delta Launch Vehicle Programs Dawn United Launch Alliance is proud to launch the Dawn mission. Dawn will be launched aboard a Delta II 7925H launch vehicle from Cape Canaveral Air Force Station (CCAFS), Florida. The launch vehicle will deliver the Dawn spacecraft into an Earth- escape trajectory, where it will commence its journey to the solar system’s main asteroid belt to gather comparative data from dwarf planet Ceres and asteroid Vesta. United Launch Alliance provides the Delta II launch service under the NASA Launch Services (NLS) contract with the NASA Kennedy Space Center Expendable Launch Services Program. We are delighted that NASA has chosen the Delta II for this Discovery Mission. I congratulate the entire Delta team for their significant efforts that resulted in achieving this milestone and look forward to continued launches of scientific space missions aboard the Delta launch vehicle. Kristen T. Walsh Director, NASA Programs Delta Launch Vehicles 1 Dawn Mission Overview The Dawn spacecraft will make an eight-year journey to the main asteroid belt between Mars and Jupiter in an effort to significantly increase our understanding of the conditions and processes acting at the solar system’s earliest epoch by examining the geophysical properties of the asteroid Vesta and dwarf planet Ceres. Evidence shows that Vesta and Ceres have distinct characteristics and, therefore, must have followed different evolutionary paths. By observing both, with the same set of instruments, scientists hope to develop an understanding of the transition from the rocky inner regions, of which Vesta is characteristic, to the icy outer regions, of which Ceres is representative.
    [Show full text]